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Abstract. We introduce a new cryptographic primitive, aptly named
ring verifiable random functions (ring VRF), which provides an array of
uses, especially in anonymous credentials. Ring VRFs are (anonymized)
ring signatures that prove correct evaluation of an authorized signer’s
PRF, while hiding the specific signer’s identity within some set of possible
signers, known as the ring.
We discover a family of ring VRF protocols with surprisingly efficient in-
stantiations, thanks to our novel zero-knowledge continuation technique.
Intuitively our ring VRF signers generate two linked proofs, one for PRF
evaluation and one for ring membership. An evaluation proof needs only
a cheap Chaum-Pedersen DLEQ proof, while ring membership proof de-
pends only upon the ring itself. We reuse this ring membership proof
across multiple inputs by expanding a Groth16 trusted setup to rehide
public inputs when rerandomizing the Groth16. Incredibly, our fastest
amortized ring VRF needs only eight G1 and two G2 scalar multiplica-
tions, making it the only ring signature with performance competitive
with group signatures.

We discuss applications that range across the anonymous credential
space:
As in proof-of-personhood work by Bryan Ford, et al., a ring VRF output
acts like a unique pseudo-nonymous identity within some desired context,
given as the ring VRF input, but remains unlinkable between different
contexts. These unlinkable but unique pseudonyms provide a better bal-
ance between user privacy and service provider or social interests than
attribute based credentials like IRMA (“I Reveal My Attributes”) cre-
dentials.

Ring VRFs support anonymously rationing or rate limiting resource con-
sumption that winds up vastly more flexible and efficient than purchases
via money-like protocols.

We define the security of ring VRFs in the universally composable (UC)
model and show that our protocol is UC secure.

1 Introduction

We introduce an anonymous credential flavor called ring verifiable random func-
tions (ring VRFs), in essence ring signatures that anonymize signers but also
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prove evaluation of the signers’ PRFs. Ring VRFs provide a better foundation
for anonymous credentials across a range of concerns, including formalization,
optimizations, the nuances of use-cases, and miss-use resistance.

Along with some formalizations, we address three questions within the un-
folding ring VRF story:

1. What are the cheapest SNARK proofs?
Ones users reuse without reproving.

2. How can identity be safe for general use?
By revealing nothing except users’ uniqueness.

3. How can ration card issuance be transparent?
By asking users trust a public list, not certificates.

Ring VRFs: A ring signature proves only that its actual signer lies in a “ring” of
public keys, without revealing which signer really signed the message. A verifiable
random function (VRF) is a signature that proves correct evaluation of a PRF
defined by the signer’s key.

A ring verifiable random function (ring VRF) is a ring signature, in that it
anonymizes its actual signer within a ring of plausible signers, but also proves
correct evaluation of a pseudo-random function (PRF) defined by the actual
signer’s key. Ring VRF outputs then provide linking proofs between different
signatures iff the signatures have identical inputs, as well as pseudo-randomness.

As this pseudo-random output is uniquely determined by the signed message
and signer’s actual secret key, we can therefore link signatures by the same
signer if and only if they sign identical messages. In effect, ring VRFs restrict
anonymity similarly to but less than linkable ring signatures do, which makes
them multi-use and contextual.

We define the security of ring VRFs in both the standard model and in the
universally composable (UC) [9,10] model. We show that our ring VRF protocol
is secure in the UC model.

In §6, we build extremely efficient and flexible ring VRFs by amortizing
a “zero-knowledge continuation” that unlinkably proves ring membership of a
secret key, and then cheaply proving individual VRF evaluations.

Zero-knowledge continuations: Rerandomizable zkSNARKs like Groth16 [21] ad-
mit a transformation of a valid proof into another valid but unlinkable proof of
the exact same statement. In practice, rerandomization never gets deployed be-
cause the public inputs link different usages, breaking privacy.

We demonstrate in §6 a simple transformation of any Groth16 zkSNARK
into a zero-knowledge continuation whose public inputs involve opaque Pedersen
commitments, with cheaply rerandomizable blinding factors and proofs. These
zero-knowledge continuations then prove validity of the contents of Pedersen
commitments, but can now be reused arbitrarily many times, without linking
the usages.

In brief, we adjust the trusted setup of the Groth16 to additionally produce
an independent blinding factor base for the Groth16 public input, along with an
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absorbing base that cancels out this blinding factor in the Groth16 verification.
As our public inputs involve opaque Pedersen commitments, they now require
proofs-of-knowledge resentment of to [8].

As recursive SNARKs might remain slow, we expect zero-knowledge continu-
ations via rerandomization become essential for zkSNARKs used in identity and
elsewhere outside the crypto-currency space.

Identity uses: An identity system can be based upon ring VRFs in an natural
way: After verifying an identity requesting domain name in TLS, our user agent
signs into the session by returning a ring VRF signature whose input is the
requesting domain name, so their ring VRF output becomes their unique identity
at that domain (see §9).

At this point, our requesting domain knows each users represents distinct ring
members, which prevents Sybil behavior, and permits banning specific users. At
the same time, users’ activities remain unlinkable across different domains

In essence, ring VRF based credentials, if correctly deployed, only prevent
users being Sybil, but leak nothing more about users. We argue this yields diverse
legally and ethically straightforward identity usages.

As a problematic contrast, attribute based credential schemes like IRMA (“I
Reveal My Attributes”) credentials [7] are being marketed as an online privacy
solution, but cannot prevent users being Sybil unless they first reveal numerous
attributes. Attribute based credentials therefore provide little or no privacy when
used to prevent abuse.

Abuse and Sybil prevention is not merely the most common use cases for
anonymous credentials, but in fact define the “general” use cases for anonymous
credentials. IRMA might improve privacy when used as “special purpose” cre-
dential in narrower situations of course, but overall attribute based credentials
should never be considered fit for general purpose usage.

Aside from general purpose identity being problematic for attribute based
credentials, our existing offline processes often better protect users’ privacy and
human rights than adopting online processes like IRMA. In particular, there are
many proposals by the W3C for attribute based credential usage in [27], but
broadly speaking they all bring matching harmful uses.

As an example, the W3C wants users to be able to easily prove their employ-
ment status, ostensibly so users could open bank accounts purely online. Yet,
job application sites could similarly demand these same proofs of current em-
ployment, a discriminatory practice. Average users apply for jobs far more often
than they open bank accounts, so credentials that prove current employment do
more harm than good.

An IRMA deployment should prevent this abusive practice by making ver-
ifiers prove some legal authorization to request employment status, or other
attributes, before user agents prove their attributes. Indeed IRMA deployments
need to regulate IRMA verifiers, certainly by government privacy laws, or ide-
ally by some more aggressive ethics board, but this limits their flexibility and
becomes hard internationally.
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Ring VRFs avoid these abuse risks by being truly unlinkable, and thus yield
anonymous credentials which safely avoid legal restrictions.

Any ethical general purpose identity system should be based upon ring VRFs,
not attribute based credentials like IRMA.

We credit proof-of-personhood parties by Bryan Ford, et al. [16,5] with first
espousing the idea that anonymous credentials should produce contextual unique
identifiers, without leaking other user attributes.

As a rule, there exist simple VRF variants for all anonymous credentials,
including IRMA [7] or group signatures [24]. We focus exclusively upon ring
VRFs for brevity, and because alone ring VRFs contextual linkability covers the
most important use cases.

Rationing uses: A rate limiting or rationing system should provide users with
a stream of single-use anonymous tokens that each enable consuming some re-
source. As a rule, cryptographers always construct these either from blind sig-
natures ala [12], or else from OPRFs like PrivacyPass [14], both of which have
an O(n) issuance phase.

Ring VRFs yield rate limiting or rationing systems with no issuance phase:
We first place into the ring the public keys for all users permitted to consume
resources, perhaps all legal residents within some country. We define single-
use tokens to be ring VRF signatures whose VRF input consists of a resource
name, an approximate date, and a bounded counter. Now merchants reports each
anonymous token back to some authority who enforces rate limits by rejecting
duplicate ring VRF outputs. (See §10)

In other words, our rate limiting authority treats outputs like the “nullifiers”
in anonymous payment schemes. Yet, ring VRF nullifiers need only temporarily
storage, as eventually one expires the date in the VRF input. Asymptotically
we thus only need O(users) storage vs the O(history) storage required by
anonymous payment schemes like ZCash and blind signed tokens.

We further benefit from the “ring” credential format too, as opposed to
certificate based designs like group signatures: We expect a degree of fraud
whenever deploying purely certificate based systems, as witnessed by the litany
of fraudulent TLS and covid certificates. Ring VRFs help mitigate fraudulent
certificate concerns because the ring is a database and can be audited.

We know governments have ultimately little choice but to institute rationing
in response to shortages caused by climate change, ecosystem collapse, and peak
oil. Ring VRFs could help avoid ration card fraud, and thereby reduce social
opposition, while also protecting essential privacy.

As an important caveat, ring VRFs need heavier verifiers than single-use
tokens based on OPRFs [14] or blind signatures, but those credentials’ heavy
issuance phase represents a major adoption hurdle. A ring VRF systems issue
fresh tokens almost non-interactively merely by adjusting allowed VRF input on
resource names, dates, and bounds. This reduces complexity, simplifies scaling,
and increases flexibility.

In particular, if governments issue ration cards based upon ring VRFs then
these credentials could safely support other use cases, like free tiers in online
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services or games, and advertiser promotions, as well as identity applications
like prevention of spam and online abuse.

In this, we need authenticated domain separation of products or identity con-
sumers in queries to users’ ring VRF credentials. We briefly discuss some sensible
patterns in §10.2 below, but overall authenticated domain separation resemble
TLS certificates except simpler in that roots of trust can self authenticate if root
keys act as domain separators.

2 Protocol overview

As a beginning, we introduce the ring VRF interface, give a simple unamor-
tized non-interactive zero-knowledge (NIZK) protocol that realizes the ring VRF
properties discussed later in our UC model, and give some intuition for our later
amortization trick. Similar to VRF [26], a ring VRF construction needs:

– rVRF.KeyGen : (1λ) 7→ (sk, pk) algorithm, which creates a random secret key
sk and associated public key pk;

– rVRF.Eval : (sk, input) 7→ out which deterministically computes the VRF
output out from a secret key sk and a message input.

We demand a pseudo-randomness property from Eval. In our construction in
§5, rVRF.KeyGen and rVRF.Eval resemble EC VRF like [28,29,19].

Different than VRF, a ring VRF scheme has the following algorithms operate
directly upon set of public keys ring:

– rVRF.Sign : (sk, ring, input) 7→ σ returns a ring VRF signature σ for an input
input.

– rVRF.Ver : (ring, input, σ) 7→ out∨ ⊥ returns either an output out or else
failure ⊥.

Ring VRFs differ from VRFs in that they do not expose a specific signer, and
instead prove the signer’s key lies in ring, much like how ring signatures differ
from signatures. Ring VRFs differ from ring signatures in that the verification
process of Ring VRFs outputs the evaluation output out of the signer if the
signature is verified with ring. So the ring signature actually proves that out is
the evaluation output of the signer.

After success verification, our verifier should be convinced that pk ∈ ring,
that out = rVRF.Eval(sk, input) for some (sk, pk) ← rVRF.KeyGen. We demand
anonymity meaning that the verifier learns nothing about the signer except that
the signer’s evaluation value of the signed message input is out and the signer’s
public key is in ring.

In other words, this simplified ring VRF could be instantiated by making
rVRF.Eval a pseudo-random (hash) function, and using a NIZK for a relation

Rrvrf =

{
(out, input, ring); (sk, pk)

∣∣∣∣∣ (pk, sk)← rVRF.KeyGen, pk ∈ ring

out = rVRF.Eval(sk, input)

}
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The zero-knowledge property of the NIZK ensures that our verifier learns
nothing about the specific signer, except that their key is in the ring and maps
input to out. Importantly, pseudo-randomness also says that out is an identity
for the specific signer, but only within the context of input.

Aside from proving an evaluation using rVRF.Eval, we always need rVRF.Sign
and rVRF.Ver to sign some associated data ass, as otherwise the ring VRF signa-
ture become unmoored and permits replay attacks. As an example, our identity
protocol below in §9 yields the same ring VRF outputs each time the same user
logs into the same site, which suffers replay attacks unless ass binds the ring
VRF signature to the TLS session.

Ring VRFs cannot so easily be combined with another signatures, which
makes ass essential, but thankfully our ring VRF construction in in §5 expose
ass exactly like EC VRFs should do .

If one used the rVRF interface described above, then one needs time O(|ring|)
in rVRF.Sign and rVRF.Ver merely to read their ring argument, which severely
limits applications. Instead, ring signatures run asymptotically faster by replac-
ing the ring argument with a set commitment to ring, roughly like what ZCash
does [22]. Therefore, we introduce the following algorithms for rVRF.

– rVRF.CommitRing : (ring, pk) 7→ (comring, opring) returns a commitment for
a set ring of public keys, and optionally the opening opring if pk ∈ ring as
well.

– rVRF.OpenRing : (comring, opring) 7→ pk∨ ⊥ returns a public key pk, pro-
vided opring correctly opens the ring commitment comring, or failure ⊥ oth-
erwise.

We thus replace the membership condition pk ∈ ring in
the above relation and NIZK by the opening condition pk =
rVRF.OpenRing(comring, opring) for some known opring.

Although an asymptotic improvement, our opening rVRF.OpenRing based
condition invariably still winds up being computationally expensive to prove
inside a zkSNARK. We solve this obstacle in §6 by introducing zero-knowledge
continuations, a new zkSNARK technique built from rerandomizable Groth16s
[21] and designed for SNARK composition and reuse.

As a step towards this, we split the relationRrvrf into a relationReval for rVRF
evaluation and a relation Rring, which enforces our computationally expensive
condition pk = rVRF.OpenRing(comring, opring). We want to reuse the proof for
Rring across multiple rVRF signatures, so anonymity requires we rerandomize
a Groth16 SNARK for Rring ala [3, Theorem 3, Appendix C, pp. 31]. Yet, we
must connect together the NIZKs for the two languages Reval and Rring that
we define below informally. We do this by passing pk from Rring to Reval, which
demands some hiding commitment compk to pk.

Reval =

{
(out, input, ass, compk); sk

∣∣∣∣∣ out = rVRF.Eval(sk, input),

compk commits to sk

}



Rring =

{
(compk, comring); (sk, pk)

∣∣∣∣∣ compk commits to sk with public key

pk = rVRF.OpenRing(comring, opring)

}

In §5, we introduce an extremely efficient NIZK forReval, which also provides
an essential proof-of-knowledge for compk.

3 Preliminaries

We briefly establish elliptic curve notion and recall some standard definitions
and assumptions.

3.1 Elliptic curves

We obey mathematical and cryptographic implementation convention by adopt-
ing additive notation for elliptic curve and multiplicative notation for elliptic
curve scalar multiplications and pairing target groups.

