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Preface

Logical thinking, the analysis of complex relationships, the recognition of under-
lying simple structures which are common to a multitude of problems — these are
the skills which are needed to do mathematics, and their development is the main
goal of mathematics education.

Of course, these skills cannot be learned ‘in a vacuum’. Only a continuous
struggle with concrete problems and a striving for deep understanding leads to
success. A good measure of abstraction is needed to allow one to concentrate on
the essential, without being distracted by appearances and irrelevancies.

The present book strives for clarity and transparency. Right from the begin-
ning, it requires from the reader a willingness to deal with abstract concepts, as
well as a considerable measure of self-initiative. For these efforts, the reader will be
richly rewarded in his or her mathematical thinking abilities, and will possess the
foundation needed for a deeper penetration into mathematics and its applications.

This book is the first volume of a three volume introduction to analysis. It de-
veloped from courses that the authors have taught over the last twenty six years at
the Universities of Bochum, Kiel, Zurich, Basel and Kassel. Since we hope that this
book will be used also for self-study and supplementary reading, we have included
far more material than can be covered in a three semester sequence. This allows
us to provide a wide overview of the subject and to present the many beautiful
and important applications of the theory. We also demonstrate that mathematics
possesses, not only elegance and inner beauty, but also provides efficient methods
for the solution of concrete problems.

Analysis itself begins in Chapter II. In the first chapter we discuss quite thor-
oughly the construction of number systems and present the fundamentals of linear
algebra. This chapter is particularly suited for self-study and provides practice in
the logical deduction of theorems from simple hypotheses. Here, the key is to focus
on the essential in a given situation, and to avoid making unjustified assumptions.
An experienced instructor can easily choose suitable material from this chapter to
make up a course, or can use this foundational material as its need arises in the
study of later sections.

In this book, we have tried to lay a solid foundation for analysis on which the
reader will be able to build in later forays into modern mathematics. Thus most



vi Preface

concepts and definitions are presented, right from the beginning, in their general
form — the form which is used in later investigations and in applications. This
way the reader needs to learn each concept only once, and then with this basis,
can progress directly to more advanced mathematics.

We refrain from providing here a detailed description of the contents of the
three volumes and instead refer the reader to the introductions to each chapter,
and to the detailed table of contents. We also wish to direct the reader’s attention
to the numerous exercises which appear at the end of each section. Doing these
exercises is an absolute necessity for a thorough understanding of the material,
and serves also as an effective check on the reader’s mathematical progress.

In the writing of this first volume, we have profited from the constructive
criticism of numerous colleagues and students. In particular, we would like to thank
Peter Gabriel, Patrick Guidotti, Stephan Maier, Sandro Merino, Frank Weber,
Bea Wollenmann, Bruno Scarpellini and, not the least, our students, who, by
their positive reactions and later successes, encouraged our particular method of
teaching analysis.

From Peter Gabriel we received support ‘beyond the call of duty’. He wrote
the appendix ‘Introduction to Mathematical Logic’ and unselfishly allowed it to
be included in this book. For this we owe him special thanks.

As usual, a large part of the work necessary for the success of this book
was done ‘behind the scenes’. Of inestimable value are the contributions of our
‘typesetting perfectionist’ who spent innumerable hours in front of the computer
screen and participated in many intense discussions about grammatical subtleties.
The typesetting and layout of this book are entirely due to her, and she has earned
our warmest thanks.

We also wish to thank Andreas who supplied us with latest versions of TEX1

and stood ready to help with software and hardware problems.
Finally, we thank Thomas Hintermann for the encouragement to make our

lectures accessible to a larger audience, and both Thomas Hintermann and Birk-
häuser Verlag for a very pleasant collaboration.

Zurich and Kassel, June 1998 H. Amann and J. Escher

1The text was typeset using LATEX. For the graphs, CorelDRAW! and Maple were also used.
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Preface to the second edition

In this new edition we have eliminated the errors and imprecise language that have
been brought to our attention by attentive readers. Particularly valuable were the
comments and suggestions of our colleagues H. Crauel and A. Ilchmann. All have
our heartfelt thanks.

