diff --git a/README.md b/README.md index 5ddb2a48ca830..1d8aba50d8535 100644 --- a/README.md +++ b/README.md @@ -59,6 +59,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi - Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.) - MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.) - OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.) +- Phi-1.5 (`microsoft/phi-1_5`, etc.) - Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.) Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source): diff --git a/requirements.txt b/requirements.txt index fa9eb6386ae71..e8a44328c8ea4 100644 --- a/requirements.txt +++ b/requirements.txt @@ -5,6 +5,7 @@ pandas # Required for Ray data. pyarrow # Required for Ray data. sentencepiece # Required for LLaMA tokenizer. numpy +einops # Required for phi-1_5 torch >= 2.1.0 transformers >= 4.34.0 # Required for Mistral. xformers >= 0.0.22.post7 # Required for CUDA 12.1. diff --git a/tests/models/test_models.py b/tests/models/test_models.py index 8b059ad5e0a45..95eabaafec811 100644 --- a/tests/models/test_models.py +++ b/tests/models/test_models.py @@ -15,6 +15,7 @@ "EleutherAI/pythia-70m", "bigscience/bloom-560m", "mosaicml/mpt-7b", + "microsoft/phi-1_5", ] diff --git a/vllm/model_executor/model_loader.py b/vllm/model_executor/model_loader.py index 1ac966a078923..aad369b1c8e27 100644 --- a/vllm/model_executor/model_loader.py +++ b/vllm/model_executor/model_loader.py @@ -32,6 +32,7 @@ "MptForCausalLM": MPTForCausalLM, "MPTForCausalLM": MPTForCausalLM, "OPTForCausalLM": OPTForCausalLM, + "PhiForCausalLM": PhiForCausalLM, "QWenLMHeadModel": QWenLMHeadModel, "RWForCausalLM": FalconForCausalLM, "YiForCausalLM": YiForCausalLM, diff --git a/vllm/model_executor/models/__init__.py b/vllm/model_executor/models/__init__.py index 36b6351e02ad1..078d3d74719df 100644 --- a/vllm/model_executor/models/__init__.py +++ b/vllm/model_executor/models/__init__.py @@ -12,6 +12,7 @@ from vllm.model_executor.models.mistral import MistralForCausalLM from vllm.model_executor.models.mpt import MPTForCausalLM from vllm.model_executor.models.opt import OPTForCausalLM +from vllm.model_executor.models.phi_1_5 import PhiForCausalLM from vllm.model_executor.models.qwen import QWenLMHeadModel from vllm.model_executor.models.chatglm import ChatGLMForCausalLM from vllm.model_executor.models.yi import YiForCausalLM @@ -31,6 +32,7 @@ "LlamaForCausalLM", "MPTForCausalLM", "OPTForCausalLM", + "PhiForCausalLM", "QWenLMHeadModel", "MistralForCausalLM", "YiForCausalLM", diff --git a/vllm/model_executor/models/phi_1_5.py b/vllm/model_executor/models/phi_1_5.py new file mode 100644 index 0000000000000..2ae88519a6cf7 --- /dev/null +++ b/vllm/model_executor/models/phi_1_5.py @@ -0,0 +1,314 @@ +# coding=utf-8 +# Adapted from +# https://huggingface.co/microsoft/phi-1_5/blob/main/modeling_phi.py +# Copyright 2023 The vLLM team. +# Copyright (c) Microsoft Corporation. +# Licensed under the MIT license. +# +# BSD 3-Clause License +# +# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu. +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of the copyright holder nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +"""Inference-only Phi-1.5 model compatible with HuggingFace weights. + +The input of the model is flattened to a 1D tensor of tokens. The model uses +InputMetadata to extract the original 2D shape of the input. +""" +from typing import List, Optional, Tuple + +import torch +from torch import nn +from transformers import PretrainedConfig + +from vllm.model_executor.input_metadata import InputMetadata +from vllm.model_executor.layers.activation