diff --git a/docs/models/supported_models.md b/docs/models/supported_models.md index c9744d31f0ef..fd25647dce54 100644 --- a/docs/models/supported_models.md +++ b/docs/models/supported_models.md @@ -403,6 +403,7 @@ th { | `OLMoEForCausalLM` | OLMoE | `allenai/OLMoE-1B-7B-0924`, `allenai/OLMoE-1B-7B-0924-Instruct`, etc. | | ✅︎ | | `OPTForCausalLM` | OPT, OPT-IML | `facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc. | ✅︎ | ✅︎ | | `OrionForCausalLM` | Orion | `OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc. | | ✅︎ | +| `OuroForCausalLM` | ouro | `ByteDance/Ouro-1.4B`, `ByteDance/Ouro-2.6B`, etc. | ✅︎ | | | `PhiForCausalLM` | Phi | `microsoft/phi-1_5`, `microsoft/phi-2`, etc. | ✅︎ | ✅︎ | | `Phi3ForCausalLM` | Phi-4, Phi-3 | `microsoft/Phi-4-mini-instruct`, `microsoft/Phi-4`, `microsoft/Phi-3-mini-4k-instruct`, `microsoft/Phi-3-mini-128k-instruct`, `microsoft/Phi-3-medium-128k-instruct`, etc. | ✅︎ | ✅︎ | | `PhiMoEForCausalLM` | Phi-3.5-MoE | `microsoft/Phi-3.5-MoE-instruct`, etc. | ✅︎ | ✅︎ | diff --git a/tests/models/registry.py b/tests/models/registry.py index 9a2a1eb5f1a7..7b5977ec58e5 100644 --- a/tests/models/registry.py +++ b/tests/models/registry.py @@ -369,6 +369,7 @@ def check_available_online( "OrionForCausalLM": _HfExamplesInfo( "OrionStarAI/Orion-14B-Chat", trust_remote_code=True ), + "OuroForCausalLM": _HfExamplesInfo("ByteDance/Ouro-1.4B", trust_remote_code=True), "PersimmonForCausalLM": _HfExamplesInfo("adept/persimmon-8b-chat"), "PhiForCausalLM": _HfExamplesInfo("microsoft/phi-2"), "Phi3ForCausalLM": _HfExamplesInfo("microsoft/Phi-3-mini-4k-instruct"), diff --git a/vllm/model_executor/models/ouro.py b/vllm/model_executor/models/ouro.py new file mode 100644 index 000000000000..b8dad909c547 --- /dev/null +++ b/vllm/model_executor/models/ouro.py @@ -0,0 +1,518 @@ +# SPDX-License-Identifier: Apache-2.0 +# SPDX-FileCopyrightText: Copyright contributors to the vLLM project + +# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates +# Adapted from +# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2/modeling_qwen2.py +# Copyright 2024 The Qwen team. +# Copyright 2023 The vLLM team. +# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Inference-only Ouro model compatible with HuggingFace weights.""" + +from collections.abc import Iterable +from typing import Any + +import torch +from torch import nn +from transformers import PretrainedConfig + +from vllm.attention import Attention, AttentionType +from vllm.compilation.decorators import support_torch_compile +from vllm.config import CacheConfig, VllmConfig +from vllm.distributed import get_tensor_model_parallel_world_size +from vllm.model_executor.layers.activation import SiluAndMul +from vllm.model_executor.layers.layernorm import RMSNorm +from vllm.model_executor.layers.linear import ( + MergedColumnParallelLinear, + QKVParallelLinear, + RowParallelLinear, +) +from vllm.model_executor.layers.logits_processor import LogitsProcessor +from vllm.model_executor.layers.quantization import QuantizationConfig +from vllm.model_executor.layers.rotary_embedding import get_rope +from vllm.model_executor.layers.vocab_parallel_embedding import ( + ParallelLMHead, + VocabParallelEmbedding, +) +from vllm.model_executor.model_loader.weight_utils import ( + default_weight_loader, + maybe_remap_kv_scale_name, +) +from vllm.sequence import IntermediateTensors + +from .interfaces import SupportsLoRA +from .utils import ( + AutoWeightsLoader, + extract_layer_index, + make_empty_intermediate_tensors_factory, + make_layers, + maybe_prefix, +) + + +class OuroMLP(nn.Module): + def __init__( + self, + hidden_size: int, + intermediate_size: int, + hidden_act: str, + quant_config: QuantizationConfig | None = None, + prefix: str = "", + ) -> None: + super().