
Distributed Differential Datalog

1 Model description

We assume a network of computation nodes, each running a version of Dif-
ferential Datalog [1]. Every node has its own Datalog program, i.e. set of
Datalog rules, and its own relations which are stored locally. Nodes commu-
nicate by using the output stream of one node as input stream for another
node. In addition to inputs resulting from computations in other nodes,
nodes might receive inputs from external sources.

2 Example

Consider for example a computer network as depicted in Figure 1 with a
hierarchy of switches that perform packet filtering. The switches might use
DDDlog in order to populate and maintain tables containing information
about the participating hosts and whether they are allowed to send packets.
The switches which are closest to the end hosts, here switches S1 and S2,
gather information about which hosts are currently connected. Higher level
switches, here switch S3, on the other hand, decide whether certain hosts are
allowed to send packets. For example, there might be a policy to temporarily
drop all packets from hosts that behave badly, e.g. by flooding the network
with too many packets. Using observations of the hosts’ behavior, higher
level switches construct blacklists of hosts whose packets should be dropped.
As the filter should become effective as close to the bad hosts as possible,
the blacklists are then shared with the lower level switches.

The Datalog program that is run in switch S1 is displayed in Listing 1. The
rules for switch S2 are symmetrical. Whenever a host joins or leaves the
network there will be an event in the host input stream. The switch than
stores those hosts in its local host relation that are connected via one of its
ports. The local blacklist table is updated on changes in S3’s blacklist table
to one of the local hosts.

1



input relation host(hostID: int , switchID: int)

input relation S3.blacklist(hostID: int)

output relation S1.host(hostID: int)

output relation S1.blacklist(hostID: int)

S1.host(id) :- host(id, 1).

S1.blacklist(id) :- S3.blacklist(id , 1).

Listing 1: Rules for switch S1

The Datalog program that is run in switch S3 is displayed in Listing 2.
Switch S3 takes as input the host relations of the other switches in order
to collect all hosts that are currently connected. Furthermore, it receives an
external input stating which hosts are supposed to be blacklisted.

In the example four hosts H1 - H4 are connected to the bottom level switches.
The first events in the system will be some external inputs that lead the
hosts to be added to the host tables of S1 and S2. These additions will be
propagated and populate the host table of S3. Then assume at some point
host H3 starts flooding the network. It will be added to the S3.blacklist and
consequently to S2.blacklist. When at some point the host stops flooding
the network and is allowed to send packets again, it will be removed from all
blacklist tables.

3 Eventual Consistency

In order to show eventual consistency of a DDDlog system, we want to show
that if external inputs stop at some point, eventually

1. the system stabilizes, i.e. no new outputs are generated and

2. some application specific property P, describing the resulting local re-
lations holds.

In the example from the previous section the properties one wants to check
might include S3.host = S1.hosts ∪ S2.hosts, S1.blacklist ⊂ S3.blacklist
and S2.blacklist ⊂ S3.blacklist.

2



input relation S1.host(hostID: int)

input relation S2.host(hostID: int)

input relation blacklist(hostID: int)

output relation S3.host(hostID: int , switchID: int)

output relation S3.blacklist(hostID: int ,

switchID: int)

S3.host(id, 1) :- S1.host(id).

S3.host(id, 2) :- S2.host(id).

S3.blacklist(hostID , switchID) :-

blacklist(hostID),

S3.host(hostID , switchID ).

Listing 2: Rules for switch S3

Conjecture

If there is no distributed recursion, both requirements stated in the defini-
tion for eventual consistency follow from the corresponding properties in a
non distributed DDlog program constructed by taking the composition of the
DDlog programs running on all nodes.

3.1 Programs without distributed recursion

Definition 1. A DDlog program (I, O,R) consists of a finite set I of input
relations, a finite set O of output relations and and a finite set R of rules.
An input relation ri is declared by input relation ri(a1, ..., am), an output
relation rj by output relation rj(a1, ..., am). Rules have the form

r1(u1) : −r2(u2), ..., rn(un).

where the head relation r1 is an output relation and the body relations
r2, ..., rn are either input or output relations.