Zurich and Hannover, March 2002 H. Amann and J. Escher

Preface to the English translation

It is our pleasure to thank Gary Brookfield for his work in translating this book
into English. As well as being able to preserve the ‘spirit’ of the German text, he
also helped improve the mathematical content by pointing out inaccuracies in the
original version and suggesting simpler and more lucid proofs in some places.

Zurich and Hannover, May 2004 H. Amann und J. Escher
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Chapter I

Foundations

Most of this first chapter is about numbers — natural numbers, integers, real
numbers and complex numbers. Without a clear understanding of these numbers,
a deep investigation of mathematics is not possible. This makes a thorough dis-
cussion of number systems absolutely necessary.

To that end we have chosen to present a constructive formulation of these
number systems. Starting with the Peano axioms for the natural numbers, we
construct successively the integers, the rational numbers, the real numbers and
finally, the complex numbers. At each step, we are guided by a desire to solve
certain ‘naturally’ occurring equations. These constructions are relatively long and
require considerable stamina from the reader, but those readers who persevere will
be rewarded with considerable practice in mathematical thinking.

Even before we can talk about the natural numbers, the simplest of all number
systems, we must consider some of the fundamentals of set theory. Here the main
goal is to develop a precise mathematical language. The axiomatic foundations of
logic and set theory are beyond the scope of this book.

The reader may well be familiar with some of the material in Sections 1–4.
Even so, we have deliberately avoided appealing to the reader’s intuitions and
previous experience, and have instead chosen a relatively abstract framework for
our presentation. In particular, we have been strict about avoiding any concepts
that are not already precisely defined, and using claims that are not previously
proved. It is important that, right from the beginning, students learn to work with
definitions and derive theorems from them without introducing spurious additional
assumptions.

The transition from the simplest number system, the natural numbers, to the
most complicated number system, the complex numbers, is paralleled by a corre-
sponding increasing complexity in the algebra needed. Therefore, in Sections 7–8
we discuss fairly thoroughly the most important concepts of algebra. Here again we
have chosen an abstract approach with the goal that beginning students become
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familiar with certain mathematical structures which appear in later chapters of
this book and, in fact, throughout mathematics.

A deeper understanding of these concepts is the goal of (linear) algebra and,
in the corresponding literature, the reader will find many other applications. The
goal of algebra is to derive rules which hold in systems satisfying certain small sets
of axioms. The discovery that these axioms hold in complex problems of analysis
will enable us to recognize underlying unity in diverse situations and to maintain
an overview of an otherwise unwieldy area of mathematics. In addition, the reader
should see early on that mathematics is a whole — it is not made up of disjoint
research areas, isolated from each other.

Since the beginner usually studies linear algebra in parallel with an introduc-
tion to analysis, we have restricted our discussion of algebra to the essentials. In
the choice of the concepts to present we have been guided by the needs of later
chapters. This is particularly true about the material in Section 12, namely vector
spaces and algebras. These we will meet frequently, for example, in the form of
function algebras, as we penetrate further into analysis.

The somewhat ‘dry’ material of this first chapter is made more palatable by
the inclusion of many applications. Since, as already mentioned, we want to train
the reader to use only what has previously been proved, we are limited at first to
very simple ‘internal’ examples. In later sections this becomes less of a restriction,
as, for example, the discussion of the interpolation problems in Section 12 shows.

We remind the reader that this book is intended to be used either as a
textbook for a course on analysis, or for self study. For this reason, in this first
chapter, we are more thorough and cover more material than is possible in lectures.
We encourage the reader to work through these ‘foundations’ with diligence. In
the first reading, the proofs of Theorems 5.3, 9.1, 9.2 and 10.4 can be skipped. At
a later time, when the reader is more comfortable with proofs, these gaps should
filled.
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1 Fundamentals of Logic

To make complicated mathematical relationships clear it is convenient to use the
notation of symbolic logic. Symbolic logic is about statements which one can mean-
ingfully claim to be true or false. That is, each statement has the truth value
‘true’ (T) or ‘false’ (F). There are no other possibilities, and no statement can be
both true and false.

