diff --git a/vllm/model_executor/models/glm4_1v.py b/vllm/model_executor/models/glm4_1v.py index f9fd5163d66b..fec106d9a40a 100644 --- a/vllm/model_executor/models/glm4_1v.py +++ b/vllm/model_executor/models/glm4_1v.py @@ -1457,6 +1457,7 @@ def _process_image_input( self, image_input: Glm4vImageInputs) -> tuple[torch.Tensor, ...]: grid_thw = image_input["image_grid_thw"] assert grid_thw.ndim == 2 + grid_thw_list = grid_thw.tolist() if image_input["type"] == "image_embeds": image_embeds = image_input["image_embeds"].type(self.visual.dtype) @@ -1471,13 +1472,15 @@ def _process_image_input( image_embeds = self.visual(pixel_values, grid_thw=grid_thw.tolist()) merge_size = self.visual.spatial_merge_size - sizes = grid_thw.prod(-1) // merge_size // merge_size - return image_embeds.split(sizes.tolist()) + sizes = (torch.tensor(grid_thw_list, dtype=torch.long).prod(-1) // + (merge_size * merge_size)).tolist() + return image_embeds.split(sizes) def _process_video_input( self, video_input: Glm4vVideoInputs) -> tuple[torch.Tensor, ...]: grid_thw = video_input["video_grid_thw"] assert grid_thw.ndim == 2 + grid_thw_list = grid_thw.tolist() if video_input["type"] == "video_embeds": video_embeds = video_input["video_embeds"].type(self.visual.dtype) @@ -1494,8 +1497,9 @@ def _process_video_input( grid_thw=grid_thw.tolist()) # Split concatenated embeddings for each video item. merge_size = self.visual.spatial_merge_size - sizes = grid_thw.prod(-1) // merge_size // merge_size - return video_embeds.split(sizes.tolist()) + sizes = (torch.tensor(grid_thw_list, dtype=torch.long).prod(-1) // + (merge_size * merge_size)).tolist() + return video_embeds.split(sizes) def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict: mm_input_by_modality = {}