Definition 2. The dependency graph of a DDlog program (I, O,R) is a
graph Gd = (Vd, Ed) where Vd = O ∪ I and for ri, rj ∈ Vd there is an edge

3



Figure 1: Computation of blacklists based on DDDlog

(ri, rj) ∈ Ed if and only if there is a rule in R with head relation ri and a
body relation rj.

Remark: The following definition is a rather informal description of DDlog
semantics. Having a more formal definition (e.g. some kind of operational
semantics) might make the proof cleaner.

Definition 3. Semantics of DDlog : DDlog maps a stream of changes in the
input relations to a stream of changes in the output relations. If the stream
of input changes is finite, the stream of output changes is finite. In particular,
if there are infinitely many changes to some output relation there must have
been infinitely many changes to an input relation that the output relation
depends on, i.e. an input relation that is a successor in the dependency
graph.
For finite streams of input changes, the accumulated input In of a DDlog
program is the state of its input relations after applying all input changes.
The accumulated output is the state of the output relations after applying all
output changes.
The accumulated output of a DDlog program equals the least fixed point of
the immediate consequence operator applied to the accumulated input. The
immediate consequence operator for a set of rules R and a set of tuples T is

4



defined as

ΓR(T ) = T ∪ {t|t : −t1, ..., tn is a valid instantiation of a rule in R

with each ti ∈ T}.

Definition 4. A distributed DDlog program is a tuple (V,E,O, I, R).

• V = {v1, ..., vn} is a finite set of DDlog programs where vi = (Ii, Oi, Ri)
for all 1 ≤ i ≤ n.

• O =
n⋃

i=1

Oi is a set of output relations, with Oi ∩ Oj = ∅ for all 1 ≤
i, j ≤ n.

• I =
n⋃

i=1

Ii is a set of input relations with Ii ∩ Ij = ∅ for all 1 ≤ i, j ≤ n.

I is partitioned into a set of external input relations Iext = I − O and
a set of internal input relations Iint = I − Iext.

• R =
n⋃

i=1

Ri is a set of DDlog rules.

• E ⊆ V × O × V is the edge relation. For an edge (v1, o, v2) between
nodes v1 = (I1, O1, R1) and v2 = (I2, O2, R2) it must hold that o ∈ O1

and o ∈ I2. Furthermore, edges form reliable links between nodes.
For any edge (v1, o, v2) if there is an output change on relation o in
v1, the same change will eventually appear at the corresponding input
relation of v2. If there are only finitely many output changes to o, the
accumulated output of relation o at v1 equals the accumulated input of
o at v2.

Definition 5. The dependency graph of a distributed DDlog program
(V,E,O, I, R) is a directed graph Gd = (Vd, Ed) where Vd = O ∪ I and for
ri, rj ∈ Vd there is an edge (ri, rj) ∈ Ed if and only if there is rule in R with
head ri and a body containing rj.

Two relations recursively depend on each other if they occur on a cycle
in the dependency graph. Hence, it is useful to keep track of recursive de-
pendencies by considering the strongly connected components (SCCs) of the
dependency graph or equivalently nodes in the condensation of the depen-
dency graph.

Definition 6. Let G be a directed graph. The condensation of G is the
directed acyclic graph (DAG) G′ containing one node per SCC in the original
graph where an edge in G′ is present if and only if there exists an edge between
the nodes of the corresponding SCCs.

5



Definition 7. A distributed DDlog program has distributed recursion if two
nodes from the same SCC in the dependency graph belong to two different
nodes in the distributed DDlog program.

Definition 8. Let (V,E,O, I, R) be a distributed DDlog program. Its com-
position is the DDlog program (IC , OC , RC) where IC = Iext, OC = O and
RC = R.

Theorem 3.1. Let D be a distributed DDlog program without distributed
recursion. If at some point there are no more changes to the external inputs
of D

1. it will eventually stop producing output changes and

2. a fact is in the accumulated output of D if and only if it is in the
accumulated output of its composition run on the same inputs.

Proof. Let D = (V,E,O, I, R) be a distributed DDlog program without dis-
tributed recursion.
1. Termination: By contradiction. Assume there are only finitely many
changes to the external input but there are infinitely many changes to the
output of D. This means that at least one node v ∈ V generates infinitely
many outputs. Then, by Definition 3, v must have received an infinite amount
of inputs for a relation that the corresponding output relation depends on.
Given that external inputs are finite, there must be an internal input rela-
tion to v with infinite changes. Since D does not have distributed recursion
and the relation belongs to another node, it must belong to another SCC
in the dependency graph. In particular, the input relation must belong to
a successor SCC in the condensation of the dependency graph. Repeatedly
applying the same argument yields an infinite path in the condensation of the
dependency graph which is a contradiction to the fact that the condensation
is a DAG.

2. Correctness: Let C = (IC , OC , RC) be the composition of D. Let f
be a fact in the accumulated output of C. Let In denote the accumulated
input facts. As the accumulated output of C is the least fixed point of the
immediate consequence operator applied to the accumulated inputs, it must
hold that f ∈ Γn(In) for some n ∈ N. We prove that f is in the output of
some node v ∈ V by induction over n. For the base case assume f ∈ Γ(In).
Hence, there is a rule r ∈ RC that says f : −f1, ..., fk where f1, ..., f2 are
input facts. By definition of C, there is a node vi ∈ V , vi = (Ii, Oi, Ri) such
that r ∈ Ri. As vi runs a valid DDlog program, the relations of f1, ..., fk

6



are in Ii. As D – and hence vi – receives the same accumulated inputs as
C for those relations and the accumulated output of vi is the fixed point of
ΓRi

over its accumulated inputs, it will generate output f . For the inductive
hypothesis assume that for all m < n some node in V generates fact f ′ if
f ′ ∈ Γm(In). Let f ∈ Γn(In). Hence, there is a rule r ∈ RC that says
f : −f1, ..., fk where for all 1 ≤ j ≤ k fj ∈ Γm(In) for some m < n. By
definition of C, there is a node vi ∈ V , vi = (Ii, Oi, Ri) such that r ∈ Ri.
As vi runs a valid DDlog program, it takes the relations of f1, ..., fk as input.
The relations of f1, ..., fk are either external inputs or in the accumulated
output of some node v′ ∈ V . Let 1 ≤ l ≤ k and let fl = Rl(al). If Rl is an
external input relation, vi receives the same inputs as C by assumption. If
Rl is an internal input relation, by Definition 4, the accumulated input to Rl

of vi equals the the accumulated output of some v′ for Rl. By the inductive
hypothesis, the outputs of Rl are correctly generated at v′. Given that vi cor-
rectly implements fixed point semantics, f is in the accumulated output of vi.

The second direction is shown by contradiction. Let f ′ be a fact in the
accumulated output of D that is not in the accumulated output of C. Let
v ∈ V denote the node that generated the invalid output. As C per definition
contains all rules belonging to v, v must have received different inputs than
C. As C by assumption gets all the external inputs that v gets, the difference
in the input must be in some internal input relation, i.e. was generated as
output by another node v′ ∈ V computing the relations of a successor SCC
in the dependency graph. Furthermore, the difference in the output was not
derived in C either (otherwise f ′ could have been derived in C). Applying the
same argument repeatedly yields an infinite path in the condensation of the
dependency graph which is a contradiction to the fact that the condensation
is a DAG.

References

[1] Ryzhyk, L., and Budiu, M. Differential datalog. In Datalog 2.0
(2019), pp. 56–67.

7