__init__() + self.gate_up_proj = MergedColumnParallelLinear( + hidden_size, + [intermediate_size] * 2, + bias=False, + quant_config=quant_config, + prefix=f"{prefix}.gate_up_proj", + ) + self.down_proj = RowParallelLinear( + intermediate_size, + hidden_size, + bias=False, + quant_config=quant_config, + prefix=f"{prefix}.down_proj", + ) + if hidden_act != "silu": + raise ValueError( + f"Unsupported activation: {hidden_act}. Only silu is supported for now." + ) + self.act_fn = SiluAndMul() + + def forward(self, x): + gate_up, _ = self.gate_up_proj(x) + x = self.act_fn(gate_up) + x, _ = self.down_proj(x) + return x + + +class OuroAttention(nn.Module): + def __init__( + self, + config: PretrainedConfig, + hidden_size: int, + num_heads: int, + num_kv_heads: int, + max_position: int = 4096 * 32, + rope_theta: float = 10000, + cache_config: CacheConfig | None = None, + quant_config: QuantizationConfig | None = None, + rope_scaling: tuple | None = None, + prefix: str = "", + attn_type: str = AttentionType.DECODER, + dual_chunk_attention_config: dict[str, Any] | None = None, + ) -> None: + super().__init__() + self.hidden_size = hidden_size + tp_size = get_tensor_model_parallel_world_size() + self.total_num_heads = num_heads + assert self.total_num_heads % tp_size == 0 + self.num_heads = self.total_num_heads // tp_size + self.total_num_kv_heads = num_kv_heads + if self.total_num_kv_heads >= tp_size: + # Number of KV heads is greater than TP size, so we partition + # the KV heads across multiple tensor parallel GPUs. + assert self.total_num_kv_heads % tp_size == 0 + else: + # Number of KV heads is less than TP size, so we replicate + # the KV heads across multiple tensor parallel GPUs. + assert tp_size % self.total_num_kv_heads == 0 + self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) + self.head_dim = hidden_size // self.total_num_heads + self.q_size = self.num_heads * self.head_dim + self.kv_size = self.num_kv_heads * self.head_dim + self.scaling = self.head_dim**-0.5 + self.rope_theta = rope_theta + self.dual_chunk_attention_config = dual_chunk_attention_config + + # Get total_ut_steps from config, default to 4 if not specified + total_ut_steps = getattr(config, "total_ut_steps", 4) + + # Use total number of hidden layers instead of hardcoded 24 + total_layers = config.num_hidden_layers + + self.qkv_proj = QKVParallelLinear( + hidden_size, + self.head_dim, + self.total_num_heads, + self.total_num_kv_heads, + bias=False, + quant_config=quant_config, + prefix=f"{prefix}.qkv_proj", + ) + self.o_proj = RowParallelLinear( + self.total_num_heads * self.head_dim, + hidden_size, + bias=False, + quant_config=quant_config, + prefix=f"{prefix}.o_proj", + ) + + self.rotary_emb = get_rope( + self.head_dim, + rotary_dim=self.head_dim, + max_position=max_position, + base=self.rope_theta, + rope_scaling=rope_scaling, + dual_chunk_attention_config=dual_chunk_attention_config, + ) + self.attn = nn.ModuleList() + for ut_step in range(total_ut_steps): + base_layer_idx = extract_layer_index(prefix) + unique_layer_idx = ut_step * total_layers + base_layer_idx + + unique_prefix = prefix.replace( + f"layers.{base_layer_idx}", f"layers.{unique_layer_idx}" + ) + + self.attn.append( + Attention( + self.num_heads, + self.head_dim, + self.scaling, + num_kv_heads=self.num_kv_heads, + cache_config=cache_config, + quant_config=quant_config, + attn_type=attn_type, + prefix=f"{unique_prefix}.attn", + **{ + "layer_idx": unique_layer_idx, + "dual_chunk_attention_config": dual_chunk_attention_config, + } + if dual_chunk_attention_config + else {}, + ) + ) + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + current_ut: int, + ) -> torch.Tensor: + qkv, _ = self.qkv_proj(hidden_states) + q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) + q, k = self.rotary_emb(positions, q, k) + attn_output = self.attn[current_ut](q, k, v) + output, _ = self.o_proj(attn_output) + return output + + +class OuroDecoderLayer(nn.Module): + def __init__( + self, + config: PretrainedConfig, + cache_config: CacheConfig | None = None, + quant_config: QuantizationConfig | None = None, + prefix: str = "", + ) -> None: + super().