Examples of statements are ‘It is raining’, ‘There are clouds in the sky’, and
‘All readers of this book find it to be excellent’. On the other hand, ‘This sentence
is false’ is not a statement. Indeed, if the sentence were true, then it says that it
is false, and if it is false, it follows that the sentence is true.

Any statement A has a negation ¬A (‘not A’) defined by ¬A is true if A is
false, and ¬A is false if A is true. We can represent this relationship in a truth table:

A T F
¬A F T

Of course, in normal language ‘not A’ can be expressed in many ways. For
example, if A is the statement ‘There are clouds in the sky’, then ¬A could be
expressed as ‘There are no clouds in the sky’. The negation of the statement ‘All
readers of this book find it to be excellent’ is ‘There is at least one reader of this
book who finds that it is not excellent’ (but not ‘No readers of this book find it to
be excellent’).

Two statements, A and B, can be combined using conjunction ∧ and disjunc-
tion ∨ to make new statements. The statement A ∧ B (‘A and B’) is true if both
A and B are true, and is false in all other cases. The statement A ∨ B (‘A or B’)
is false when both A and B are false, and is true in all other cases. The following
truth table makes the definitions clear:

A B A ∧ B A ∨ B
T T T T
T F F T
F T F T
F F F F

Note that the ‘or’ of disjunction has the meaning ‘and/or’, that is, ‘A or B’ is true
if A is true, if B is true, or if both A and B are true.

If E(x) is an expression which becomes a statement when x is replaced by an
object (member, thing) of a specified class (collection, universe) of objects, then
E is a property. The sentence ‘x has property E’ means ‘E(x) is true’. If x belongs
to a class X, that is, x is an element of X, then we write x ∈ X, otherwise1 x /∈ X.

1It is usual when abbreviating statements with symbols (such as ∈, =, etc.) to denote their
negations using the corresponding slashed symbol (/∈, �=, etc.).
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Then {
x ∈ X ; E(x)

}
is the class of all elements x of the collection X which have property E. If X is
the class of all readers of this book and E(x) is the statement ‘x wears glasses’,
then

{
x ∈ X ; E(x)

}
is the class of all readers of this book who wear glasses.

We write ∃ for the quantifier ‘there exists’. The expression

∃x ∈ X : E(x)

has the meaning ‘There is (at least) one object x in (the class) X which has
property E’. We write ∃!x ∈ X : E(x) when exactly one such object exists.

We use the symbol ∀ for the quantifier ‘for all’. Once again, in normal lan-
guage statements containing ∀ can be expressed in various ways. For example,

∀x ∈ X : E(x) (1.1)

means that ‘For each (object) x in (the class) X, the statement E(x) is true’, or
‘Every x in X has the property E’. The statement (1.1) can also be written as

E(x) , ∀x ∈ X , (1.2)

that is, ‘Property E is true for all x in X’. In a statement such as (1.2) we usually
leave out the quantifier ∀ and write simply

E(x) , x ∈ X . (1.3)

Finally, we use the symbol := to mean ‘is defined by’. Thus

a := b ,

means that the object (or symbol) a is defined by the object (or expression) b.
One says also ‘a is a new name for b’ or ‘a stands for b ’. Of course a = b means
that objects a and b are equal, that is, a and b are simply different representations
of the same object (statement, etc.).

1.1 Examples Let A and B be statements, X and Y classes of objects, and E a
property. Then, using truth tables or other methods, one can easily verify the
following statements:

(a) ¬¬A := ¬(¬A) = A.

(b) ¬(A ∧ B) = (¬A) ∨ (¬B).

(c) ¬(A ∨ B) = (¬A) ∧ (¬B).