import get_act_fn +from vllm.model_executor.layers.attention import PagedAttentionWithRoPE +from vllm.model_executor.layers.linear import (ColumnParallelLinear, + LinearMethodBase, + QKVParallelLinear, + RowParallelLinear) +from vllm.model_executor.layers.sampler import Sampler +from vllm.model_executor.layers.vocab_parallel_embedding import ( + VocabParallelEmbedding, ParallelLMHead) +from vllm.model_executor.parallel_utils.parallel_state import ( + get_tensor_model_parallel_world_size) +from vllm.model_executor.weight_utils import (default_weight_loader, + hf_model_weights_iterator) +from vllm.sequence import SamplerOutput + +KVCache = Tuple[torch.Tensor, torch.Tensor] + + +class PhiEmbedding(nn.Module): + + def __init__(self, config: PretrainedConfig): + super().__init__() + + self.wte = VocabParallelEmbedding( + config.vocab_size, + config.hidden_size, + ) + + def forward(self, input_ids: torch.LongTensor): + return self.wte(input_ids) + + +class PhiAttention(nn.Module): + + def __init__(self, + config: PretrainedConfig, + linear_method: Optional[LinearMethodBase] = None): + super().__init__() + self.total_num_heads = config.num_attention_heads + self.hidden_size = config.hidden_size + self.head_size = self.hidden_size // self.total_num_heads + + tensor_model_parallel_world_size = ( + get_tensor_model_parallel_world_size()) + assert self.total_num_heads % tensor_model_parallel_world_size == 0 + self.num_heads = (self.total_num_heads // + tensor_model_parallel_world_size) + + # pylint: disable=C0103 + self.Wqkv = QKVParallelLinear( + self.hidden_size, + self.head_size, + self.total_num_heads, + linear_method=linear_method, + ) + self.qkv_proj = QKVParallelLinear( + config.hidden_size, + self.head_size, + self.total_num_heads, + bias=False, + linear_method=linear_method, + ) + self.out_proj = RowParallelLinear( + self.hidden_size, + self.hidden_size, + linear_method=linear_method, + ) + + scaling = self.head_size**-0.5 + rotary_dim = config.rotary_dim + assert rotary_dim % 2 == 0 + + # pylint: disable=C0301 + # Refer to: + # https://huggingface.co/microsoft/phi-1_5/blob/d212a789620c380ff32ca1d1ee9943a777360987/modeling_phi.py#L518 + rope_theta = 10000 + max_position_embeddings = getattr(config, "n_positions", 2048) + self.attn = PagedAttentionWithRoPE( + self.num_heads, + self.head_size, + scaling, + rotary_dim, + base=rope_theta, + max_position=max_position_embeddings) + + def forward( + self, + position_ids: torch.Tensor, + hidden_states: torch.Tensor, + kv_cache: KVCache, + input_metadata: InputMetadata, + cache_event: Optional[torch.cuda.Event], + ) -> torch.Tensor: + qkv, _ = self.Wqkv(hidden_states) + q, k, v = qkv.chunk(chunks=3, dim=-1) + k_cache, v_cache = kv_cache + attn_output = self.attn(position_ids, q, k, v, k_cache, v_cache, + input_metadata, cache_event) + output, _ = self.out_proj(attn_output) + return output + + +class PhiMLP(nn.Module): + + def __init__(self, + config: PretrainedConfig, + linear_method: Optional[LinearMethodBase] = None): + super().__init__() + + n_inner = getattr(config, "n_inner", None) + n_inner = n_inner if n_inner is not None else 4 * config.hidden_size + + self.fc1 = ColumnParallelLinear( + config.hidden_size, + n_inner, + linear_method=linear_method, + ) + self.fc2 = RowParallelLinear( + n_inner, + config.hidden_size, + linear_method=linear_method, + ) + self.act = get_act_fn(config.activation_function) + + def forward(self, hidden_states): + hidden_states, _ = self.fc1(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states, _ = self.fc2(hidden_states) + return hidden_states + + +class PhiLayer(nn.Module): + + def __init__(self, + config: PretrainedConfig, + linear_method: Optional[LinearMethodBase] = None): + super().