All object implicitly depend a security parameter λ. All protocols therefore
have an implicit parameter generation algorithm, which output their hash func-
tions, elliptic curves, and some independent base points on the elliptic curves.

We need an elliptic curve G over a field of characteristic q, equipped with a
type III pairing e : G1×G2 → GT , where the groups G1 ≤ G[Fq], G2 ≤ G[Fq2 ],
and GT ≤ F∗q12 all have prime order p ≈ 22λ.

We write G when discussing the Chaum-Pedersen DLEQ proofs, which do
not employ pairings, but G always denotes G1 eventually. We avoid pairing
unfriendly assumptions like DDH of course, but really we employ the algebraic
group model (AGM) throughout.

We sweep cofactor concerns under the rug when discussing Groth16, where
our pairings demand deserialization prove group membership in G1 or G2.
We explicitly multiply by the effective cofactor h when doing Chaum-Pedersen
DLEQ proofs though, as not doing so risks miss-reading by implementers. Yet,
this becomes redundant if deserialization proves group membership, meaning
h = 1.

We also let J denote a ZCash Sapling style “JubJub” Edwards curve over Fp,
with distinguished subgroup J of prime order pJ, so that SNARKs on G prove J
arithmetic relatively cheaply. Aside from Jubjub, we optionally want a “sister”
Edwards curve G′, with a subgroup G of the same order p as G1, but which
lacks any pairing.

We let Hp : {0, 1}∗ → Fp and HG′ : {0, 1}∗ → G′ denote a hash-to-scalar and
a hash-to-curve with ranges Fp and G′, respectively, always modeled as random
oracles. We only ever hash-to-G′ because hash-to-G1 create a miss-use footgun
for an anonymity protocol. Also hash-to-G′ is faster. We let H ′ denote the hash
to the VRF output space, usually a key derivation function plus a stream cipher,
also modeled as a random oracle.
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All our security proofs ignore these underlying elliptic curve concerns, so
G1 = G′ and cofactors are ignores. All hashes are random oracles. DDH is hard
in G1 and J. AGM is used for G in Groth16 sections, or wherever is convenient.

3.2 Zero-knowledge proofs

We let R denote a polynomial time decidable relation, so the language L =
{x | ∃ω(x;ω) ∈ R} lies in NP. All non-interactive zero-knowledge proof systems
have some setup procedure Setup that takes some implicit parameters and some
“circuit” description ofR, and may produces a structured reference string (SRS).
We discuss SRSes and their toxic waste in §6 but SRSes remain implicit in our
notation.

A non-interactive proof system for L consists of Prove and Ver PPT algo-
rithms

– NIZKR.Prove(x;ω) 7→ π creates a proof π for a witness and statement pair
(x;ω) ∈ R.

– NIZKR.Ver(x;π) returns either true of false, depending upon whether π
proves x.

which satisfy the following completeness, zero-knowledge, and knowledge sound-
ness definitions.

We always describe circuits as languages L and write NIZKL for two reasons:
All SNARK circuits have many logic wires inR other than the public input wires
x and the secret input witness wires ω. An existential quantifiers ∃ more clearly
distinguishs public inputs x from secret input witnesses ω than tuple position.
We also benefited from language in the preceding informal exposition, which did
not always require specifying ω.

Definition 1. We say NIZKR is complete if Ver(x,Prove(x;ω) succeeds for all
(x;ω) ∈ R.

Definition 2. We say NIZKR is zero-knowledge if there exists a PPT simulator
NIZKR.Simulate(x) 7→ π that outputs proofs for statement x ∈ L alone, which are
computationally indistinguishable from legitimate proofs by Prove, i.e. any non-
uniform PPT adversary V ∗ cannot distinguish pairs (x;π) generated by Simulate
or by Prove except with odds negligible in λ (see [3, Def. 9, §A, pap. 29]).

Definition 3. We say NIZKR is (white-box) knowledge sound if for any non-
uniform PPT adversary P ∗ who outputs a statement x ∈ L and proof π there
exists a PPT extractor algorithm Extract that white-box observes P ∗ and if
Ver(x;π) holds then Extract returns an ω for which (x;ω) ∈ R (see [3, Def.
7, §A, pap. 29]).

Our zero-knowledge continuations in §6 demand rerandomizing existing zk-
SNARKs, which only Groth16 supports [21]. We therefore introduce some details
of Groth16 [21] there, when we tamper with Groth16’s SRS and Setup to create
zero-knowledge continuations.
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3.3 Universal Composability (UC) Model

We define the security of ring VRFs in the UC model [9,10]. In a nutshell, Canetti
[9,10] defines the UC model as follows:

A protocol φ in the UC model is an execution between distributed interac-
tive Turing machines (ITM). Each ITM has a storage to collect the incoming
messages from other ITMs, adversary A or the environment Z. Z is an entity to
represent the external world outside of the protocol execution. The environment
Z initiates ITM instances (ITIs) and the adversary A with arbitrary inputs and
then terminates them to collect the outputs. We identify an ITI with its session
identity sid and its ITM’s identifier pid. In this paper, when we call an entity as
a party in the UC model we mean an ITI with the identifier (sid, pid).

We define the ideal world where there exists an ideal functionality F and the
real world where a protocol φ is run as follows:

Real world: Z initiates ITMs and A to run the protocol instance with some input
z ∈ {0, 1}∗ and a security parameter λ. After Z terminates the protocol instance,
we denote the output of the real world by the random variable EXEC(λ, z)φ,A,Z ∈
{0, 1}. Let EXECφ,A,Z denote the ensemble {EXEC(λ, z)φ,A,Z}z∈{0,1}∗ .

Ideal world: Z initiates ITMs and a simulator Sim to contact with the ideal
functionality F with some input z ∈ {0, 1}∗ and a security parameter λ. F
is trusted meaning that it cannot be corrupted. Sim forwards all messages
forwarded by Z to F . The output of execution with F is denoted by a ran-
dom variable EXEC(λ, z)F,Sim,Z ∈ {0, 1}. Let EXECF,Sim,Z denote the ensemble
{EXEC(λ, z)F,Sim,Z}z∈{0,1}∗ .

Definition 4 (UC-Security of φ). Given a real world protocol φ and an ideal
functionality F for the protocol φ, we call that φ is UC-secure i.e., φ UC-realizes
F , if for all PPT adversaries A, there exists a simulator Sim such that for any
environment Z, EXECφ,A,Z is indistinguishable from EXECF,Sim,Z .

4 Security Model of Ring Verifiable Random Function

In this section, we define formally a ring VRF scheme and model its security in
the UC model.

Definition 5 (Ring VRF). A ring VRF scheme is defined with public param-
eters pp generated by a setup algorithm rVRF.Setup(1λ) and with the following
algorithms.

– rVRF.KeyGen(pp) → (sk, pk): It is a PPT algorithm and generates a secret
key and public key pair (sk, pk) given input pp.

– rVRF.Eval(ski, input) → y: It is a deterministic polynomial time algorithm
and outputs an evaluation value y ∈ Seval given input ski and input. Here,
Seval is the domain of evaluation values and defined in pp.



The following algorithms need an input ring = {pk1, pk2, . . . , pkn} that we call
ring:

– rVRF.CommitRing(ring, pk) → (comring, opring): It is a PPT algorithm and
outputs a commitment of ring with the opening opring given input ring and
pk ∈ ring.

– rVRF.OpenRing(comring, opring)→ pk: It is a PPT algorithm and outputs a
public key pk given input comring and opring.

– rVRF.Sign(ski, comring, opring, input, ass) → σ: It is a PPT algorithm and
outputs a ring signature σ that signs a message input ∈ {0, 1}∗ and an asso-
ciated data ass ∈ {0, 1}∗ with ski for comring if .

– rVRF.Ver(comring, input, ass, σ) → (b, y): It is a deterministic polynomial
time algorithm and outputs b ∈ {0, 1} and y ∈ Seval ∪ {⊥}. b = 1 means
verified and b = 0 means not verified.

We note that all algorithms above have pp as part of their input even if we do
not always explicitly write it.

We note that rVRF.CommitRing and rVRF.OpenRing are optional algorithms
of a ring VRF scheme. If they are not defined, we should let comring = ring and
opring = pk. rVRF.CommitRing and rVRF.OpenRing are functional for a succinct
verification process in case of having large set of ring.

The security properties that we want to achieve in a ring VRF scheme are
informally as follows: correctness meaning that when an honest signer with
key (ski, pki) outputs σ by running rVRF.Sign(ski, comring, opring, input, ass),
rVRF.Ver(comring, input, ass, σ) must output b = 1 and y which is equal to
rVRF.Eval(ski, input) if and only if rVRF.OpenRing(comring, opring)→ pki ∈ ring,
randomness meaning that an evaluation value is random and independent from
the message and the public key, determinism meaning that rVRF.Eval is de-
terministic, anonymity meaning that rVRF.Sign does not give any information
about its signer, unforgeability meaning that an adversary should not forge a
ring signature and uniqueness meaning that number of verified evaluation val-
ues should not be more than the number of the keys in the ring.

We could define all these security properties formally in the standard model
but this might cause the composability issues when the ring VRF protocol com-
posed with other protocols. Considering the applications of ring VRF protocol,
we want to achieve stronger security guarantees in different environments. There-
fore, we define the security of a ring VRF scheme in the UC model in Section
4.1.

One can consider a ring VRF scheme is a combination of a VRF scheme
and a ring signature scheme where rVRF.Eval is similar to Eval algorithm of
a VRF scheme and rVRF.Sign is similar to Sign algorithm of a ring signature
scheme. The subtle difference is in rVRF.Ver that works similar to both Ver of
ring signature and VRF schemes. rVRF.Ver does not need the signer’s public key
to verify a ring signature as in a ring signature scheme but it outputs the signer’s
evaluation value for every verified signature. If y is generated independent from



the signer’s key, rVRF.Ver(ring, input, ass, σ) does not reveal any identity of the
signer except that the signer’s key is in the ring.

We remark that the output of rVRF.Eval does not depend on a ring. Therefore,
if a signer P with key sk signs a message input for ring and later wants to reveal
that it signed input for ring, P should sign input with another ring {sk}. Since
the verification of both signatures outputs the same evaluation value, the verifier
can be convinced that P signed the both signatures. Hence, a ring VRF scheme
can link the identities of the signers if it is necessary.

4.1 Ring Verifiable Random Function in the UC Model

We introduce a ring VRF functionality Frvrf to model execution of a ring VRF
protocol in the ideal world. In other words, we define a ring VRF protocol
in the case of having a trusted entity Frvrf. There are many straightforward
ways of defining a ring VRF protocol in the ideal world satisfying the desired
security properties. However, defining simple and intuitive functionality while
being as expressive and realizable in the real world execution is usually at odds
[9]. Therefore, we have a lengthy Frvrf (See Figure 1) which satisfies the security
properties that we expect from a ring VRF scheme and at the same time faithful
to the reality as possible. For the sake of clarity and accessibility, we split each
execution part of Frvrf while we introduce our functionality. The composition of
all parts is in Figure 1 in Appendix. We first describe how Frvrf works and then
show which security properties it achieves.
Frvrf has tables to store the data generated from the requests from honest

parties and the adversary Sim. The table verification keys keeps the keys
of parties. The other table anonymous key map stores an anonymous key that
corresponds to an evaluation input of a party with a key pk. We note that the real
execution of a ring VRF (Definition 5) does not have a concept of an anonymous
key but Frvrf needs this internally to execute the verification of a ring signature.
Related to anonymous keys, Frvrf also stores all anonymous keys of all malicious
signatures for a ring and input in a table W. Finally, Frvrf stores the evaluations
values of a party in evaluations. In a nutshell, given pk and input, Frvrf generates
an anonymous key W as explained below and sets anonymous key map[input,W ]
to pk. Then, it generates an evaluation value y as explained below and sets
evaluations[input,W ] to y. In short, given honestly generated secret, public key
pair (sk, pk) in the real world, the algorithm rVRF.Eval(sk, input) that outputs
evaluation value corresponds to generating an anonymous key W for pk, input
and obtaining the evaluation value stored in evaluations[input,W ] in the ideal
world. The functionality of all these tables and anonymous key will be more clear
while we explain Frvrf in detail. Frvrf consists of the following execution parts.

Key Generation: Whenever an honest party requests a key, Frvrf obtains a key
pair (x, pk) from Sim. Frvrf stores them if they have not been recorded. If it is
the case, Frvrf gives only pk to the honest party. Frvrf will later use x during
signature generation of this honest party. One can imagine x as a secret key and
pk as a public key. We note that it is not a problem in the ideal model that the



adversary generates the secret key because a signature generated by an honest
key can be valid if and only if the corresponding honest party requests it as it
is guaranteed during the verification process of Frvrf.

[Key Generation.] upon receiving a message (keygen, sid) from a party
Pi, send (keygen, sid,Pi) to the simulator Sim. Upon receiving a message
(verificationkey, sid, x, pk) from Sim, verify that x, pk has not been recorded
before for sid i.e., there exists no (x′, pk′) in verification keys such that
x′ = x or pk′ = pk. If it is the case, store in the table verification keys,
under Pi, the value x, pk and return (verificationkey, sid, pk) to Pi.

Corruption: Sim can corrupt any honest party at any time. So, Frvrf provides
security against adaptive adversary.

[Corruption:] upon receiving (corrupt, sid,Pi) from Sim, remove (xi, pki)
from verification keys[Pi] and store them to verification keys under
Sim. Return (corrupted, sid,Pi).

Malicious Ring VRF Evaluation: This part of Frvrf is for Sim in case of Sim wants
to evaluate an input for a malicious key. For this, it should provide to Frvrf an
input input, a malicious key pk and an anonymous key W . Then, Frvrf evaluates
input with pk if an anonymous key W ′ 6= W is not assigned to input and pk before.
If it is the case, it returns an evaluation value evaluations[input,W ] which is se-
lected randomly. The reason of conditioning on a unique anonymous key for input
and pk is to prevent Sim to obtain more than one evaluation values correspond-
ing to input and pk. This is necessary to have a uniqueness property. We remark
that it is possible that Sim obtains the same evaluation value of input with two
different malicious public keys pki, pkj by sending (eval, sid, pki,W, input) and
(eval, sid, pkj ,W, input). However, this does not break the uniqueness property.

[Malicious Ring VRF Evaluation.] upon receiving a message
(eval, sid, pki,W, input) from Sim, if pki is recorded under an honest party’s
identity or if there existsW ′ 6= W where anonymous key map[input,W ′] = pki,
ignore the request. Otherwise, record in the table verification keys the
value pki under Sim if pki is not in verification keys.
If anonymous key map[input,W ] is not defined before, set
anonymous key map[input,W ] = pki and let y ←$ Seval and set
evaluations[input,W ] = y.
In any case (except ignoring), obtain y = evaluations[input,W ] and return
(evaluated, sid, input, pki,W, y) to Pi.

