Skip to content

Python implementation of psignifit, for psychometric function estimation

Notifications You must be signed in to change notification settings

wichmann-lab/python-psignifit

Repository files navigation

psignifit

Python toolbox for Bayesian psychometric function estimation

Tests Documentation PyPI version DOI

Getting started

Install psignifit with pip:

pip install psignifit

See the documentation to get started.

How to cite

If you use this package, please cite both this implementation:

Zito, T., Künstle, D., Aguilar, G., Berkes, P., & Schwetlick, L. psignifit 4.3 (Version 4.3) [Computer software]. https://doi.org/10.5281/zenodo.14750140

as well as the original paper:

Schütt, H. H., Harmeling, S., Macke, J. H., & Wichmann, F. A. (2016). Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data. Vision Research, 122, 105–123. doi:10.1016/j.visres.2016.02.002

Contributors

See the CONTRIBUTORS file

License and COPYRIGHT

See the COPYRIGHT file

About

Python implementation of psignifit, for psychometric function estimation

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages