
Distributed DDlog Reconfiguration Examples

Consider the D3log program from our previous note ([1]) shown in Figure 1
and Listings 1 and 2:

Listing 1: Rules for switch S1

input relation host(hostID: int , switchID: int)
input relation S3.blacklist(hostID: int)

output relation S1.host(hostID: int)
output relation S1.blacklist(hostID: int)

S1.host(id) :- host(id, 1).
S1.blacklist(id) :- S3.blacklist(id , 1).

Listing 2: Rules for switch S3

input relation S1.host(hostID: int)
input relation S2.host(hostID: int)
input relation blacklist(hostID: int)

output relation S3.host(hostID: int , switchID: int)
output relation S3.blacklist(hostID: int ,

switchID: int)

S3.host(id, 1) :- S1.host(id).
S3.host(id, 2) :- S2.host(id).

S3.blacklist(hostID , switchID) :- blacklist(hostID),
S3.host(hostID , switchID ).

We describe a reconfiguration scenario where this program recovers from a
central switch (S3) failure, preserving eventually consistent input/output behav-
ior while avoiding complete recomputation. To do so we model the application
as a collection of incremental processes and channels (Figure 2). Each process
takes a stream of updates to 0 or more input relations and outputs a stream
of updates to 0 or more output relations that are sent via channels to other

1



Figure 1:

P3

P1 P2

I1 I2

P4 P5

S1 S2

S3

Figure 2:

2



P3

P1 P2

I1 I2

P4 P5

A1A4 A2 A5

Figure 3:

processes. We use solid lines for distributed channels and dashed lines for local
channels.

This notation abstracts away specific input and output relations and rules
that each process represents. For example, process P1 represents local compu-
tation in S1 that receives updates to the host relation from input source I1 and
sends updates to S1.host via a channel to the central switch. Process P4 re-
ceives updates to the S3.blacklist relation from S3 and outputs S1.blacklist
to a local sink (not shown in the diagram). Process P3 implements the entire
central switch logic.

In order to enable failure recovery we attach special accumulator processes,
A1, A2, A4, and A5, to inputs and outputs of processes P1, P2, P4 and P5 respec-
tively, as shown in Figure 3:

During normal operation, an accumulator behaves as a pass-through filter,
instantly copying all input updates to its output stream. Internally it accu-
mulates all updates, so that at any point the accumulator stores a complete
snapshot of its input relation. When accumulator’s input stream gets discon-
nected, e.g., due to a network failure, this has the effect of the input relation
becoming empty. The accumulator then outputs a bunch of delete commands,
one for each record in the accumulated snapshot of the input relation and clears
it internal cache. For example, when the central switch fails, process P3 and
all links between P3 and the other to switches are terminated (Figure 4). This
causes accumulators A4 and A5 to send batches of updates to their downstream
processes P4 and P5 to the effect of clearing their input relations:

When accumulator’s output channel is disconnected, the accumulator keeps
its cached state and continues tracking input changes. When a new downstream
process is eventually attached to the accumulator, the accumulator brings it up
to speed by outputting all its cached records in a single transaction.

Figure 5 shows how this capability facilitates recovery.
We create a fresh instance P3’ of process P3, possibly on a different phys-

ical host and establish channels between P3’ and other processes. As soon as
channel A1-P3’ is established, the accumulator A1 dumps its cached state into
the channel (step 1 in the diagram). As process P3’ receives updates from A1

3



P3

P1 P2

I1 I2

P4 P5

A1A4 A2 A5
-Δ -Δ

Figure 4:

P3'

P1 P2

I1 I2

P4 P5

A1A4 A2 A5

1 1

2 2

3 3

Figure 5:

4



and A2, it updates its outputs, which are streamed to P4 and P5 (via A4 and A5
respectively) (steps 2 and 3 in the diagram). Eventually the system gets back
into a consistent state.

Note that this recovery procedure does not require centralized coordination.
For instance, updates from A1 and A2 can reach P3’ in any order.

As a further optimization, we can insert another gadget in the A4-P4 channel.
In a typical failure recovery scenario, this channel will first see a transaction
that clears the entire input relation (−∆) followed by several transactions that
insert a set of records nearly identical to the deleted set. If we accumulate
these updates and delay them until recovery is over (requires coordination with
other nodes) or for a fixed timeout, this will dramatically reduce the amount
of computation that P4 must perform, as well as the total size of updates it
outputs.

References
[1] Sallinger, S. Distributed Differential Datalog.

5