We remark that once Sim obtains an anonymous key W of input and honest
key pk, Sim can learn the evaluation of input with pk without knowing the pk



via malicious ring VRF evaluation i.e., send the message (eval, sid, pki,W, input)
where pki is a malicious verification key. Here, if W is an anonymous key of
input, pk, Frvrf returns evaluations[input,W ] even if pk 6= pki. We note that
this leakage does not contradicts the desired security properties and helps us to
prove our ring VRF protocol realizes Frvrf.

Honest Ring VRF Signature and Evaluation: This part of Frvrf works for honest
parties who evaluate input and generate a ring signature for a ring. An honest
party Pi should provide to Frvrf a ring consisting of set of public keys, its own
public key pki, optionally an associated data ass and a message input to be signed
and evaluated. Then, Frvrf generates the evaluation value of input and pki and
signs input with associated data ass for given ring if pki ∈ ring. The evaluation
for honest parties works as follows: If Frvrf does not select an anonymous key for
input and pki before, it samples randomly an anonymous key W and samples
randomly the evaluation value y. The ring signature generation works as follows:
Frvrf runs a PPT algorithm Gensign(ring,W, x, pk, ass, input) and obtains the ring
signature σ. It records [input, ass,W, ring, σ, 1] for the verification process where
1 indicates that σ is a valid ring signature of input and ass generated for ring
with the anonymous key W .

[Honest Ring VRF Signature and Evaluation.] upon receiving a mes-
sage (sign, sid, ring, pki, ass, input) from Pi, verify that pki ∈ ring and that
there exists a public key pki associated to Pi in verification keys. If
it is not the case, just ignore the request. If there exists no W ′ such
that anonymous key map[input,W ′] = pki, let W ←$ SW and let y ←$

Seval. If there exists W where anonymous key map[input,W ] is defined, then
abort. Here, SW is the domain of honest anonymous keys. Otherwise, set
anonymous key map[input,W ] = pki and set evaluations[input,W ] = y.
In any case (except ignoring and aborting), obtain W, y where
anonymous key map[input,W ] = pki and evaluations[input,W ] = y and run
Gensign(ring,W, x, pk, ass, input) → σ. Record [input, ass,W, ring, σ, 1]. Return
(signature, sid, ring,W, ass, input, y, σ) to Pi.

Malicious Requests of Signatures: If Sim provides ring,W, ass, input, Sim obtains
all valid and stored ring signatures of input and ass generated for ring with an
anonymous key W .

[Malicious Requests of Signatures.] upon receiving a message
(signs, sid, ring,W, ass, input) from Sim, obtain all existing valid signatures σ
such that [input, ass,W, ring, σ, 1] is recorded and add them in a list Lσ. Return
(signs, sid, ring,W, ass, input,Lσ) to Sim.

Ring VRF Verification: This part of Frvrf is to check whether a ring signature
of σ signs input and ass for ring with anonymous key W . This part should cor-



respond to rVRF.Ver in the real world ring VRF protocol. Therefore, Frvrf first
checks various conditions to decide whether the signature is valid. If the signa-
ture is verified, Frvrf outputs b = 1 and y = evaluations[input,W ]. Otherwise,
it outputs b = 0 and y =⊥.

For the verification of the signature, Frvrf first checks its records to see
whether this signature is verified or unverified in its records i.e., checks whether
[input, ass,W, ring, σ, b′] is recorded (See C1). If it is recorded, Frvrf lets b = b′ to
be consistent. Otherwise, it checks whether W is an anonymous key of an hon-
est party generated for input (See C2). If it is the case, Frvrf checks its records
whether this honest party requested signing input and ass for ring. If there exists
such record i.e., [input, ass,W, ring, ., 1], it stores the new signature σ as a valid
signature in its records and lets b = 1. Remark that Sim can create arbitrary
verified signatures that sign any input and ass for ring with W once the hon-
est party owning W has requested signing input and ass for ring. This does not
break the forgeability property because the honest party has already signed for
it. If none of the above conditions (C1 and C2) holds, it means that σ could
be a signature generated for a malicious party. Therefore, Frvrf asks about it to
Sim and Sim replies with an indicator bSim showing that σ is valid or not and
a public key pkSim. Then, Frvrf checks various conditions to prevent Sim forging
and violating the uniqueness. To prevent forging, it lets directly b = 0, if pkSim is
a key of an honest party. If pkSim is not an honest key, then Frvrf checks its table
W[input, ring] which stores the anonymous keys of valid malicious signatures of
input for ring. If the number of anonymous keys in W[input, ring] is greater than
or equal to the number of malicious keys in ring, then Frvrf invalidates σ by
letting b = 0. This condition guarantees uniqueness meaning that the number of
verifying evaluation values that Sim can generate for input, ring is at most the
number of malicious keys in ring. If the number of malicious anonymous keys of
valid signatures does not exceed the number of malicious keys in ring, then Frvrf

checks whether W is a unique anonymous key assigned to input, pkSim as in the
“Malicious Ring VRF Evaluation”. If W is unique then Frvrf lets b = bSim.

After deciding b, Frvrf records it as [input, ass,W, ring, σ, b] to be able to reply
with the same b for the same verification query later. If b = 1, Frvrf returns
evaluations[input,W ] as well.



[Ring VRF Verification.] upon receiving a message
(verify, sid, ring,W, ass, input, σ) from a party, do the following:

C1 If there exits a record [input, ass,W, ring, σ, b′], set b = b′.
C2 Else if anonymous key map[input,W ] is an honest verification key and

there exists a record [input, ass,W, ring, σ′, 1] for any σ′, then let b = 1
and record [input, ass,W, ring, σ, 1].

C3 Else relay the message (verify, sid, ring,W, ass, input, σ) to Sim and receive
back the message (verified, sid, ring,W, ass, input, σ, bSim, pkSim). Then check
the following:

1. If pkSim is an honest verification key, set b = 0.
2. Else if W /∈ W[input, ring] and |W[input, ring]| ≥ |ringmal| where ringmal

is a set of malicious keys in ring, set b = 0. .
3. Else if there exists W ′ 6= W where anonymous key map[input,W ′] =

pkSim, set b = 0.
4. Else set b = bSim.

In the end, record [input, ass,W, ring, σ, 0] if it is not stored. If b = 0, let y =⊥.
Otherwise, do the following:

– if W /∈ W[input, ring], add W to W[input, ring].
– if evaluations[input,W ] is not defined, set evaluations[input,W ] ←$

Seval, anonymous key map[input,W ] = pkSim. Set
evaluations[input,W ] = y.

– otherwise, set y = evaluations[input,W ].

Finally, output (verified, sid, ring,W, ass, input, σ, y, b) to the party.

In real-world ring VRF, the verification algorithm outputs the corresponding
evaluation value of the signer. Therefore, Frvrf outputs the signer’s evaluation
value if the signature is verified. However, it achieves this together with the
anonymous key which is not defined in the ring VRF in the real world. If Frvrf

did not define an anonymous key for each signature, then there would be no way
that Frvrf determines the signer’s key and outputs the evaluation value because
σ does not need to be associated with the signer’s key for the sake of anonymity.
Therefore, Frvrf maps a random and independent anonymous key to each input
and pk so that this key behaves as if it is the verification key of the signature.
Since it is random and independent from input and pk, it does not leak any
information about the signer during the verification but it still allows Frvrf to
distinguish the signer.
Frvrf achieves the following security properties. We note that when we say

the evaluation value of (input, pki), we mean evaluations[input,W ] where
anonymous key map[input,W ] = pki.

Randomness: The evaluation value of (input, pki) is randomly selected indepen-
dent from (input, pki) for keys pki and input’s. The evaluation value of pairs in



{(input, pki)} with an anonymous key W provided by Sim is randomly selected
independent from {(input, pki)} for all malicious keys pki and input’s.

Evaluation of (input, pki) where pki is an honest key is generated by first as-
signing a random anonymous keyW to it and then assigning a random evaluation
value y to (input,W ). So, honest evaluations are always random and indepen-
dent from (input, pki). Malicious evaluation value of pairs {(input, pki)} with the
same anonymous W is evaluations[input,W ] which is sampled randomly and
independently from {(input, pkj)} by Frvrf.

Determinism: Once evaluation value of (input, pki) is unique and cannot be
changed.

The evaluation value of (input, pki) where pki is honest is unique and cannot
be changed for honest parties because the anonymous key of it selected only
once. Similarly, The evaluation value of (input, pki) where pki is malicious is
unique and cannot be changed because Frvrf does not allow Sim to select two
different anonymous keys for (input, pki) and to update the anonymous key.

Unforgeability: If an honest party with a public key pk never signs a message
input and an associated data ass for a ring ring, then no party can generate
a forgery of input and ass for ring signed by pk. Formally, if an honest party
with pk never sends a message (sign, sid, ring, pk, ass, input) for any ring, input, ass,
then no party can create a record in Frvrf such that [input, ass,W, ring, σ, 1] where
anonymous key map[input, pk] = W .

Sim cannot create a forgery by sending a message (sign, sid, ring, pk, ass, input)
to Frvrf because Frvrf checks whether the sender’s key is pk to generate a signature.
Another way for Sim to create a forgery is by sending an honest key pkSim in C3
in Figure 1. However, it is not allowed by Frvrf in the condition C3-2 neither.

Uniqueness: We call that an evaluation value y for a message input is verified
for ring, if there exists a signature σ such that Frvrf returns (y, 1) for a query
(verify, sid, ring,W, ass, input, σ) for any anonymous key W and associated data
ass. The uniqueness property guarantees that the number of verified evaluation
values via signatures for a message input and ring is not more than |ring|.

If Frvrf outputs (1, y), it means that there exists a record [input, .,W, ring, σ, 1]
and y = evaluations[input,W ], anonymous key map[input,W ] = pk. If pk is an
honest key, then it means that pk ∈ σ because Frvrf generates a signature for an
honest party with a key if pk ∈ ring. Let’s assume that there exist more verified
evaluation values for ring

The evaluation value of input, pki is unique and fixed thanks to the deter-
minism. Uniqueness is broken if the number of verified evaluation values of input
for ring is greater than the number of anonymous keys that verify a signature
that signs input for ring. Assume that there exist t different verified evaluation
values Y = {y1, y2, . . . , yt} of a message input for ring where |ring| = t− 1. This
implies that for each yi ∈ Y, there exists a record [input, assi,Wi, ring, σi, 1] such
that evaluations[input,Wi] = yi where anonymous key map[input,Wi] = pki
and Wi 6= Wj for all i, j ∈ [1, t]. We know from the determinism property



pki 6= pkj for all i 6= j ∈ [1, t]. If pki is an honest key, it means that σi
is not a forgery so pki ∈ ring. Therefore, each honest evaluation value in Y
maps to one honest public key in ring meaning that honest evaluation values
in Y is at most |ring \ ringmal| = nh. If pki is not an honest verification key,
Wi ∈ W[input, ring] since Frvrf adds Wi to W[input, ring] whenever it creates
such record for a malicious signature. Frvrf makes sure that in the condition C3-
1 that W[input, ring] ≤ |ringmal| = nm. Therefore, t ≤ nh + nm = |ring| which is
a contradiction.

We note that Sim in our functionality can generate a valid ring signature
σ that signs input with a malicious key pk for ring where the malicious key is
not in ring i.e., Frvrf can have a record for a malicious signature σ such that
[input, .,Wi, ring, σ, 1] and anonymous key map[input,W ] = pk /∈ ring. However,
it cannot create signatures of input for ring which Frvrf verifies and outputs more
than |ringmal| different evaluation values.

Anonymity: An honest signature σ signs a message input verified by a ring and
anonymous key W does not give any information about its signer except that
its key is in pk if input is not signed by the same signer before for any other
ring. We define this formally with the anonymity game below. We note that we
cannot define and verify this property in Frvrf as the other properties because it
depends on how Gensign is defined.

Definition 6 (Anonymity). We define the anonymity game against a spe-
cial environment D which plays the following anonymity game. Frvrf satisfies
anonymity, if any PPT distinguisher D has a negligible advantage in λ to win
the anonymity game defined as follows: We define the anonymity game between
a challenger and D. D accesses a signing oracle OSign and Frvrf simulated by the
challenger as described in Figure 1.

– Given the input ′keygen′, OSign sends (keygen, sid) to the challenger and
obtains a verification key pk. Then, it stores pk to a list K and outputs pk.

– Given the input ′(pk, ring, ass, input)′, OSign sends
(sign, sid, ring, pk, ass, input) to the challenger and receives
(signature, sid, ring,W, ass, input, y, σ) if pk ∈ ring. Then OSign stores
input to a list signed[pk]. It outputs (σ,W ). Otherwise, it outputs ⊥.

At some point, D sends (ring, pk0, pk1, input, ass) to the challenger where
pk0, pk1 ∈ ring, input /∈ signed[pk0] and input /∈ signed[pk1]. Challenger lets
b ←r {0, 1}. Then it gives the input (pkb, ring, input, ass) to OSign and receives
either ⊥ or (σ,W ). If it is (σ,W ), it sends (σ,W ) to D as a challenge. If D
sends ′(pk, ring, ass, input)′ to OSign where pk = pk0 or pk = pk1, it loses the
game. During the game if D outputs b′ = b, D wins.

We remark that D generates keys of honest parties and forwards them via
dummy adversaries in the ideal model. So, Gensign of Frvrf should be defined in
a way that it preserves the anonymity even if D generates the keys.



5 Ring VRF construction

We now construct our ring VRF contruction with an efficient evaluation proof,
which we call the Pedersen VRF and denote PedVRF. PedVRF instantiates the
NIZK for the relation Reval introduced in a general form in §2. In this section
we focus upon Pedersen VRF and relations describing its SNARK for ring mem-
bership and we discuss the zero-knowledge continuation that makes the overall
ring VRF efficient in the next section.

Our construction works with public parameters pp = (p,G, G,K,Seval = Fp)
generated by rVRF.Setup(1λ). Here, p is a prime number and the order of the
group G which has generators G,K. It deploys random oracles Hp, H : {0, 1}∗ →
Fp, HG : {0, 1}∗ → G and Hring for constructing a Merkle tree.

Pedersen VRF: We construct PedVRF similarly to [28,29,19], except we replace
the public key by a Pedersen commitment skG + bK to the secret key sk. We
do not expose a public key from KeyGen, nor inject the public key in Eval.

– PedVRF.KeyGen : pp 7→ sk where sk←$ Fp.
– PedVRF.Eval : (sk, input) 7→ H(input, preout) where preout = skHG(input)

We add an algorithm to obtain a Pedersen commitment to the secret key sk.

– PedVRF.CommitKey : sk 7→ (b, compk) where b ←$ Fp is a blinding factor
and compk = skG+ bK is a Pedersen commitment.

Our Sign and Ver algorithms of PedVRF correspond to the Prove and Ver
algorithms of a Chaum-Pedersen DLEQ proof for relation Reval, instantiated by
a Fiat-Shamir transform of a sigma protocol.

Reval =

{
(compk, preout, inbase);

(sk, b)

∣∣∣∣∣ compk = skG+ bK,

preout = skHG(input)

}
.

– PedVRF.Sign : (sk, b, input, ass) 7→ σ Compute preout := skHG(input)
and compk = skG + bK. Let r1, r2 ←$ Fp and compute R = r1G +
r2K,Rm = r1HG(input) and c = Hp(ass, input, compk, preout, R,Rm). Fi-
nally compute s1 = r1 + c sk and s2 = r2 + c b. Return the signature
σ = (preout, R,Rm, s1, s2).

– PedVRF.Ver : (compk, input, ass, σ) 7→ out ∨ ⊥ Parse σ =
(preout, R,Rm, s1, s2) and compute c = Hp(ass, input, compk, preout, R,Rm).
If R = s1G+ s2K − c compk and and Rm = s1HG(input)− c preout, then re-
turn H(input, preout), which equals PedVRF.Eval(sk, input), or return failure
⊥ otherwise.

We remark that PedVRF becomes almost EC VRF if we demand b = r2 = 0
in Sign.

oana
Highlight
above the snarks implied by pedersen vrf are defined for r_eval



The Ring VRF Construction: We now describe how our construction works in
combination with PedVRF and a commitment scheme Com.

– rVRF.KeyGen returns as secret key sk, r ←$ Fp and pk as public key where
pk = Com.Commit(sk, r). We note that pk can be alternatively defined as
pk = skG according to the SNARK used for Rring. In this case, we would
not have r as a part of the secret key. We provide one optimal public key
design in §6.3 for our SNARK used for Rring.

– rVRF.Eval((sk, r), input) runs PedVRF.Eval(sk, input). We remark that the
evaluation value is generated with only the first part of the secret key which
is sk.

– rVRF.CommitRing : (ring, pk) 7→ (comring, opring) Compute a Merkle tree
root comring with the random oracle Hring considering the elements of ring
as leaves and generate a Merkle tree path opring that verifies pk ∈ ring.

– rVRF.OpenRing : (comring, opring) 7→ pk Verify that the root computed via
Merkle tree path opring is comring. If it is the case, output pk ∈ opring.
Otherwise, output ⊥.
We choose the ring commitment scheme so the rVRF.OpenRing invocation
is relatively SNARK friendly in our ring membership relation Rring. We
note that an alternative ring commitment scheme where comring = ring and
opring = pk.

The Sign and Ver for our rVRF are a combination of Sign and Ver from PedVRF
and Prove and Ver from NIZKRring

, as follows:

– rVRF.Sign : ((sk, r), comring, opring, input, ass) 7→ ρ returns a ring VRF
signature ρ = (compk, πring, σ, comring) if opring is a correct open-
ing of comring. In this, (b, compk) ← PedVRF.CommitKey(sk), πring ←
NIZKRring

.Prove((compk, comring); b, opring, pk, sk, r) where ass′ ← ass ++
πring ++ comring, σ ← PedVRF.Sign(sk, b, input, ass′). we instantiate Rring

with

Rring =

{
(compk, comring);

(b, opring, pk, sk, r)

∣∣∣∣∣ ((pk, compk− bK); (sk, r)) ∈ Rpk

pk = rVRF.OpenRing(comring, opring)

}
.

where Rpk = {(pk, X); (sk, r) : sk = Com.Open(pk; sk, r), X = skG}.

We note that if pk = skG then Rring does not need sk, r since Rpk can be
checked without them i.e., check whether compk− bK = pk.

– rVRF.Ver : (comring, input, ass, ρ) 7→ out ∨ ⊥ Parses ρ as
(compk, πring, σ), sets ass′ ← ass ++ πring ++ comring and runs
NIZKRring

.Ver((compk, comring);πring). If it fails, returns (0,⊥). Otherwise,
returns PedVRF.Ver(compk, input, ass′, σ).

Appendix A proves our ring VRF construction realizes Frvrf in Figure 1.
Intuitively, the randomness and the determinism of rVRF.Eval come from the
random oracles H ′ and HG′ . The anonymity of our ring VRF signature comes



from the perfect hiding property of Pedersen commitment, the zero-knowledge
property of NIZKRring (Lemma 4) and the difficulty of DDH in G (Lemma 5) so
that preout is indistinguishable from a random element in G. The unforgeability
and uniqueness come from the fact that CDH is hard in G (Lemma 6), i.e., for
unforgeability, one cannot commit an honest party’s secret key without breaking
the CDH problem and for the uniqueness, if one can obtain PedVRF signatures
such that σ1 = (preout1, πPedVRF) and σ2 = (preout2, π

′
PedVRF) where preout1 6=

preout2 and verified by compk for the message input, then we break a CDH
problem in G.

Theorem 1. rVRF over the group structure (G, p,G,K) realizes Frvrf in Figure
1 in the random oracle model assuming that NIZKReval and NIZKRring are zero-
knowledge and knowledge sound, the decisional Diffie-Hellman (DDH) problem
are hard in G and the commitment scheme Com is binding and perfectly hiding.

6 Zero-knowledge Continuations

In the following, we describe a NIZK for a relation R where

R = {(ȳ, z̄; x̄, w̄1, w̄2) : (ȳ, x̄; w̄1) ∈ R1, (z̄, x̄; w̄2) ∈ R2},

and R1, R2 are some NP relations. Our NIZK is designed to efficiently re-prove
membership for relation R1 via a new technique which we call zero-knowledge
continuation. In practice, using a NIZK that ensures a zero-knowledge continu-
ation for a subcomponent relation (i.e., in our case R1) means one essentially
needs to create only once an otherwise expensive proof for that subcomponent
relation; the initial proof can later be re-used multiple times (just after
inexpensive re-randomisations) while preserving knowledge soundness and
zero-knowledge of the entire NIZK. Below, we formally define zero-knowledge
continuation. In section 6.1 we instantiate it via a special(ised) Groth16 or
SpecialG, and finally, in section 6.3 we use it to build a ring VRF with fast
amortised prover time.

In addition, the anonymity property of our ring VRF demands we not only
finalise multiple times a component of the zero-knowledge continuation but
also each time the result remains unlinkable to previous finalisations, meaning
our ring VRF stays zero-knowledge even with a continuation component being
reused. We formalise such a more general zero-knowledge property in section 6.1
and give an instantiation of our NIZK fulfilling such a property in section 6.3.

Definition 7 (ZK Continuations). A zero-knowledge continuation ZKCont
for a relation R1 with input (ȳ, x̄) and witness w̄1 is a tuple of efficient al-
gorithms (ZKCont.Setup, ZKCont.Preprove, ZKCont.Reprove, ZKCont.VerCom,
ZKCont.Ver, ZKCont.Sim) such that for implicit security parameter λ,

– ZKCont.Setup : (1λ,R1) 7→ (crs, td , pp) a setup algorithm that on input the
security parameter outputs a common reference string crs, a trapdoor td and
a list pp of public parameters,
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– ZKCont.Preprove : (crs, ȳ, x̄, w̄1,R1) 7→ (X ′, π′, b′) constructs commitment
X ′ from a vector of inputs x̄ (called opaque) and constructs proof π′ from
vector of inputs ȳ (called transparent), x̄ and vector of witnesses w̄1, and it
also outputs b′ as the opening for X ′,

– ZKCont.Reprove : (crs, X ′, π′, b′,R1) 7→ (X,π, b) finalises commitment X
and proof π and returns an opening b for the commitment,

– ZKCont.VerCom : (pp, X, x̄, b) 7→ 0/1 verifies that indeed X is a commit-
ment to x̄ with opening (e.g., randomness) b and outputs 1 if indeed that is
the case and 0 otherwise,

– ZKCont.Ver : (crs, ȳ, X, π,R1) 7→ 0/1 outputs 1 in case it accepts and 0
otherwise,

– ZKCont.Sim : (td , ȳ,R1) 7→ (π,X) takes as input a simulation trapdoor td
and statement (ȳ, x̄) and returns arguments π and X,

and satisfies perfect completeness for Preprove and, for Reprove, it satisfies
knowledge soundness and zero-knowledge as defined below:
Perfect Completeness for Preprove For all λ ∈ N, for every (ȳ, x̄; w̄1) ∈ R1:

Pr(ZKCont.Ver(crs, ȳ, X, π,R1) = 1 ∧ ZKCont.VerCom(pp, X, x̄, b) = 1 |
(crs, td , pp)← ZKCont.Setup(1λ,R1),

(X,π, b)← ZKCont.Preprove(crs, ȳ, x̄, w̄1,R1)) = 1

Perfect Completeness for Reprove For all λ ∈ N, for every efficient adversary
A:

Pr((ZKCont.Ver(crs, ȳ, X ′, π′,R1) = 1 => ZKCont.Ver(crs, ȳ, X, π,R1) = 1) ∧
∧ (ZKCont.VerCom(pp, X ′, x̄, b′) = 1 => ZKCont.VerCom(pp, X, x̄, b) = 1) |
(crs, td , pp)← ZKCont.Setup(1λ,R1), (ȳ, x̄, X ′, π′, b′)← A(crs,R1),

(X,π, b)← ZKCont.Reprove(crs, X ′, π′, b′,R1)) = 1

Knowledge Soundness For all λ ∈ N, for every benign auxiliary input aux
(as per [4]) and every non-uniform efficient adversary A, there exists efficient
non-uniform extractor E such that:

Pr((ZKCont.Ver(crs, ȳ, X, π,R1) = 1) ∧ (ZKCont.VerCom(pp, X, x̄, b) = 1) ∧
∧ ((ȳ, x̄; w̄1) /∈ R1) | (crs, td , pp)← ZKCont.Setup(1λ,R1),

(ȳ, x̄, X, π, b; w̄1)← A||E(crs, aux ,R1)) = negl(λ),

where by (outputA; outputB )← A||B(input) we denote algorithms A, B running
on the same input and B having access to the random coins of A.

Perfect Zero-knowledge w.r.t. R1 For all λ ∈ N, for every benign auxiliary
input aux , for all (ȳ, x̄; w̄1) ∈ R1, for all X ′, for all π′, for all b′, for every



adversary A:

Pr(A(crs, aux , π,X,R1) = 1 | (crs, td , pp)← ZKCont.Setup(1λ,R1),

ZKCont.Ver(crs, ȳ, X ′, π′,R1) = 1,

(π,X, )← ZKCont.Reprove(crs, X ′, π′, b′,R1)) =

= Pr(A(crs, aux , π,X,R1) = 1 | (crs, td , pp)← ZKCont.Setup(1λ,R1),

ZKCont.Ver(crs, ȳ, X ′, π′,R1) = 1, (π,X)← ZKCont.Sim(td , ȳ,R1))

6.1 Specialised Groth16

Below we instantiate our zero-knowledge continuation notion with a scheme
based on Groth16 [21] SNARK; hence, we call our instantiation specialised
Groth16 or SpecialG. But first we need a reminder of the definition of Quadratic
Arithmetic Program (QAP) [8], [18].

Definition 8 (QAP). A Quadratic Arithmetic Program (QAP) Q =
(A,B, C, t(X)) of size m and degree d over a finite field Fq is defined by three
sets of polynomials A = {ai(X)}mi=0, B = {bi(X)}mi=0, C = {ci(X)}mi=0, each of
degree less than d− 1 and a target degree d polynomial t(X). Given Q we define
RQ as the set of pairs ((ȳ, x̄); w̄) ∈ Flq × Fn−lq × Fm−nq for which it holds that
there exist a polynomial h(X) of degree at most d− 2 such that:

(

m∑
k=0

vk · ak(X)) · (
m∑
k=0

vk · bk(X)) = (

m∑
k=0

vk · ck(X)) + h(X)t(X) (∗)

where v̄ = (v0, . . . , vm) = (1, x1, . . . , xn, w1, . . . wm−n) and ȳ = (x1, . . . , xl) and
x̄ = (xl+1, . . . , xn) and w̄ = (w1, . . . , wm−n).

Given notation provided in section 3, we introduce

Definition 9 (Specialised Groth16 (SpecialG)). Let RQ be as in Defini-
tion 8. Then we call specialised Groth16 for relation RQ the following:

– SpecialG.Setup : (1λ,RQ) 7→ (crs, td , pp).

Let α, β, γ, δ, τ, η
$←− F∗q . Let td = (α, β, γ, δ, τ, η).

Let crs = ([σ̄1]1, [σ̄2]2) where

σ̄1 = (α, β, δ, {τi}d−1
i=0 ,

{
βai(τ) + αbi(τ) + ci(τ)

γ

}n
i=1

,
η

γ
,{

βai(τ) + αbi(τ) + ci(τ)

δ

}m
i=n+1

,

{
1

δ
σit(σ)

}d−2

i=0

,
η

δ
),

σ̄2 = (β, γ, δ, {τ i}d−1
i=0 ).

pp =

({[
βai(τ)+αbi(τ)+ci(τ)

γ

]
1

}n
i=l+1

,
[
η
γ

]
1

)
.

Moreover, for simplicity and later use, we call Kγ =
[
η
γ

]
1

and Kδ =
[
η
δ

]
1
.



– SpecialG.Preprove : (crs, ȳ, x̄, w̄1,RQ) 7→ (X ′, π′, b′) such that

b′ = 0; r, s
$←− Fp;X ′ =

n∑
i=l+1

vi

[
βai(τ) + αbi(τ) + ci(τ)

γ

]
1

;

o = α+

m∑
i=0

vi · ai(τ) + r · δ;u = β +

m∑
i=0

vi · bi(τ) + s · δ;

v =

∑m
i=n+1(vi(βai(τ) + αbi(τ) + ci(τ))) + h(τ)t(τ)

δ
+ o · s+ u · r − r · s · δ;

π′ = ([o]1, [u]2, [v]1),

where ȳ = (x1, . . . , xl), x̄ = (xl+1, . . . , xn), w̄ = (w1, . . . , wm−n),
v̄ = (1, x1, . . . , xn, w1, . . . , wm−n) (same as in Definition 8).

– SpecialG.Reprove : (crs, X ′, π′, b′,RQ) 7→ (X,π, b) such that

b, r1, r2
$←− Fp, X = X ′ + (b− b′)Kγ , π = (O,U, V ),

O =
1

r1
O′, U = r1U

′ + r1r2[δ]2, V = V ′ + r2O
′ − (b− b′)Kδ.

where π′ = (O′, U ′, V ′).
– SpecialG.VerCom : (pp, X, x̄, b) 7→ 0/1 where the output is 1 iff the following

holds

X =

n∑
i=l+1

xi

[
βai(τ) + αbi(τ) + ci(τ)

γ

]
1

+ bKγ ,

where x̄ = (xl+1, . . . , xn), 0 ≤ l ≤ n− 1.
– ZKCont.Ver : (crs, ȳ, X, π,RQ) 7→ 0/1 where the output is 1 iff the following

holds
e(O,U) = e([α]1, [β]2) · e(X + Y, [γ]2) · e(V, [δ]2),

where π = (O,U, V ), Y =
∑l
i=1 xi

[
βai(τ)+αbi(τ)+ci(τ)

γ

]
1

and ȳ =

(x1, . . . , xl).