__init__() + self.ln = nn.LayerNorm(config.hidden_size, + eps=config.layer_norm_epsilon) + self.mixer = PhiAttention(config, linear_method) + self.mlp = PhiMLP(config, linear_method) + + def forward( + self, + position_ids: torch.Tensor, + hidden_states: torch.Tensor, + kv_cache: KVCache, + input_metadata: InputMetadata, + cache_event: Optional[torch.cuda.Event], + ) -> torch.Tensor: + residual = hidden_states + hidden_states = self.ln(hidden_states) + attn_outputs = self.mixer( + position_ids=position_ids, + hidden_states=hidden_states, + kv_cache=kv_cache, + input_metadata=input_metadata, + cache_event=cache_event, + ) + feed_forward_hidden_states = self.mlp(hidden_states) + hidden_states = attn_outputs + feed_forward_hidden_states + residual + return hidden_states + + +class PhiCausalLMHead(nn.Module): + + def __init__(self, config: PretrainedConfig): + super().__init__() + self.ln = nn.LayerNorm(config.hidden_size, + eps=config.layer_norm_epsilon) + self.linear = ParallelLMHead(config.vocab_size, + config.hidden_size, + bias=True) + self.sampler = Sampler(config.vocab_size) + + def forward( + self, + hidden_states: torch.Tensor, + input_metadata: InputMetadata, + ): + hidden_states = self.ln(hidden_states) + next_tokens = self.sampler(self.linear.weight, hidden_states, + input_metadata, self.linear.bias) + return next_tokens + + +class PhiModel(nn.Module): + + def __init__(self, + config: PretrainedConfig, + linear_method: Optional[LinearMethodBase] = None): + super().__init__() + self.config = config + self.linear_method = linear_method + self.embd = PhiEmbedding(config) + self.h = nn.ModuleList([ + PhiLayer(config, linear_method) + for _ in range(config.num_hidden_layers) + ]) + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + kv_caches: List[KVCache], + input_metadata: InputMetadata, + cache_events: Optional[List[torch.cuda.Event]], + ) -> SamplerOutput: + hidden_states = self.embd(input_ids) + for i in range(self.config.num_hidden_layers): + if cache_events is None: + cache_event = None + else: + cache_event = cache_events[i] + layer = self.h[i] + hidden_states = layer( + positions, + hidden_states, + kv_caches[i], + input_metadata, + cache_event, + ) + return hidden_states + + +class PhiForCausalLM(nn.Module): + + def __init__(self, + config: PretrainedConfig, + linear_method: Optional[LinearMethodBase] = None): + super().__init__() + self.config = config + self.linear_method = linear_method + + self.transformer = PhiModel(config, linear_method) + self.lm_head = PhiCausalLMHead(config) + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + kv_caches: List[KVCache], + input_metadata: InputMetadata, + cache_events: Optional[List[torch.cuda.Event]], + ) -> SamplerOutput: + hidden_states = self.transformer(input_ids, positions, kv_caches, + input_metadata, cache_events) + lm_logits = self.lm_head(hidden_states, input_metadata) + return lm_logits + + def load_weights(self, + model_name_or_path: str, + cache_dir: Optional[str] = None, + load_format: str = "auto", + revision: Optional[str] = None): + params_dict = dict(self.named_parameters()) + for name, loaded_weight in hf_model_weights_iterator( + model_name_or_path, cache_dir, load_format, revision): + if "rotary_emb.inv_freq" in name: + continue + + # pylint: disable=E1136 + param = params_dict[name] + weight_loader = getattr(param, "weight_loader", + default_weight_loader) + weight_loader(param, loaded_weight)