(d) ¬
(
∀x ∈ X : E(x)

)
=
(
∃x ∈ X : ¬E(x)

)
. Example: The negation of the state-

ment ‘Every reader of this book wears glasses’ is ‘At least one reader of this book
does not wear glasses’.
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(e) ¬
(
∃x ∈ X : E(x)

)
=
(
∀x ∈ X : ¬E(x)

)
. Example: The negation of the state-

ment ‘There is a bald man in London’ is ‘No man in London is bald’.

(f ) ¬
(
∀x ∈ X :

(
∃ y ∈ Y : E(x, y)

))
=
(
∃x ∈ X :

(
∀ y ∈ Y : ¬E(x, y)

))
.

Example: The negation of the statement ‘Each reader of this book finds at least
one sentence in Chapter I which is trivial’ is ‘At least one reader of this book finds
every sentence of Chapter I nontrivial’.

(g) ¬
(
∃x ∈ X :

(
∀ y ∈ Y : E(x, y)

))
=
(
∀x ∈ X :

(
∃ y ∈ Y : ¬E(x, y)

))
.

Example: The negation of the statement ‘There is a Londoner who is a friend of
every New Yorker’ is ‘For each Londoner there is at least one New Yorker who is
not his/her friend’. �2

1.2 Remarks (a) For clarity, in the above examples, we have been careful to
include all possible parentheses. This practice is to be recommended for compli-
cated statements. On the other hand, statements are often easier to understand
without parentheses and even without the membership symbol ∈, so long as no
ambiguity arises. In all cases, it is the order of the quantifiers that is significant.
Thus ‘∀x ∃ y : E(x, y)’ and ‘∃ y ∀x : E(x, y)’ are different statements: In the first
case, for all x there is some y such that E(x, y) is true. Thus y depends on x, that
is, for each x one has to find a (possibly) different y such that E(x, y) is true.
In the second case it suffices to find a fixed y such that the statement E(x, y) is
true for all x. For example, if E(x, y) is the statement ‘Reader x of this book finds
the mathematical concept y to be trivial’, then the first statement is ‘Each reader
of this book finds at least one mathematical concept to be trivial’. The second
statement is ‘There is a mathematical concept which every reader of this book
finds to be trivial’.

(b) Using the quantifiers ∃ and ∀, negation becomes a purely ‘mechanical’ pro-
cess in which the symbols ∃ and ∀ (as well as ∧ and ∨) are interchanged (with-
out changing the order) and statements which appear are negated (see Exam-
ples 1.1). For example, the negation of the statement ‘∀x ∃ y ∀ z : E(x, y, z)’ is
‘∃x ∀ y ∃ z : ¬E(x, y, z)’. �

Let A and B be statements. Then one can define a new statement, the im-
plication A =⇒ B, (‘A implies B’) as follows:

(A =⇒ B) := (¬A) ∨ B . (1.4)

Thus A =⇒ B is false if A is true and B is false, and is true in all other cases
(see Examples 1.1(a), (c)). In other words, A =⇒ B is true when A and B are
both true, or when A is false (independent of whether B is true or false). This
means that a true statement cannot imply a false statement, and also that a false

2We use a black square to indicate the end of a list of examples or remarks, or the end of a
proof.
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statement implies any statement — true or false. It is common to express A =⇒ B
as ‘To prove B it suffices to prove A’, or ‘B is necessary for A to be true’, in other
words, A is a sufficient condition for B, and B is a necessary condition for A.

The equivalence A ⇐⇒ B (‘A and B are equivalent’) of the statements A
and B is defined by

(A ⇐⇒ B) := (A =⇒ B) ∧ (B =⇒ A) .

Thus the statements A and B are equivalent when both A =⇒ B and its converse
B =⇒ A are true, or when A is a necessary and sufficient condition for B (or vice
versa). Another common way of expressing this equivalence is to say ‘A is true if
and only if B is true’.

A fundamental observation is that

(A =⇒ B) ⇐⇒ (¬B =⇒ ¬A) . (1.5)

This follows directly from (1.4) and Example 1.1(a). The statement ¬B =⇒ ¬A is
called the contrapositive of the statement A =⇒ B.