– SpecialG.Sim : (td , ȳ,RQ) 7→ (π,X) where x, o, u
$←− Fp and let

π = ([o]1, [u]2, [v]1) where v =
o·u−αβ−

∑l
i=1 xi(βai(τ)+αbi(τ)+ci(τ))−x

δ and, by
definition ȳ = (x1, . . . , xl). Note that π is a simulated proof for transparent
input ȳ and commitment X = [x]1.

Notes: First, the trusted setup required by SpecialG is an extension of that
required by original Groth16 [21] by two additional group elements Kγ = [ ηγ ]1
and Kδ = [ηδ ]1. An identical trusted setup to that used by SpecialG was
used in LegoSNARK [8, Fig. 22] which defines a commit-carrying SNARK
based on Groth16. Second, our SpecialG.Reprove algorithm uses a Groth16
re-randomisation technique for the proof (see [3, Fig. 1] or LegoSNARK [8,



Fig. 22]), but, in addition, SpecialG.Reprove also re-randomises X which is
a commitment to a slice of the public input; moreover, in terms of security
properties, we appropriately define the zero-knowledge for zk continuations such
that even after iteratively applying SpecialG.Reprove zero-knowledge property is
preserved for both the witness as well as the public input committed to in X.

Finally, we are ready to prove the following result:

Theorem 2. Let RQ be a relation as per Definition 8 such that addition-
ally {ak(X)}nk=0 are linearly independent polynomials. Then, in the AGM [17],
SpecialG is a zero-knowledge continuation as per definition 7.

Proof. It is straightforward to prove that SpecialG has perfect completeness for
Preprove and perfect completeness for Reprove.

We prove knowledge-soundness (KS) an in Definition 7 by first arguing SpecialG
is a commit-carrying SNARK with double binding (cc-SNARK with double
binding) as per Definition 3.4 [8]. We use the fact that ccGroth16 as defined by
the NILP detailed in Fig.22, Appendix H.5 [8] satisfies that latter definition.
Moreover, SpecialG’s Setup together with Gen, on one hand, and ccGroth16’s
KeyGen, on the other hand, are the same procedure. Also SpecialG and
ccGroth16 share the same verification algorithm. Hence, translating the notation
appropriately, SpecialG also satisfies KS of a cc-SNARK with double binding.

Let ASpecialG be an adversary for KS in Definition 7 and define adversary AccGroth16

for KS in Definition 3.4 [8]:

If ASpecialG(crs, pp, aux ,RQ) outputs (ȳ, x̄, X, π, b)

then AccGroth16(crs, aux ,RQ) outputs (ȳ, X, π).

Given extractor EccGroth16 fulfilling Definition 3.4 [8] for AccGroth16, we construct
extractor ESpecialG for ASpecialG

IfEccGroth16(crs, aux ,RQ) outputs (x̄∗, b∗, w̄∗)

then ESpecialG(crs, aux ,RQ) outputs w̄∗;

Otherwise EccGroth16(crs, aux ,RQ) outputs ⊥.

We show ESpecialG fulfils Definition 7 for ASpecialG. Assume by contradiction that
is not the case. This implies there exist auxiliary input aux such that each:

ZKCont.Ver(crs, ȳ, X, π,RQ) = 1 (10) ; ZKCont.VerCom(pp, X, x̄, b) = 1 (20)

(ȳ, x̄; w̄) /∈ RQ (30)

hold with non-negligible probability. Since (20) holds with non-negligible proba-
bility and verification is identical for SpecialG and ccGroth16, and since EccGroth16

is an extractor for AccGroth16 as per Definition 3.4 [8], then each of the two events

VerCommit∗(pp, X, x̄∗, b∗) = 1 (40) ; (ȳ, x̄∗; w̄∗) ∈ RQ (50)



holds with overwhelming probability. Since (20) holds with non-negligible prob-
ability and (40) holds with overwhelming probability and together with (ii) from
Definition 3.4 [8] we obtain that x̄∗ = x̄. Since (50) holds with overwhelming
probability, it implies (ȳ, x̄; w̄∗) ∈ RQ with overwhelming probability which
contradicts our assumption, so our claim that SpecialG does not have KS as per
Definition 7 is false.

Finally, regarding zero-knowledge, it is clear that if π = (O,U, V ) is part of
the output of SpecialG.Reprove, then O and U are uniformly distributed as
group elements in their respective groups. This holds, as long as the input to
SpecialG.Reprove is a verifying proof, even when the proof was maliciously gen-
erated. Hence, it is easy to check that the output π′ of SpecialG.Sim is identically
distributed to a proof π output by SpecialG.Reprove so the perfect zero-knowledge
property holds for SpecialG.

6.2 Putting Together a NIZK and a ZKCont for Proving R

Let ZKCont be a zk continuation for R1 (from preamble of Section 6) and let
NIZKR′2(pp) be a NIZK for R′2(pp) (for some public parameters pp) defined by:

R′2(pp) = {(X, z̄, pp; x̄, b, w̄2) : ZKCont.VerCom(pp, X, x̄, b) = 1 ∧ (z̄, x̄; w̄2) ∈ R2},

with R2 from preamble of Section 6. Then we define the system NIZKR for
relation R from the preamble of Section 6 as:

– NIZKR.Setup : (1λ) 7→ (crsR = (crs, crsR′2(pp)), tdR = (td , tdR′2(pp)), pp)

where (crs, td , pp)← ZKCont.Setup(1λ,R1),
(crsR′2(pp), tdR′2(pp))← NIZKR′2(pp).Setup(1λ)

– NIZKR.Prove : (crsR, ȳ, z̄; x̄, w̄1, w̄2) 7→ (π1, π2, X) where
(X ′, π′1, b

′)← ZKCont.Preprove(crs, ȳ, x̄, w̄1,R1)
(X,π1, b)← ZKCont.Reprove(crs, X ′, π′1, b

′,R1)
π2 ← NIZKR′2(pp).Prove(crsR′2(pp), X, z̄; x̄, b, w̄2)

– NIZKR.Ver : (crsR, ȳ, z̄, π1, π2, X) 7→ 0/1 where the output is 1 iff

ZKCont.Ver(crs, ȳ, X, π1,R1) = 1 ∧ NIZKR′2(pp).Ver(crsR′2(pp), X, z̄, π2) = 1

– NIZKR.Sim : (tdR, ȳ, z̄) 7→ (π1, π2, X) where
(π1, X)← ZKCont.Sim(td , ȳ,R1), π2 ← NIZKR′2(pp).Sim(tdR′2(pp), X, z̄)

Lemma 1 (Knowledge-soundness for NIZKR). If ZKCont is a zk contin-
uation for R1 and NIZKR′2(pp) is a NIZK for R′2(pp) for some appropriately
chosen public parameters pp, then the NIZKR construction described above has
knowledge-soundness for R.

Proof. This is easy to infer by linking together the extractors guaranteed for
ZKCont and NIZKR′2(pp) due to their respective knowledge-soundness.



Next, we define
Special Perfect Completeness For all λ ∈ N, for every efficient adversary A,
for every (z̄, x̄; w̄2) ∈ R2 it holds:

Pr((ZKCont.Ver(crs, ȳ, X ′, π′1,R1) = 1 => ZKCont.Ver(crs, ȳ, X, π1,R1) = 1) ∧
∧ (ZKCont.VerCom(pp, X ′, x̄, b′) = 1 => ZKCont.VerCom(pp, X, x̄, b) = 1) ∧
∧ NIZKR′2(pp).Ver(crsR′2(pp), X, z̄, π2) = 1|
(crs, td , pp)← ZKCont.Setup(1λ,R1),

(crsR′2(pp), tdR′2(pp))← NIZKR′2(pp).Setup(1λ,R′2(pp)),

(ȳ, X ′, π′1, b
′)← A(crs,R1), (X,π1, b)← ZKCont.Reprove(crs, X ′, π′1, b

′,R1)

π2 ← NIZKR′2(pp).Prove(crsR′2(pp), X, z̄, x̄, b, w̄2)) = 1

Lemma 2 (Special Perfect Completeness). If ZKCont is a zk continuation
for R1 and NIZKR′2(pp) is a NIZK for R′2(pp) for some appropriately chosen
public parameters pp, then the NIZKR construction described above has special
perfect completeness.

Proof. This is easy to infer by combining the perfect completeness properties of
NIZKR′2(pp) and perfect completeness for ZKCont.Reprove.

Finally, we define

Zero-knowledge after Reusing a ZKCont Proof For all λ ∈ N, for ev-
ery benign auxiliary input aux, for all ȳ, x̄, z̄, w̄1, w̄2 with (ȳ, x̄; w̄1) ∈ R1 and
(z̄, x̄; w̄2) ∈ R2, for all X ′, π′1, π2, b

′, for every adversary A it holds:

|Pr(A(crs, aux , π1, π2, X,R) = 1 | (crs, td , pp)← ZKCont.Setup(1λ,R1),

(π1, X, )← ZKCont.Reprove(crs, X ′, π′1, b
′,R1),

π2 ← NIZKR′2(pp).Prove(crsR′2(pp), X, z̄, x̄, b, w̄2),

ZKCont.Ver(crs, ȳ, X ′, π′1,R1) = 1 ∧ ZKCont.VerCom(pp, X ′, x̄′, b′) = 1)

−Pr(A(crs, aux , π1, π2, X,R) = 1 | (crs, td , pp)← ZKCont.Setup(1λ,R1),

(π1, π2, X)← NIZKR.Sim(td , ȳ,R1)

ZKCont.Ver(crs, ȳ, X ′, π′1,R1) = 1 ∧ ZKCont.VerCom(pp, X ′, x̄′, b′) = 1)|
≤ negl(λ)

Lemma 3 (ZK after Reusing a ZKCont Proof). If ZKCont is a zk contin-
uation for R1 and NIZKR′2(pp) is a NIZK for R′2(pp) for some appropriately
chosen public parameters pp, then the NIZKR construction described above has
zero-knowledge after reusing a ZKCont proof.

Proof. The statement follows from the perfect zero-knowledge w.r.t. R1 for
ZKCont and the zero-knowledge property of NIZKR′2(pp) w.r.t. R′2(pp) .

Corollary 1. If ZKCont is a zk continuation for R1 and NIZKR′2(pp) is a NIZK
for R′2(pp) for some appropriately chosen public parameters pp, then the NIZKR
construction described above is a NIZK for R.



Proof. Putting together the results of Lemma 1, Lemma 2, Lemma 3 and we
obtain the above statement.

6.3 Ring VRFs based on SpecialG

We can apply the results of the previous subsections to construct a ring VRF
using SpecialG that allows a fast amortized ring VRF prover. First, PedVRF has a
sigma protocol which proves the relation Reval, where Reval is the instantiation
of relationR′2(pp) (for some appropriately chosen public parameters pp). Second,
we can use SpecialG for a relation R1 similar to Rring. In fact, we will instantiate
R1 with Rinner

ring .
For the latter, we need an appropriate choice of pk to commit to sk. We use

a Pedersen commitment using some Jubjub curve J. J contains a large subgroup
J of prime order pJ. Typically pJ is smaller than p, the order of G, certainly
when J is an Edwards curve with a cofactor. Since sk ∈ Fp, we represent it
with two FpJ elements sk0, sk1 ≤ 2λ so that sk = sk0 + sk1 2λ mod p for some
fixed (log2 p)/2 < λ < log2 pJ. rVRF.KeyGen now samples sk ←$ Fp, computes
sk1, sk2, samples a blinding factor d←$ FpJ and then returns a blinded Pedersen
commitment as the public key rVRF.pk = sk0 J0 + sk1 J1 + dJ2 and the secret
key rVRF.sk = (sk0, sk1, d). Here J0, J1, J2 ∈ J are independent generators.

We thus have a fairly efficient instantiation for R1 given by

Rinner
ring =

{
(comring, sk; sk0, sk1, opring)

∣∣∣∣ sk = sk0 + 2λsk1 ∧
OpenRing(comring, opring)

= sk0J0 + sk1J1 + dJ2

}
.

Combining SpecialG for R1 and the sigma protocol which is part of PedVRF
gives a NIZK for relation Rrvrf (i.e., an instantiation of R from previous sub-
sections):

Rrvrf =

 out, input, comring; sk0, sk1, opring

∣∣∣∣∣∣∣
OpenRing(comring, opring)

= sk0J0 + sk1J1 + dJ2,

out = rVRF.Eval(sk0 + 2λsk1, input)


Efficiency: If we have a SpecialG proof for R1 for our pk in a ring defined
by comring, to generate a ring VRF proof for the same ring, we need to run
SpecialG.Reprove and PedVRF.Sign. PedVRF.Sign requires two scalar multiplica-
tions on G1 and two on the same or faster G′, so together with SpecialG.Reprove
costing four scalar multiplications on G1 and two on G2, our amortised prover
time runs faster than 12 scalar multiplications on typical G1 curves. We ex-
pect the three pairings dominate verifier time, but verifiers also need five scalar
multiplications on G1.

Importantly, our fast ring VRF’s amortised prover time now rivals group
signature schemes’ performance [24]. We hope this ends the temptation to deploy
group signature like constructions where the deanonymisation vectors matter.



7 Ring updates

We now discuss the performance of πfast. Although our rVRF.Sign runs fast, all
users should update their stored zkSNARK πfast every time ring changes, but
zero knowledge continuations help here too.

7.1 Merkle trees

Our rVRF.{CommitRing,OpenRing} could implement a Merkle tree using a zk-
SNARK friendly hash function like Poseidon [20], giving O(log |ring|) prover
time. At least one Poseidon [20] provides arity four with only 600 R1CS con-
straints. We need roughly 700 R1CS constraints for each fixed based scalar mul-
tiplication too, so the flavor of πfast costs under 12k R1CS constraints for a ring
with four billion people.

7.2 Side channels

In πfast, one might dislike processing secret key material inside the Groth16
prover for πfast. Adversaries could trigger πfast recomputation only by updating
the ring, but this still presents a side channel risk.

If concerned, one could address this via a second zk continuation that splits
πfast into a Groth16 πsk and a Groth16 or KZG πpk for two respective languages:

Linnerpk = { Jpk, comring | ∃opring s.t. Jpk = OpenRing(comring, opring) } ,

Linnersk =
{

sk0 + sk12128, Jpk

∣∣ ∃d s.t. Jpk = sk0J0 + sk1J1 + dJ2

}
.