__init__() + self.hidden_size = config.hidden_size + # Requires transformers > 4.32.0 + rope_theta = getattr(config, "rope_theta", 1000000) + rope_scaling = getattr(config, "rope_scaling", None) + dual_chunk_attention_config = getattr( + config, "dual_chunk_attention_config", None + ) + + if getattr(config, "is_causal", True): + attn_type = AttentionType.DECODER + else: + attn_type = AttentionType.ENCODER_ONLY + + self.self_attn = OuroAttention( + config=config, + hidden_size=self.hidden_size, + num_heads=config.num_attention_heads, + max_position=config.max_position_embeddings, + num_kv_heads=config.num_key_value_heads, + rope_theta=rope_theta, + cache_config=cache_config, + quant_config=quant_config, + rope_scaling=rope_scaling, + prefix=f"{prefix}.self_attn", + attn_type=attn_type, + dual_chunk_attention_config=dual_chunk_attention_config, + ) + self.mlp = OuroMLP( + hidden_size=self.hidden_size, + intermediate_size=config.intermediate_size, + hidden_act=config.hidden_act, + quant_config=quant_config, + prefix=f"{prefix}.mlp", + ) + self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.input_layernorm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.post_attention_layernorm = RMSNorm( + config.hidden_size, eps=config.rms_norm_eps + ) + self.post_attention_layernorm_2 = RMSNorm( + config.hidden_size, eps=config.rms_norm_eps + ) + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + current_ut: int, + residual: torch.Tensor | None = None, + ) -> tuple[torch.Tensor, torch.Tensor]: + if residual is None: + residual = hidden_states + hidden_states = self.input_layernorm(hidden_states) + else: + hidden_states, residual = self.input_layernorm(hidden_states, residual) + hidden_states = self.self_attn( + positions=positions, hidden_states=hidden_states, current_ut=current_ut + ) + hidden_states = self.input_layernorm_2(hidden_states) + + hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) + hidden_states = self.mlp(hidden_states) + hidden_states = self.post_attention_layernorm_2(hidden_states) + + return hidden_states, residual + + +@support_torch_compile( + dynamic_arg_dims={ + "input_ids": 0, + "positions": -1, + "intermediate_tensors": 0, + "inputs_embeds": 0, + } +) +class OuroModel(nn.Module): + def __init__( + self, + *, + vllm_config: VllmConfig, + prefix: str = "", + decoder_layer_type: type[nn.Module] = OuroDecoderLayer, + ): + super().__init__() + + config = vllm_config.model_config.hf_config + cache_config = vllm_config.cache_config + quant_config = vllm_config.quant_config + + # TODO (@robertgshaw2): see if this can be moved out + if cache_config.sliding_window is not None and hasattr( + config, "max_window_layers" + ): + assert config.max_window_layers == config.num_hidden_layers, ( + "Sliding window for some but all layers is not supported. " + "This model uses sliding window but `max_window_layers` = {} " + "is less than `num_hidden_layers` = {}. Please open an issue " + "to discuss this feature.".format( + config.max_window_layers, + config.num_hidden_layers, + ) + ) + + self.config = config + self.quant_config = quant_config + self.vocab_size = config.vocab_size + + self.embed_tokens = VocabParallelEmbedding( + config.vocab_size, + config.hidden_size, + quant_config=quant_config, + prefix=f"{prefix}.embed_tokens", + ) + + # Use the provided decoder layer type or default to OuroDecoderLayer + decoder_layer_type = decoder_layer_type or OuroDecoderLayer + self.start_layer, self.end_layer, self.layers = make_layers( + config.num_hidden_layers, + lambda prefix: decoder_layer_type( + config=config, + cache_config=cache_config, + quant_config=quant_config, + prefix=prefix, + ), + prefix=f"{prefix}.layers", + ) + + self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( + ["hidden_states", "residual"], config.hidden_size + ) + self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.early_exit_gate = RowParallelLinear(config.hidden_size, 1, bias=True) + + self.total_ut_steps = getattr(self.config, "total_ut_steps", 4) + + def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: + return self.embed_tokens(input_ids) + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + intermediate_tensors: IntermediateTensors | None = None, + inputs_embeds: torch.Tensor | None = None, + ) -> torch.Tensor | IntermediateTensors: + if inputs_embeds is not None: + hidden_states = inputs_embeds + else: + hidden_states = self.get_input_embeddings(input_ids) + + for current_ut in range(self.total_ut_steps): + residual = None + for layer in self.layers[self.start_layer : self.end_layer]: + hidden_states, residual = layer( + positions, hidden_states, current_ut, residual + ) + hidden_states, _ = self.norm(hidden_states, residual) + return hidden_states + + def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: + stacked_params_mapping = [ + # (param_name, shard_name, shard_id) + ("qkv_proj", "q_proj", "q"), + ("qkv_proj", "k_proj", "k"), + ("qkv_proj", "v_proj", "v"), + ("gate_up_proj", "gate_proj", 0), + ("gate_up_proj", "up_proj", 1), + ] + params_dict = dict(self.named_parameters(remove_duplicate=False)) + loaded_params: set[str] = set() + for name, loaded_weight in weights: + if "rotary_emb.inv_freq" in name: + continue + if self.quant_config is not None and ( + scale_name := self.quant_config.get_cache_scale(name) + ): + # Loading kv cache quantization scales + param = params_dict[scale_name] + weight_loader = getattr(param, "weight_loader", default_weight_loader) + loaded_weight = ( + loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0] + ) + weight_loader(param, loaded_weight) + loaded_params.add(scale_name) + continue + for param_name, weight_name, shard_id in stacked_params_mapping: + if weight_name not in name: + continue + name = name.replace(weight_name, param_name) + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + if name.endswith("scale"): + # Remapping the name of FP8 kv-scale. + name = maybe_remap_kv_scale_name(name, params_dict) + if name is None: + continue + param = params_dict[name] + weight_loader = getattr(param, "weight_loader", default_weight_loader) + if weight_loader == default_weight_loader: + weight_loader(param, loaded_weight) + else: + weight_loader(param, loaded_weight, shard_id) + break + else: + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + # Remapping the name of FP8 kv-scale. + name = maybe_remap_kv_scale_name(name, params_dict) + if name is None: + continue + param = params_dict[name] + weight_loader = getattr(param, "weight_loader", default_weight_loader) + weight_loader(param, loaded_weight) + loaded_params.add(name) + return loaded_params + + +class OuroForCausalLM(nn.Module, SupportsLoRA): + packed_modules_mapping = { + "qkv_proj": [ + "q_proj", + "k_proj", + "v_proj", + ], + "gate_up_proj": [ + "gate_proj", + "up_proj", + ], + } + + def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): + super().__init__() + config = vllm_config.model_config.hf_config + quant_config = vllm_config.quant_config + lora_config = vllm_config.lora_config + + self.config = config + self.lora_config = lora_config + + self.quant_config = quant_config + self.model = OuroModel( + vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") + ) + + if config.tie_word_embeddings: + self.lm_head = self.model.embed_tokens + else: + self.lm_head = ParallelLMHead( + config.vocab_size, + config.hidden_size, + quant_config=quant_config, + prefix=maybe_prefix(prefix, "lm_head"), + ) + + self.logits_processor = LogitsProcessor(config.vocab_size) + + self.make_empty_intermediate_tensors = ( + self.model.make_empty_intermediate_tensors + ) + + def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: + return self.model.get_input_embeddings(input_ids) + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + intermediate_tensors: IntermediateTensors | None = None, + inputs_embeds: torch.Tensor | None = None, + ) -> torch.Tensor | IntermediateTensors: + hidden_states = self.model( + input_ids, positions, intermediate_tensors, inputs_embeds + ) + return hidden_states + + def compute_logits( + self, + hidden_states: torch.Tensor, + ) -> torch.Tensor | None: + logits = self.logits_processor(self.lm_head, hidden_states) + return logits + + def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: + loader = AutoWeightsLoader( + self, + skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None), + ) + return loader.load_weights(weights) diff --git a/vllm/model_executor/models/registry.py b/vllm/model_executor/models/registry.py index 8e4413c90cf6..7eca1a09e536 100644 --- a/vllm/model_executor/models/registry.py +++ b/vllm/model_executor/models/registry.py @@ -148,6 +148,7 @@ "OlmoeForCausalLM": ("olmoe", "OlmoeForCausalLM"), "OPTForCausalLM": ("opt", "OPTForCausalLM"), "OrionForCausalLM": ("orion", "OrionForCausalLM"), + "OuroForCausalLM": ("ouro", "OuroForCausalLM"), "PersimmonForCausalLM": ("persimmon", "PersimmonForCausalLM"), "PhiForCausalLM": ("phi", "PhiForCausalLM"), "Phi3ForCausalLM": ("phi3", "Phi3ForCausalLM"),