If, for example, A is the statement ‘There are clouds in the sky’ and B is the
statement ‘It is raining’, then B =⇒ A is the statement ‘If it is raining, then there
are clouds in the sky’. Its contrapositive is, ‘If there are no clouds in the sky, then
it is not raining’.

If B =⇒ A is true it does not, in general, follow that ¬B =⇒ ¬A is true! Even
when ‘it is not raining’, it is possible that ‘there are clouds in the sky’.

To define a statement A so that it is true whenever the statement B is true,
we write

A :⇐⇒ B

and say ‘A is true, by definition, if B is true’.

In mathematics a true statement is often called a proposition, theorem,
lemma or corollary.3 Especially common are propositions of the form A =⇒ B.
Since this statement is automatically true if A is false, the only interesting case is
when A is true. Thus to prove that A =⇒ B is true, one supposes that A is true
and then shows that B is true.

The proof can proceed directly or ‘by contradiction’. In the first case, one
can use the fact (which the reader can easily check) that

(A =⇒ C) ∧ (C =⇒ B) =⇒ (A =⇒ B) . (1.6)

If the statements A =⇒ C and C =⇒ B are already known to be true, then, by (1.6),
A =⇒ B is also true. If A =⇒ C and C =⇒ B are not known to be true and the

3All theorems, lemmas and corollaries are propositions. A theorem is a particularly important
proposition. A lemma is a proposition which precedes a theorem and is needed for its proof.
A corollary is a proposition which follows directly from a theorem.
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implications A =⇒ C and C =⇒ B can be similarly decomposed, this procedure can
be used to show A =⇒ C and C =⇒ B are true.

For a proof by contradiction one supposes that B is false, that is, ¬B is true.
Then one proves, using also the assumption that A is true, a statement C which
is already known to be false. It follows from this ‘contradiction’ that ¬B cannot
be true, and hence that B is true.

Instead of A =⇒ B, it is often easier to prove its contrapositive ¬B =⇒ ¬A.
According to (1.5) these statements are equivalent, that is, one is true if and only
if the other is true.

At this point, we prefer not to provide examples of the above concepts since
they would be necessarily rather contrived. Instead the reader is encouraged to
identify these structures in the proofs in following section (see, in particular, the
proof of Proposition 2.6).

The preceding discussion is incomplete in that we have neither defined the word
‘statement’ nor explained how to tell whether a statement is true or false. A further
difficultly lies in our use of the English language, which, like most languages, contains
many sentences whose meaning is ambiguous. Such sentences cannot be considered to be
statements in the sense of this section.

For a more solid understanding of the rules of deduction, one needs mathematical
logic. This provides a formal language in which the only statements appearing are those
which can be derived from a given system of ‘axioms’ by means of well defined construc-
tions. These axioms are ‘unprovable’ statements which are recognized as fundamental
universal truths.

We do not wish to go further here into such formal systems. Instead, interested read-

ers are directed to the appendix, ‘Introduction to Mathematical Logic’, which contains a

more precise presentation of these ideas.

Exercises

1 “The Simpsons are coming to visit this evening,” announced Maud Flanders. “The
whole family — Homer, Marge and their three kids, Bart, Lisa and Maggie?” asked Ned
Flanders dismayed. Maud, who never misses a chance to stimulate her husband’s logical
thinking, replied, “I’ll explain it this way: If Homer comes then he will bring Marge too.
At least one of the two children, Maggie and Lisa, are coming. Either Marge or Bart is
coming, but not both. Either both Bart and Lisa are coming or neither is coming. And
if Maggie comes, then Lisa and Homer are coming too. So now you know who is visiting
this evening.”

Who is coming to visit?

2 In the library of Count Dracula no two books contain exactly the same number of

words. The number of books is greater than the total number of words in all the books.

These statements suffice to determine the content of at least one book in Count Dracula’s

library. What is in this book?
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2 Sets

Even though the reader is probably familiar with basic set theory, we review in
this section some of the relevant concepts and notation.