We now prove πsk only once ever during secret key generation, which largely
eliminates any side channel risks. We do ask verifiers compute more pairings,
but nobody cares when the VRF verifiers are few in number or institutional, as
in many applications. We also ask provers rerandomize both πsk and πpk, but
this costs relatively little. Assuming πpk is Groth16 then we need a proof-of-
knowledge for the desired structure of Jpk too. All totaled this almost doubles
the size and complexity of our ring VRF signature.

There is no “arrow of time” among zk continuations per se, but as πsk bridges
between the PedVRF and πpk, one might consider the πsk-to-πpk continuation to
be “time reversed”, in that the “middle” continuation is proved first.

7.3 Polynomial commitments

As πpk became rather simple, there exists an alternative formulation: comring
could be a KZG polynomial commitment [23] to users’ Jpks, while πpk itself
becomes an opening at a secret location, like Caulk+ [31] or Caulk [34]. We
benefit from faster ring updates this way, but pay in increased verifier time and
increased marginal prover time.



7.4 Append only rings

As a slight variation, we could build ring using append only structures like some
blockchains, in which case we should split rVRF.OpenRing differently between
an inner ring block or epoch proof Lblock, which we only prove once like πsk
above, and a chain state proof Lchain, which extends this inner ring to the grow-
ing blockchain. Now our inner SNARKs pass a blk parameter, which our zero-
knowledge continuation transforms into a opaque commitment comblk, thereby
requiring a proof-of-knowledge.

Linnerchain = { blk, chain | blk ∈ chain } , and

Linnerblock =

{
sk0 + sk12128, blk

∣∣∣∣ OpenRing(blk, opring)

= sk0J0 + sk1J1 + dJ2

}
.

We suggest appending blk to a polynomial commitment using [33], which then
Lchain blind opens via Caulk+ [31] as above.

7.5 Expiration and revocation

We expect expiration and revocation would be required for append only rings
like blockchains, or say a zero-knowledge proof of a certificate.

For expiry, we suggest πsk or Lblock commit to the expiration date alongside
the secret key in their X, and then πpk or Lchain enforce expiration, but really
even PedVRF could enforce expiration.

A revocation list could be enforced by a non-membership proof in πpk or
Lchain. We expect a revocation list updates only rarely compared with ring itself
though, which makes doing this non-membership proof inside some separate
zero-knowledge continuation tempting too. A deployment faces should make this
choice carefully.

8 Anonymized ring unions

We briefly discuss ring VRFs whose ring consists of the union of several smaller
rings, but which hide to which ring the user belongs. In this, we bring out one
interesting zero-knowledge continuation technique.

8.1 Identical circuit

As a first step, if all rings use the same circuit, then we hide the ring among
several rings using a second zero-knowledge continuation, not unlike §7.2. We
could then blind open a polynomial commitment [23] to our comring choices,
Caulk+ [31] or Caulk [34] or similar as in §7.3.

As a special case, if users cannot change their keys too quickly, then one could
reduce the frequency with which users reprove their original zero-knowledge
by using multiple comring choices across the history of the same evolving ring
database.



8.2 Multi-circuit

We need a new trick if the χi come from different circuit’s trusted setups. A
priori, our zero-knowledge continuation πfast fixes some G = χ1, which reveals
the circuit, due to its dependence upon the SRS like

χ1 =

[
βu1(τ) + αv1(τ) + w1(τ)

γ

]
1

.

Instead, we propose to stabilize the public input SRS elements across circuits:
We choose χ1,γ independently before selecting the circuit or running its trusted
setup. We then merely add an SRS element χ1,δ, for usage in C, that binds our
independent χ1,γ to the desired definition, so

χ1,δ :=

[
βu1(τ) + αv1(τ) + w1(τ)− γχ1,γ

δ

]
1

.

At this point, we replace χ1 by χ1,γ everywhere and our proofs add comringχ1,δ

to C.
In this way, all ring membership circuits could share identical public input

SRS points χ1,γ , and similarly χ0 if desired.

At this point, one still needs to hide the SRS elements [δ]2, [γ]2 ∈ G2 and
e([α]1, [β]2) ∈ GT . We leave this as an exercise to the reader.

9 Application: Identity

Ring VRFs yield anonymous identity systems: After a user and service establish
a secure channel and the server authenticates itself with certificates, then the
user authenticates themselves by providing an anonymous VRF signature with
input input being the service’s identity, thus creating an pseudonymous identified
session with a pseudonym unlinkable from other contexts.

We expand this identified session workflow with an extra update operation
suitable for our ring VRF’s amortized prover. We discuss only πfast here but all
techniques apply to πsk and πpk similarly.

– Register – Adds users’ public key commitments into some ring, after verifying
the user does not currently exist in ring.

– Update – User agents regenerate their stored SNARK (pk, πinnerfast ) us-
ing SpecialG.Preprove((sk1, sk2, opring); (sk, comring)) each time ring changes,
perhaps even receiving comring and opring from some ring management ser-
vice.

– Identify – Our user agent first opens a standard TLS connection to a
server input, both checking the server’s name is input and checking certifi-
cate transparency logs, and then computes the shared session id ass. Our
user agent computes the user’s identity id = PedVRF.Eval(sk, input) on the
server id input, Our user agent next rerandomizes πfast, compk, and b using



SpecialG.Reprove(pk, πinnerfast ), computes σ = PedVRF.Sign(sk, b, input, ass ++
compk ++ πfast), and finally sends the server their ring VRF signature
(compk, πfast, σ)

– Verify – After receiving (compk, πfast, σ) in channel ass, the server named
input checks SpecialG.Ver(comring, (compk, πfast)), checks the VRF signa-
ture, and obtains the user’s identity id, ala
id = PedVRF.Ver(compk, input, ass ++ compk ++ πfast, σ).

9.1 Browsers

We must not link users’ identities at different web sites, so user agents should
carefully limit cross site resource loading, referrer information, etc. User agents
could always load purely static resources, without metadata like cookies or refer-
rer information. At least Tor browser already takes cross site resource concerns
seriously, while Safari and Brave may limit invasive cross site resources too.

We somewhat trust the CAs and CT log system with users’ identities in the
above protocol, in that users could login to a site with fraudulent credentials.
We think cross site restrictions limit this attack vector. If stronger defenses are
desired then instead of input being the site name, input could be a public “root”
key for the specific site, which then also certifies its TLS certificate. Ideally its
secret key remains air gaped.

9.2 AML/KYC

We shall not discuss AML/KYC in detail, because the entire field lacks clear
goals, and thus winds up being ineffective [30]. We do however observe that
AML/KYC typically conflicts with security and privacy laws like GDPR. As a
compromise between these regulations, one needs a compliance party who know
users’ identities, while another separate service party knows the users’ activities.
We propose a safer and more efficient solution:

Instead our compliance party becomes an identity issuer who maintains a
public ring, and privately knows the users behind each public key. As above,
identity systems could employ ring freely for diverse purposes. If later asked or
subpoenaed, users could prove their relevant identities to investigators, or maybe
prove which services they use and do not use.

Interestingly PedVRF could run “backwards” like HG′(input) 6= sk−1 preout
to show a ring VRF output associated to preout does not belong to the user,
without revealing the users’ identity H ′(input, skHG′(input)) to investigators.

Our applications mostly ignore key multiplicity. AML/KYC demands sus-
pects prove non-involvement using ring VRFs.

Definition 10. We say rVRF is exculpatory if we have an efficient algorithm
for equivalence of public keys, but a PPT adversary A cannot find non-equivalent
public keys pk0, pk1 with colliding VRF outputs.



A priori, our JubJub representations sk0J0 +sk1J1 used in §6.3 and §7.2 costs
us exculpability from Definition 10.

There is however a natural exculpable public key flavor (pk, σ), in which
σ = Sign(sk,CommitRing({pk}, pk).opring, ring name, ””). The singleton ring
{pk} ensure that Ver(CommitRing({pk}), ring name, ””, σ) uniquely determines
the secret key, so exculpability holds if joining the ring requires (pk, σ).

9.3 Moderation

All discussion or collaboration sites have behavioral guidelines and moderation
rules that deeply impact their culture and collective values.

Our ring VRFs enables a simple blacklisting operation: If a user misbehaves,
then sites could blacklist or otherwise penalizes their site local identity id. As
id remains unlinked from other sites, we avoid thorny questions about how such
penalties impact the user elsewhere, and thus can assess and dispense justice
more precisely.

At the same time, there exist sites who must forget users’ histories eventually,
like under some “right to be forgotten” principle, either GDPR compliance or
an ethical principle of social mistakes being ephemeral.

We obtain ephemeral identities if input consists of the site name plus the
current year and month, or some other approximate date. In this way, users
have only one stable id within the approximate date range, but they obtain
fresh ids merely by waiting until the next month.

We could adjust PedVRF to simultaneously prove multiple VRF input-output
pairs (inputj , idj). As in [14], we merely delinearize inbase and preout in Sign and
Ver like:

x = H(inputj , idj , . . . , inputj , idj)

inbase =
∑
j

Hp(x, j) inbasej

preout =
∑
j

Hp(x, j) preoutj

As doing so links these pairs together, we could link together two or more
ephemeral identities like this to obtain a semi-permanent identity with user con-
trolled revocation: As login, our site demands two linked input-output pairs
given by input1 = site name ++ current month and input2 = site name ++
registration month, so users could have multiple active pseudo-nyms given
by id2, but only one active pseudo-nym per month, enforced by deduplicating
id1, which still prevents spam and abuse.

If instead our site associates pseudo-nyms to their most recently seen id1,
then we could link adjacent months, meaning inputj is defined by the jth previous
month, until reaching a previously used id1. In this model, pseudo-nyms could be
abandoned and replaced, but abandoned pseudo-nyms cannot then be reclaimed



without linking intervening dates. Although more costly, sites could permanently
bans a few problematic users via the inequality proofs described in §9.2 too.

In these ways, sites encode important aspects of their moderation rules into
the ring VRF inputs they demand.

9.4 Reduced pairings

At a high level, we distinguish moderation-like applications discussed above,
which resemble classic identity applications like AML/KYC, from rate limiting
applications discussed in the next section. In moderation-like applications, ring
VRF outputs become long-term stable identities, so users typically reidentify
themselves many times to the same sites, reusing the exact same input.

As an optimization, our zero-knowledge continuation could reuse the same
compk and πfast for the same input, so that verifiers could memoize their ver-
ifications of πfast. We spend most verifier time checking the Groth16 pairing
equation, so this saves considerable CPU time.

As a concrete example, our coefficients r1, r2, b used for rerandomization in §6
could be chosen deterministically like r1, r2, b ← H(sk, input). In this way, each
(helpful) user’s id has a unique πfast, which verifiers could memoize by storing
(id, H(compk++πfast), dates) after their first verification, but then skipping the
Groth16 check after merely rechecking the hash H(compk ++ πfast).

We could risk denial-of-service attacks by users who vary r1, r2, b randomly
however. We therefore suggest dates record the last several previous dates when
H(compk ++ πfast) changed. We rate limit or verify more lazily users with many
nearby login dates

10 Application: Rate limiting

We showed in §9 how ring VRFs give users only one unique identity for each
input input. We explained in §9.3 that choosing input to be the concatenation of
a base domain and a date gives users a stream of changing identities. We next
discuss giving users exactly n > 1 ring VRF outputs aka “identities” per date,
as opposed to one unique identity

As a trivial implementation, we could include a counter k = 1 . . . n in input,
so input = domain ++ date ++ k.

10.1 Avoiding linkage

Our trivial implementation leaks information about ring VRF outputs’ owner-
ship by revealing k: An adversary Eve observes two ring VRF signatures with
the same domain and date so inputi = domain ++ date ++ ki for i = 1, 2, but
with different outputs out1 and out2. If k1 6= k2 then Eve learns nothing, but if
k1 = k2 then Eve learns that sk1 6= sk2, maybe representing different users.

We do not necessarily always care if Eve learns this much information, but
scenarios exist in which one cares. We therefore briefly describe several mitiga-
tion:



If n remains fixed forever, then we could simply let all users register n ring
VRF public keys in ring. If n fluctuates under an upper bound N , then we could
create N rings ringi for i = 1 . . . N , and then blind comring in πfast similarly to
§8.

Although simple, these two approaches require users construct n or N dif-
ferent πpk proofs every time ring updates.

Instead of proving ring membership of one public key, πpk could prove ring
membership of a Merkle commitment to multiple keys, so users have π1

sk, . . . , π
N
sk

for each of their multiple keys.
In principle, there exists ring VRFs that hide parts of their input input, but

still fit our abstract formulation in §2. Although interesting, we caution these
bring performance concerns not discussed here, so deployments should consider
if leaking k suffices.

10.2 Ration cards

As a species, we expect +3◦C over the pre-industrial climate by 2100 [1], or
more likely above +4◦C given tipping points [25]. At these levels, we experience
devastating famines as the Earth’s carrying capacity drops below one billion
people [32]. In the near term, our shortages of resources, energy, goods, water,
and food shall steadily worsen over the next several decades, due to climate
change, ecosystem damage or collapse, and resource exhaustion ala peak oil. We
expect synchronous crop failures around the 2040s in particular [11]. Invariably,
nations manage shortages through rationing, like during WWI, WWII, and the
oil shocks.

Ring VRFs support anonymous rationing: Instead of treating ring VRF out-
puts like identities, we treat them like nullifiers which could each be spent exactly
once.

We fix a set U of limited resource types, overseen by an authority who certifies
verifiers from a key root. We dynamically define an expiry date eu,d0 and an
availability nu,d0 , both dependent upon the resource u ∈ U and current date d0.
We typically want a randomness beacon rd too, which prevents anyone learning
rd much before date d. As ring VRF inputs, we choose input = root++u++ rd ++
d ++ k where u ∈ U denotes a limited resource, d denotes an non-expired date
meaning eu,d0 < d ≤ d0, and 1 ≤ k ≤ nu,d0 . In this way, our rationing system
controls both daily consumption via nu,d0 and time shifted demand via expiry
time eu,d0 .

Importantly, our rationing system retains ring VRF outputs as nullifiers, filed
under their associated date d and resource u, so nullifiers expire once d ≤ eu,d0
which permits purging old data rapidly.

We remark that fully transferable assets could have constrained lifetimes
too, which similarly eases nullifier management when implements using blind
signatures, ZCash sapling, etc. Yet, all these tokens require an explicit issuance
stage, while ring VRFs self-issue.

Among the political hurdles to rationing, we know certificates have a consid-
erable forgery problem, as witnessed by the long history of fraudulent covid and



TLS certificates. It follows citizens would justifiably protest to ration carts that
operate by simple certificates. Ring VRFs avoid this political unrest by proving
membership in a public list.

10.3 Multi-constraint rationing

As in §9.3, we could impose simultaneous rationing constraints for multiple re-
sources u1, . . . , uk by producing one ring VRF signature in which PedVRF proves
correctness of pre-outputs for multiple messages inputj = root++uj++rd++d++k
for j = 1 . . . k.