Elementary Facts

If X and Y are sets, then X ⊆ Y (‘X is a subset of Y ’ or ‘X is contained in Y ’)
means that each element of X is also an element of Y , that is, ∀x ∈ X : x ∈ Y .
Sometimes it is convenient to write Y ⊇ X (‘Y contains X’) instead of X ⊆ Y .
Equality of sets is defined by

X = Y :⇐⇒ (X ⊆ Y ) ∧ (Y ⊆ X) .

The statements

X ⊆ X

(X ⊆ Y ) ∧ (Y ⊆ Z) =⇒ (X ⊆ Z)
(reflexivity)
(transitivity)

are obvious. If X ⊆ Y and X �= Y , then X is called a proper subset of Y . We
denote this relationship by X ⊂ Y or Y ⊃ X and say ‘X is properly contained
in Y ’.

If X is a set and E is a property then
{

x ∈ X ; E(x)
}

is the subset of X
consisting of all elements x of X such that E(x) is true. The set

∅X := {x ∈ X ; x �= x }

is the empty subset of X.

2.1 Remarks (a) Let E be a property. Then

x ∈ ∅X =⇒ E(x)

is true for each x ∈ X (‘The empty set possesses every property’).
Proof From (1.4) we have(

x ∈ ∅X =⇒ E(x)
)

= ¬(x ∈ ∅X) ∨ E(x) .

The negation ¬(x ∈ ∅X) is true for each x ∈ X . �

(b) If X and Y are sets, then ∅X = ∅Y , that is, there is exactly one empty set.
This set is denoted ∅ and is a subset of any set.

Proof From (a) we get x ∈ ∅X =⇒ x ∈ ∅Y , hence ∅X ⊆ ∅Y . By symmetry, ∅Y ⊆ ∅X , and

so ∅X = ∅Y . �

The set containing the single element x is denoted {x}. Similarly, the set
consisting of the elements a, b, . . . , ∗, � is written {a, b, . . . , ∗,�}.
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The Power Set

If X is a set, then so is its power set P(X). The elements of P(X) are the subsets
of X. Sometimes the power set is written 2X for reasons which are made clear in
Section 3 and in Exercise 3.6. The following are clearly true:

∅ ∈ P(X) , X ∈ P(X) .

x ∈ X ⇐⇒ {x} ∈ P(X) .

Y ⊆ X ⇐⇒ Y ∈ P(X) .

In particular, P(X) is never empty.

2.2 Examples (a) P(∅) = {∅}, P
(
{∅}

)
=
{
∅, {∅}

}
.

(b) P
(
{∗,�}

)
=
{
∅, {∗}, {�}, {∗,�}

}
. �

Complement, Intersection and Union

Let A and B be subsets of a set X. Then

A\B :=
{

x ∈ X ; (x ∈ A) ∧ (x /∈ B)
}

is the (relative) complement of B in A. When the set X is clear from context, we
write also

Ac := X\A

and call Ac the complement of A.
The set

A ∩ B :=
{

x ∈ X ; (x ∈ A) ∧ (x ∈ B)
}

is called the intersection of A and B. If A ∩ B = ∅, that is, if A and B have no
element in common, then A and B are disjoint. Clearly, A\B = A ∩ Bc. The set

A ∪ B :=
{

x ∈ X ; (x ∈ A) ∨ (x ∈ B)
}

is called the union of A and B.

2.3 Remark It is useful to represent graphically the relationships between sets
using Venn diagrams. Each set is represented by a region of the plane enclosed by
a curve.

� ��
���

���

���� ���
�

�

�
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Such diagrams cannot be used to prove theorems, but, by providing intuition about
the possible relationships between sets, they do suggest what statements about sets
might be provable. �

In the following proposition we collect together some simple algebraic prop-
erties of the intersection and union operations.

2.4 Proposition Let X, Y and Z be subsets of a set.

(i) X ∪ Y = Y ∪ X, X ∩ Y = Y ∩ X. (commutativity)
(ii) X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z, X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z. (associativity)

(iii) X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z),

X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z).
(distributivity)

(iv) X ⊆ Y ⇐⇒ X ∪ Y = Y ⇐⇒ X ∩ Y = X.

Proof These follow directly from the definitions.1 �

Products

From two objects a and b we can form a new object, the ordered pair (a, b).
Equality of two ordered pairs (a, b) and (a′, b′) is defined by

(a, b) = (a′, b′) :⇐⇒ (a = a′) ∧ (b = b′) .

The objects a and b are called the first and second components of the ordered
pair (a, b). For x = (a, b), we also define

pr1(x) := a , pr2(x) := b ,

and, for j = 1, 2 (that is, for j ∈ {1, 2}), we call prj(x) the jth projection of x.

If X and Y are sets, then the (Cartesian) product X × Y of X and Y is the
set of all ordered pairs (x, y) with x ∈ X and y ∈ Y .

2.5 Example and Remark (a) For X := {a, b} and Y := {∗,�,�} we have

X × Y =
{
(a, ∗), (b, ∗), (a,�), (b,�), (a,�), (b,�)

}
.

1By this and similar statements (‘This is clear’, ‘Trivial’ etc.) we mean, of course, that the
reader should prove the claim his/herself!
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(b) As in Remark 2.3, it is useful to have
a graphical representation of the product
X × Y . In this diagram the sets X and Y
are represented by lines, and X × Y by the
rectangle. Once again we stress that such
diagrams cannot be used to prove theo-
rems, but serve only to help the intuition. �

� � ��

�

We provide a complete proof for the following Proposition 2.6(i) so that the
reader may become familiar with the ways that proofs are constructed and written.

2.6 Proposition Let X and Y be sets.

(i) X × Y = ∅ ⇐⇒ (X = ∅) ∨ (Y = ∅).
(ii) In general: X × Y �= Y × X.

Proof (i) We have two statements to prove, namely

X × Y = ∅ =⇒ (X = ∅) ∨ (Y = ∅)

and its converse. The corresponding parts of the proof are labelled using the sym-
bols ‘=⇒’ and ‘⇐=’.

‘=⇒’ This part of the proof is done by contradiction. Suppose that X × Y = ∅
and that the statement (X = ∅) ∨ (Y = ∅) is false. Then, by Example 1.1(c),
the statement (X �= ∅) ∧ (Y �= ∅) is true and so there are elements x ∈ X and
y ∈ Y . But then (x, y) ∈ X × Y , contradicting X × Y = ∅. Thus X × Y = ∅ im-
plies (X = ∅) ∨ (Y = ∅).

‘⇐=’ We prove the contrapositive of the statement

(X = ∅) ∨ (Y = ∅) =⇒ X × Y = ∅ .

Suppose that X × Y �= ∅. Then there is some (x, y) ∈ X × Y with x ∈ X and
y ∈ Y . Consequently we have (X �= ∅) ∧ (Y �= ∅) = ¬

(
(X = ∅) ∨ (Y = ∅)

)
.

(ii) See Exercise 4. �

The product of three sets X, Y and Z is defined by

X × Y × Z := (X × Y ) × Z .

This construction can be repeated2 to define the product of n sets:

X1 × · · · × Xn := (X1 × · · · × Xn−1) × Xn .

For x in X1 × · · · × Xn we write (x1, . . . , xn) instead of
(
· · · ((x1, x2), x3), . . . , xn

)
and call xj the jth component of x for 1 ≤ j ≤ n. The element xj is also prj(x),

2See Proposition 5.11.
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the jth projection of x. Instead of X1 × · · · × Xn we can also write
n∏

j=1

Xj .

If all the factors in this product are the same, that is, Xj = X for j = 1, . . . , n,
then the product is written Xn.

Families of Sets

Let A be a nonempty set and, for each α ∈ A, let Aα be a set. Then {Aα ; α ∈ A }
is called a family of sets and A is an index set for this family. Note that we do
not require that Aα �= Aβ whenever the indices α and β are different, nor do we
require that Aα is nonempty for each index. Note also that a family of sets is never
empty.