As an example, purchasing some prepared food product could require spend-
ing rations for multiple base food sources, like making a cake from wheat, butter,
eggs, and sugar.

10.4 Decommodification

There exist many reasons to decommodify important services, like energy, water,
or internet, beyond rationing real physical shortages. Ring VRFs fit these cases
using similar input formulations.

As an example, a municipal ISP allocates some limited bandwidth capac-
ity among all residents. It allocates bandwidth fairly by verifying ring VRFs
signatures on hourly input and then tracking nullifiers until expiry.

Aside from essential government services, commercial service providers typ-
ically offers some free service tier, usually because doing so familiarizes users
with their intimidating technical product.

Some free and paid tier examples include DuoLingo’s hearts on mobile, con-
tinuous integration testing services, and many dating sites.

A priori, rate limiting cases benefit from unlinkability among individual us-
ages, not merely at some site boundary like moderation requires. We thus use
each ring VRF output only once, which prevents our cashing trick of §9.4 from
reducing verifier pairings.

Although rationing sounds valuable enough, we foresee services like ISP,
VPNs, or mixnets having many low value transactions. In such cases, ring VRFs
could authorize issuing a limited number of fast simple single-use blind issued
credentials, like blind signatures ala GNU Taler [6] or PrivacyPass OPRF tokens
[14], which both solve the leakage of k above too. In principle, commercial service
providers could sell the same tokens, which avoids leaking whether the user uses
the free or commercial tier.

10.5 Delegation

Almost all single-use blind signed tokens have an implicit delegation protocol,
in which token holders transfer token credentials without sacrificing their own
access. As double spending remains possible, delegatees must trust delegators.
GNU Taler [6] argues against taxing such trusting transfers, like when parents



give their kids spending money, but enforces taxability only when also preventing
double spending.

In our rationing scheme, spenders authenticate their specific spending op-
erations inside the associated data ass in a rVRF-AD signature. As doing so
requires knowing sk, delegators place enormous trust in delegatees, which likely
precludes say parents delegating to children.

We could however achieve delegation by treating the ring VRF like a cer-
tificate that authenticates another public key held by the delegatee. In fact,
delegators could limit delegatees uses too in this certificate, like how GNU Taler
achieves parental restrictions.

We remark that PedVRF has adaptor signatures aka implicit certificate mode:
A delegatee learns the full ring VRF signature, but the delegatee hides the
blinding factor signature s1 in PedVRF from downstream recipients, and instead
merely prove knowledge of s1, say via a key exchange or another Schnorr signa-
ture with the base point K. EC VRFs lack this mode.
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A Security of Our Ring VRF Construction

Before we start to analyse our protocol, we should define the algorithm Gensign
for Frvrf and show that Fvrf with Gensign satisfies the anonymity defined in Defi-
nition 6. Frvrf that rVRF realizes runs Algorithm 1 to generate honest signatures.

Algorithm 1 Gensign(ring,W, {X, pk}, ass, input)

1: c, s1, s2 ←$ Fp
2: πeval ← (c, s1, s2)
3: b←$ Fp
4: compk = xG+ bK
5: comring, opring← rVRF.CommitRing(ring, pk)
6: πring ← NIZKRring .Prove((comring, compk); (b, opring))
7: return σ = (πeval, πring, compk, comring,W )

Lemma 4. Frvrf running Algorithm 1 satisfies anonymity defined in Definition
6 assuming that NIZKRring

is a zero-knowledge and Pedersen commitment is
perfectly hiding.
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Frvrf runs a PPT algorithms Gensign during the execution and is parametrized with sets Seval
and SW where Seval and SW generated by a set up function Setup(1λ).
[Key Generation.] upon receiving a message (keygen, sid) from a party Pi, send (keygen, sid,Pi)
to the simulator Sim. Upon receiving a message (verificationkey, sid, x, pk) from Sim, verify that
x, pk has not been recorded before for sid i.e., there exists no (x′, pk′) in verification keys such
that x′ = x or pk′ = pk. If it is the case, store in the table verification keys, under Pi, the value
x, pk and return (verificationkey, sid, pk) to Pi.
[Corruption:] upon receiving (corrupt, sid,Pi) from Sim, remove pki from verification keys[Pi]
and store pki to verification keys under Sim. Return (corrupted, sid,Pi).
[Malicious Ring VRF Evaluation.] upon receiving a message (eval, sid, pki,W, input) from
Sim, if pki is recorded under an honest party’s identity or if there exists W ′ 6= W
where anonymous key map[input,W ′] = pki, ignore the request. Otherwise, record in the table
verification keys the value pki under Sim if pki is not in verification keys.
If anonymous key map[input,W ] is not defined before, set anonymous key map[input,W ] = pki and let
y ←$ Seval and set evaluations[input,W ] = y.
In any case (except ignoring), obtain y = evaluations[input,W ] and return
(evaluated, sid, input, pki,W, y) to Pi.
[Honest Ring VRF Signature and Evaluation.] upon receiving a message
(sign, sid, ring, pki, ass, input) from Pi, verify that pki ∈ ring and that there exists a public
key pki associated to Pi in verification keys. If it is not the case, just ignore the request.
If there exists no W ′ such that anonymous key map[input,W ′] = pki, let W ←$ SW and let
y ←$ Seval. If there exists W where anonymous key map[input,W ] is defined, then abort.
Otherwise, set anonymous key map[input,W ] = pki and set evaluations[input,W ] = y.
In any case (except ignoring and aborting), obtain W, y where anonymous key map[input,W ] =
pki and evaluations[input,W ] = y and run Gensign(ring,W, x, pk, ass, input) → σ. Record
[input, ass,W, ring, σ, 1]. Return (signature, sid, ring,W, ass, input, y, σ) to Pi.
[Malicious Requests of Signatures.] upon receiving a message (request, sid, ring,W, ass, input)
from Sim, obtain all existing valid signatures σ such that [input, ass,W, ring, σ, 1] is recorded and
add them in a list Lσ . Return (requests, sid, ring,W, ass, input,Lσ) to Sim.
[Ring VRF Verification.] upon receiving a message (verify, sid, ring,W, ass, input, σ) from a party,
do the following:

C1 If there exits a record [input, ass,W, ring, σ, b′], set b = b′. (This condition guarantees the
completeness and consistency.)

C2 Else if anonymous key map[input,W ] is an honest verification key and there exists a record
[input, ass,W, ring, σ′, 1] for any σ′, then let b = 1 and record [input, ass,W, ring, σ, 1]. (This
condition guarantees that if input is signed by an honest party for the ring ring at some point,
then the signature is σ′ 6= σ which is generated by the adversary is valid)

C3 Else relay the message (verify, sid, ring,W, ass, input, σ) to Sim and receive back the message
(verified, sid, ring,W, ass, input, σ, bSim, pkSim). Then check the following:

1. If W /∈ W[input, ring] and |W[input, ring]| > |ringmal| where ringmal is a set of malicious
keys in ring, set b = 0. (This condition guarantees uniqueness meaning that the number of
verifying outputs that Sim can generate for input, ring is at most the number of malicious
keys in ring.).

2. Else if pkSim is an honest verification key, set b = 0. (This condition guarantees unforge-
ability meaning that if an honest party never signs a message input for a ring ring)

3. Else if there exists W ′ 6= W where anonymous key map[input,W ′] = pkSim, set b = 0. (This
condition guarantees that there exists a unique anonymous key for each (input, pkSim))

4. Else set b = bSim.

In the end, record [input, ass,W, ring, σ, 0] if it is not stored. If b = 0, let y =⊥. Otherwise, do the
following:

– if W /∈ W[input, ring], add W to W[input, ring].
– if evaluations[input,W ] is not defined, set evaluations[input,W ] ←$ Seval,

anonymous key map[input,W ] = pkSim. Set y = evaluations[input,W ].
– otherwise, set y = evaluations[input,W ].

Finally, output (verified, sid, ring,W, ass, input, σ, y, b) to the party.

Fig. 1. Functionality Frvrf.



Proof. We simulate Frvrf with Algorithm 1 against D. Assume that the advantage
of D is ε. Now, we reduce the anonymity game to the following game where
we change the simulation of Frvrf by changing the Algorithm 1. In our change,
we let πring ← NIZKRring

.Simulate(G,K,G, comring, compk). Since NIZKRring
is

zero knowledge, there exists an algorithm NIZKRring
.Simulate which generates a

proof which is indistinguishable from the proof generated from NIZKRring
.Prove.

Therefore, our reduced game is indistinguishable from the anonymity game. Since
in this game, no public key is used while generating the proof and W and compk
is perfectly hiding, the probability that D wins the game is 1

2 . This means that
ε is negligible.

We next show that rVRF realizes Frvrf in the random oracle model under the
assumption of the hardness of the decisional Diffie Hellman (DDH).

Theorem 3. Assuming that HG, H,Hp, Hring are random oracles, the DDH
problem is hard in the group structure (G, G,K, p) and NIZK algorithms are
zero-knowledge and knowledge sound, rVRF UC-realizes Frvrf running Algorithm
1 according to Definition 4.

Proof. We construct a simulator Sim that simulates the honest parties in the
execution of rVRF and simulates the adversary in Frvrf.

– [Simulation of keygen:] Upon receiving (keygen, sid,Pi) from Frvrf, Sim
obtains the a secret and public key pair x = (sk, r) and pk by running
rVRF.KeyGen. It adds pk to lists honest keys and verification keys as a
key of Pi. In the end, Sim returns (verificationkey, sid, x, pk) to Frvrf. Sim lets
public keys[X] = pk and secret keys[X] = (sk, r) where X = skG.

– [Simulation of corruption:] Upon receiving a message (corrupted, sid,Pi)
from Frvrf, Sim removes the public key pk from honest keys which is stored
as a key of Pi and adds pk to malicious keys.

– [Simulation of the random oracles:] We describe how Sim simulates the
random oracles HG, H,Hp against the real world adversaries.
Sim simulates the random oracle HG as described in Figure 2. It selects a
random element h from Fp for each new input and outputs hG as an output
of the random oracle HG. Thus, Sim knows the discrete logarithm of each
random oracle output of HG.
The simulation of the random oracle H is less straightforward (See Figure
3). The value W can be a pre-output generated by rVRF.Eval or can be an
anonymous key of m generated by Frvrf for an honest party. Sim does not need
to know about this at this point but H should output evaluations[m,W ]
in both cases. Sim pretends W as if it is a pre-output. So, Sim first obtains
the discrete logarithm h of HG(m) from the HG’s database and finds out a
commitment key X∗ = h−1W . If secret keys[X∗] is not empty, it replies by
a randomly selected value from Fp. Otherwise, Sim checks if public keys[X∗]
exists to see whether a corresponding public key of X∗ exists. If it does
not exist, Sim picks a key pk∗ which is not stored in public keys and stores
public keys[X∗] = pk∗. In any case, it obtains evaluations[m,W ] by sending



a message (eval, sid, pk∗,W,m) and replies with evaluations[m,W ]. Remark
that ifW is a pre-output generated byA, then Frvrf matches it with the evalu-
ation value given by Frvrf. If W is an anonymous key of an honest party in the
ideal world, Frvrf still returns an honest evaluation value evaluations[m,W ]
even if Sim cannot know whether W is an anonymous key of an honest party
in the ideal world. During the simulation of H, if Frvrf aborts, then there
exists W ′ 6= W such that anonymous key map[m,W ′] = pk∗. Remark that it
is not possible because if it happens it means that hX∗ = W ′ 6= W where
public keys[X∗] = pk∗, but also W = hX∗. Therefore, Sim never aborts dur-
ing the simulation of H.
We note that the anonymous keys for honest parties generated by Frvrf

are independent from honest commitment keys. Therefore, if X∗ =
h−1W is an honest verification key, Sim returns a random value because
evaluations[m,W ] is not defined or will not be defined in Frvrf in this case
except with a negligible probability. If it ever happens i.e., if Frvrf selects
randomly W = hX∗, Z distinguishes the simulation via honest signature
verification in the real world. So, this case is covered in our simulation in
Figure 4.

Oracle HG

Input: m
if
oracle queries gg[m] =⊥
h←$ Fp
P ← hG
oracle queries gg[m] := h
else:
h← oracle queries gg[m]
P ← hG
return inbase

Fig. 2. The random oracle
HG

Oracle H
Input: m,W
if oracle queries h[m,W ] 6=⊥
return oracle queries h[m,W ]
P ← HG(m)
h← oracle queries gg[m]
X∗ := h−1W // candidate commitment key
if secret keys[X∗] =⊥
if public keys[X∗] =⊥
pk∗ ←$ G
public keys[X∗]← pk∗

send (eval, sid,W, public keys[X∗],m) to Frvrf

if Frvrf ignores: Abort
receive (evaluated, sid,W,m, y) from Frvrf

oracle queries h[m,W ] := y
else:
y ←$ Fp
oracle queries h[m,W ] := y
return oracle queries h[m,W ]

Fig. 3. The random oracle H

The simulation of the random oracle Hp (See Figure 4) checks whether
the random oracle query (ring,m,W, compk, R,Rm) is an Reval verification
query before answering the oracle call. For this, it checks whether Frvrf has a
recorded valid signature for the message m and the ring ring with the anony-
mous key W . If there exists such valid signature where compk is part of it,



Sim checks whether the first proof of the signature (c, s1, s2) generates R,Rm
as in rVRF.Ver in order to make sure that it is a Reval verification query. If it
is the case, it assigns c as an answer of Hp(ring,m,W, compk, R,Rm) so that
Reval verifies. However, if this input has already been set to another value
which is not equal to c or W is a pre-output of an honest key, then Sim aborts
because the output of the real world for this signature and the ideal world will
be different. We remind that if an anonymous key W of an honest party for
a message m sampled by Frvrf equals to a pre-output generated by rVRF.Sign
for the same honest party’s key and the message m, then Z can distinguish
the ideal and real world outputs because the evaluation value in the ideal
world and real world for m,W will be different because of the simulation of
the random oracle H i.e., oracle queries h[m,W ] 6= evaluations[m,W ].
Therefore, Sim aborts if it is ever happen.

Oracle Hp
Input: (ass′, input, compk,W,R,Rm)

parse ass′ as ass ++ πring ++ comring
send (request signatures, sid, ass,W, input)
receive (signatures, sid, input,Lσ)
if ∃σ ∈ Lσ where compk ∈ σ and NIZKRring .Ver((compk, comring);πring)→ 1
get π1 = (c, s1, s2) ∈ σ
if R = s1G+ s2K − ccompk, Rm = s1HG(m)− cW
h := oracle queries gg[m,W ]
if oracle queries h CP[ass,m, compk,W,R,Rm] =⊥

oracle queries h CP[ass,m, compk,W,R,Rm] := c
else if (oracle queries h CP[ass,m, compk,W,R,Rm] 6= c
or X∗ = h−1W ∈ honest keys): Abort

if oracle queries h CP[ass,m, compk,W,R,Rm] =⊥
c←$ Fp
oracle queries h CP[ass,m, compk,W,R,Rm] := c
return oracle queries h CP[ass,m, compk,W,R,Rm]

Fig. 4. The random oracle Hp

– [Simulation of verify] Upon receiving (verify, sid, ring,W, ass, input, σ) from
the functionality Frvrf, Sim runs the two NIZK verification algorithms run
for Reval,Rring with the input comring, input, σ,W described in rVRF.Ver
algorithm of ring VRF protocol if σ can be parsed as (π1, π2, compk, comring).
If all verify, it sets bSim = 1. Otherwise it sets bSim = 0.

• If bSim = 1, it sets X = h−1W where h = oracle queries gg[m]. Then
it obtains pk = public keys[X] if it exists. If it does not exist, it picks a
pk which is not stored in public keys and sets public keys[X] = pk. Then
sends (verified, sid, ring,W, ass,m, σ, bSim, public keys[X]) to Frvrf and re-
ceives back (verified, sid, ring,W, ass,m, σ, y, b).



∗ If b 6= bSim, it means that the signature is not a valid signature in the
ideal world, while it is in the real world. So, Sim aborts in this case.
If Frvrf does not verify a ring signature even if it is verified in the
real world, Frvrf is in either C3-1, 2 or C3-3. If Frvrf is in C3-1, it
means that counter[m, ring] > |ringm|. If Frvrf is in C3-2, it means
that pk belongs to an honest party but this honest party never signs
m for ring. So, σ is a forgery. If Frvrf is in C3- 3, it means that there
exists W ′ 6= W where anonymous key map[m,W ′] = pk. If [m,W ′]
is stored before, it means that Sim obtained W ′ = hX where h =
oracle queries h[m] but it is impossible to happen since W = hX.

∗ If b = bSim, it sets oracle queries h[m,W ] = y, if it is not defined
before.

• If bSim = 0, it sets pk =⊥ and sends (verified, sid, ring,W, ass,m, σ, bSim, X)
to Frvrf. Then, Sim receives back (verified, sid, ring,W, ass,m, σ,⊥, 0).

Now, we need to show that the outputs of honest parties in the ideal world
are indistinguishable from the honest parties in the real world.

Lemma 5. Assuming that the DDH problem is hard on the group structure
(G, G,K), the outputs of honest parties in the real protocol rVRF are indis-
tinguishable from the output of the honest parties in Frvrf.

Proof. Clearly, the evaluation outputs of the ring signatures in the ideal world
identical to the real world protocol because the outputs are randomly selected by
Frvrf as the random oracle H in the real protocol. The only difference is the ring
signatures of honest parties (See Algorithm 1) since the pre-output W and π1 is
generated differently in Algorithm 1 than rVRF.Sign. The distribution of πeval =
(c, s1, s2) and compk generated by Algorithm 1 and the distribution of πeval =
(c, s1, s2) and compk generated by rVRF.Sign are from uniform distribution so
they are indistinguishable. So, we are left to show that the anonymous key
W selected randomly from G and pre-output W generated by rVRF.Sign are
indistinguishable given pk.

Case 1 (pk 6= xG): If pk 6= xG, then pk is uniformly random and independent
from x. Therefore, Z can distinguish ideal world honest signatures from the real
world honest signatures at most with probability 1

2 .
Case 2 (pk = xG): We show this under the assumption that the DDH

problem is hard. In other words, we show that if there exists a distinguisher
D that distinguishes honest signatures in the ideal world and honest signatures
in the real protocol then we construct another adversary B which breaks the
DDH problem. We use the hybrid argument to show this. We define hybrid
simulations Hi where the signatures of first i honest parties are computed as
described in rVRF.Sign and the rest are computed as in Frvrf. Without loss of
generality, P1,P2, . . . ,Pnh are the honest parties. Thus, H0 is equivalent to the
honest of the ideal protocol and Hnh is equivalent to honest signatures in the
real world. We construct an adversary B that breaks the DDH problem given
that there exists an adversary D that distinguishes hybrid games Hi and Hi+1

for 0 ≤ i < nh. B receives the DDH challenges X,Y, Z ∈ G from the DDH game



and simulates the game against D as follows. Then B runs a simulated copy of
Z and starts to simulate Frvrf and Sim for Z. For this, it first runs the simulated
copy of A as Sim does. B publishes G, G = Y,K as parameters of the ring VRF
protocol. B generates the public key of all honest parties’ key as usual by running
rVRF.KeyGen as Sim does except party Pi+1. It lets the public key of Pi+1 be X.

While simulating Frvrf, B simulates the ring signatures of first i par-
ties by running rVRF.Sign and the parties Pi+2, . . . ,Pnh by running Algo-
rithm 1 where W is selected randomly. The simulation of Pi+1 is different.
Whenever Pi+1 needs to sign a message m, it obtains inbase = HG(m) =
hY from oracle queries gg and lets W = hZ. Then it lets compk =
X + bK, lets πeval → NIZKReval .Simulate(compk,W,HG(m)) and πring ←
NIZKRring

.Simulate((comring, compk)). Remark that if (X,Y, Z) is a DH triple
(i.e., DH(X,Y, Z) → 1), Pi+1 is simulated as in rVRF because W = xinbase in
this case. Otherwise, Pi+1 is simulated as in the ideal world becauseW is random.
So, if DH(X,Y, Z) → 1, Sim simulates Hi+1. Otherwise, it simulates Hi. In the
end of the simulation, if D outputs i, Sim outputs 0 meaning DH(X,Y, Z)→ 0.
Otherwise, it outputs i+1. The success probability of Sim is equal to the success
probability of D which distinguishes Hi and Hi+1. Since DDH problem is hard,
Sim has negligible advantage in the DDH game. So, D has a negligible advantage
too. Hence, from the hybrid argument, we can conclude that H0 which corre-
sponds the output of honest parties in the ring VRF protocol and Hq which
corresponds to the output of honest parties in ideal world are indistinguishable.

This concludes the proof of showing the output of honest parties in the ideal
world are indistinguishable from the output of the honest parties in the real
protocol.

Next we show that the simulation executed by Sim against A is indistinguish-
able from the real protocol execution.

Lemma 6. The view of A in its interaction with the simulator Sim is in-
distinguishable from the view of A in its interaction with real honest par-
ties assuming that CDH is hard in G, HG, H,Hp, Hring are random oracles,
NIZKReval ,NIZKRring

are knowledge sound and Tkey is computationally indistin-
guishable and binding.

Proof. The simulation against the real world adversary A is identical to the
real protocol except the output of the honest parties and cases where Sim
aborts. We show that the abort cases happen with a negligible probability
during the simulation. Sim aborts during the simulation of random oracles
H and Hp and during the simulation of verification. We have already ex-
plained that the abort case during the simulation of H cannot happen. The
abort case happens in the simulation of Hp if W = hX where X = xG or
if oracle queries h CP[comring,m,W, compk, R,Rm] has already been defined
by a value which is different than c. The first case happens in Hp if Frvrf se-
lects a random W ∈ G for an anonymous key of m, pk for the honest party
with the other key X and the random oracle HG selects a random h ∈ Fp



where HG(m) = hG and W = hX. Clearly, this can happen with a negligi-
ble probability in λ. The second case happens in Hp if A queries with the in-
put (comring,m,W, compk, R,Rm) before (π1, π2, compk, comring,W ) generated
by Gensign. Since compk is randomly selected by Frvrf, the probability that A
guesses compk before it is generated is negligible. Now, we are left with the abort
case during the verification. For this, we show that if there exists an adversary
A which makes Sim abort during the simulation, then we construct another
adversary B which breaks either the CDH problem or the binding property of
rVRF.KeyGen.

Consider a CDH game in a prime p-order group G with the challenges
G,U, V ∈ G. The CDH challenges are given to the simulator B. Then B runs a
simulated copy of Z and starts to simulate Frvrf and Sim for Z. For this, it first
runs the simulated copy of A as Sim does. B provides (G, p,G,K) as a public
parameter of the ring VRF protocol to A.

Whenever B needs to generate a ring signature for m on behalf of an honest
party with a public key pk, X, it behaves exactly as Frvrf except that it runs
Algorithm 2 to generate the signature.

Algorithm 2 Gensign(ring,W, {X, pk}, ass,m)

1: b←$ Fp
2: compk = X + bK
3: πeval ← NIZKReval .Simulate(compk,W,HG(m))
4: comring, opring← rVRF.CommitRing(ring)
5: πring ← NIZKRring .Simulate(comring, compk)
6: return σ = (πeval, πring, compk, comring,W )

Clearly the ring signature of an honest party outputted by Sim (remember
Frvrf generates it by Algorithm 1) and the ring signature generated by B are the
same. The only difference is that now B does not need to set Hp so that πeval
verifies because Gensign in Algorithm 2 does it while simulating the proof for
Reval. Therefore, the simulation of Hp is simulated as a usual random oracle by
B.

In order to generate the public keys of honest parties, B picks a random
rx ∈ Fp and sets X = rxV . If rVRF.KeyGen is defined as pk = skG, it lets pk
be X otherwise it picks a random public key pk . Remark that B never needs to
know the secret key of honest parties to simulate them since B selects anonymous
keys randomly and generates the ring signatures without the secret keys. Since
the public key generated by rVRF.KeyGen is random and independent from the
secret key, B’s key generation is indistinguishable from Sim’s key generation.
B simulates Frvrf as described but with a difference of the following: whenever

Frvrf sets up evaluations[m,W ] it queries m,W to the random oracle H de-
scribed in Figure 5. B simulates the random oracle H in Figure 5 a usual random
oracle. The only difference from the simulation of H by Sim is that B does not
ask for the output of H(m,W ) to Frvrf but it does not change the simulation



because now Frvrf asks for it. Remark that since HG is not simulated as in Figure
2, B cannot check whether W is an anonymous key generated by an honest secret
key or not. However, it does not need this information because H is simulated
as a usual random oracle. B also simulates Hring for the ring commitments as
a usual random oracle. Simulation of HG by B returns hU instead of hG. The
simulation of HG is indistinguishable from the simulation of HG in Figure 2.

Oracle H
Input: m,W
if oracle queries h[m,W ] =⊥
y ←$ {0, 1}`rVRF

oracle queries h[m,W ] := y
return oracle queries h[m,W ]

Fig. 5. The random oracle H

During the simulation, when A outputs a signature σ =
(πeval, πring, compk, comring,W ) of message m with ass which is not recorded
in Frvrf’s record, B runs rVRF.Ver(comring,m, ass, σ). If it verifies, it finds
the corresponding ring ring of comring by checking the random oracle Hring’s
database. Remark that there exists ring where Merkle tree root of ring is comring
because if it was not the case σ would not verify which also checks πring. Then
it runs the extractor algorithm of NIZKRring

and obtains X = compk − bK If
pk = rVRF.OpenRing(comring, opring) is not an honest key then B adds W to
W[m, ring]. If pk is not a malicious key but X is generated for honest parties
by B while simulating Sim, B aborts 1. The abort case happen with a negligible
probability because all the outputs seen by the adversary are independent
from X. Otherwise, it runs the extractor algorithm of NIZKReval and obtains

(ŝk, b̂) such that compk = ŝkG+ b̂K and W = ŝkHG(m). If W /∈ W[m, ring], B
increments counter[m, ring] and adds W to W[m, ring] for Rring.

If X is a key which is generated by B and X = ŝkG, B solves the CDH
problem as follows: W = ŝkhU where h = oracle queries gg[m]. Since X =

rV , W = ŝkhuG = rhuV . So, B outputs r−1h−1W as a CDH solution and
simulation ends. Remark that this case happens when Sim aborts because of 2.

If W[m, ring] ≥ |ringmal| = t, B obtains all the signatures {σi}ti=1 that make
B to add an anonymous key to W[m, ring]. Then it solves the CDH problem as
follows: Remark that this case happens when Sim aborts because of 1.

For all σj = (πeval, πring, compkj ,Wj) ∈ {σi}ti=1, B runs extractor
for Rring and obtains opringj , bj . Then it obtains the public key pkj =
rVRF.OpenRing(ring, opringj) where pkj ∈ ring and Xj = compk − bK. Then
it adds Xj to a list X and pkj to a set PK. One of the following cases happens:

1 This case never happens if pk is defined skG



– All Xj in X are different and |PK| ≤ t, B aborts: Each pk ∈ PK commits to
a secret key sk. Since it is a binding commitment there exists one opening r
except with a negligible probability. Since πring verifies in Rring whether Rpk

is satisfied, if Xj in X are different and |PK| ≤ t, means that the binding
property is broken. Therefore, B aborts with a negligible probability. We
note B can be in this case only if pk 6= skG.

– All Xj in X are different and |PK| > t: If B is in this case, it means that there
exists one commitment public key Xa ∈ X which belongs to an honest party
or . Then B runs the extractor algorithm of NIZKReval and obtains ŝka, b̂

such that compka = ŝkaG+ b̂aK and Wa = ŝkaHG(m). If B is in this case,

ŝkaG 6= Xa because otherwise it would solve the CDH as described before.
Therefore, ba 6= b̂a. Since Xa+baK = ŝkaG+b̂aK and Xa = raV where ra is
generated by B during the key generation process, B obtains a representation
of V = γG + δK where γ = ŝkar

−1
a and δ = (b̂a − b) r−1

a . Then B stores
(γ, δ) to a list rep. If rep does not include another element (γ′, δ′) 6= (γ, δ), B
rewinds A to the beginning with a new random coin. Otherwise, it obtains
(γ′, δ′) which is another representation of V i.e., V = γ′G + δ′K. Thus,
B can find discrete logarithm of V on base G which is v = γ + δθ where
θ = (γ − γ′)(δ′ − δ)−1. B outputs vU as a CDH solution.

– There exists at least twoXa, Xb ∈ X whereXa = Xb. B runs the extractor al-
gorithm of NIZKReval for πringa and πringb and obtains (ŝka, b̂a) and (ŝkb, b̂b),

respectively. Since Wa 6= Wb, ŝka 6= ŝkb. So, B can obtain two different and
non trivial representation of Xa = Xb i.e., Xa = Xb = ŝkaG+ (b̂a− ba)K =

ŝkbG + (b̂b − bb)K. Thus, B finds the discrete logarithm of K = U in base

G which is u = ŝka−ŝkb
b̂a−ba−b̂b+bb

. B outputs uV as a CDH solution.

So, the probability of B solves the CDH problem is equal to the probability
of A breaks the forgery or uniqueness in the real protocol. Therefore, if there
exists A that makes Sim aborts during the verification, then we can construct an
adversary B that solves the CDH problem except with a negligible probability.

This completes the security proof of our ring VRF protocol. ut
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