Let X be a set and A := {Aα ; α ∈ A} a family of subsets of X. Generalizing
the above concepts we define the intersection and the union of this family by⋂

α

Aα := {x ∈ X ; ∀α ∈ A : x ∈ Aα }

and ⋃
α

Aα := {x ∈ X ; ∃α ∈ A : x ∈ Aα }

respectively. Note that
⋂

α Aα and
⋃

α Aα are subsets of X. Instead of
⋂

α Aα, we
sometimes write

⋂
α∈A Aα, or

⋂
α{x ∈ X ; x ∈ Aα }, or

⋂
A∈A A, or simply

⋂A.
If A is a finite family of sets, then it can be indexed with finitely many natural
numbers3 {0, 1, . . . , n}: A = {Aj ; j = 0, . . . , n }. Then we also write

⋃n
j=0 Aj or

A0 ∪ · · · ∪ An for
⋃A.

The following proposition generalizes Proposition 2.4 to families of sets.

2.7 Proposition Let {Aα ; α ∈ A } and {Bβ ; β ∈ B } be families of subsets of a
set X.

(i)
(⋂

α Aα

)
∩
(⋂

β Bβ

)
=
⋂

(α,β) Aα ∩ Bβ .(⋃
α Aα

)
∪
(⋃

β Bβ

)
=
⋃

(α,β) Aα ∪ Bβ .
(associativity)

(ii)
(⋂

α Aα

)
∪
(⋂

β Bβ

)
=
⋂

(α,β) Aα ∪ Bβ .(⋃
α Aα

)
∩
(⋃

β Bβ

)
=
⋃

(α,β) Aα ∩ Bβ .
(distributivity)

(iii)
(⋂

α Aα

)c =
⋃

α Ac
α.(⋃

α Aα

)c =
⋂

α Ac
α.

(de Morgan’s laws)

Here (α, β) runs through the index set A × B.

3See Section 5.
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Proof These follow easily from the definitions. For (iii), see also Examples 1.1. �

2.8 Remark The attentive reader will have noticed that we have not explained what
a set is. Indeed the word ‘set’, as well as the word ‘element’, are undefined concepts of
mathematics. Hence one needs axioms, that is, rules that are assumed to be true without
proof, which say how these concepts are to be used. Statements about sets in this and
following sections which are not provided with proofs can be considered to be axioms.
For example, the statement ‘The power set of a set is a set’ is such an axiom. In this book
we cannot discuss the axiomatic foundations of set theory — except perhaps in a few
remarks in Section 5. Instead, we direct the interested reader to the relevant literature.
Short and understandable presentations of the axiomatic foundations of set theory can
be found, for example, in [Dug66], [Ebb77], [FP85] and [Hal74]. Even so, the subject
requires a certain mathematical maturity and is not recommended for beginners.

We emphasize that the question of what sets and elements ‘are’ is unimportant.
What matters are the rules with which one deals with these undefined concepts. �

Exercises

1 Let X, Y and Z be sets. Prove the transitivity of inclusion, that is,

(X ⊆ Y ) ∧ (Y ⊆ Z) =⇒ X ⊆ Z .

2 Verify the claims of Proposition 2.4.

3 Provide a complete proof of Proposition 2.7.

4 Let X and Y be nonempty sets. Show that X × Y = Y × X ⇐⇒ X = Y .

5 Let A and B be subsets of a set X. Determine the following sets:

(a) (Ac)c.

(b) A ∩ Ac.

(c) A ∪ Ac.

(d) (Ac ∪ B) ∩ (A ∩ Bc).

(e) (Ac ∪ B) ∪ (A ∩ Bc).

(f) (Ac ∪ Bc) ∩ (A ∪ B).

(g) (Ac ∪ Bc) ∩ (A ∩ B).

6 Let X be a set. Prove ⋃
A∈P(X)

A = X and
⋂

A∈P(X)

A = ∅ .
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7 Let X and A be subsets of a set U and let Y and B be subsets of a set V .
Prove the following:

(a) If A × B 
= ∅, then A × B ⊆ X × Y ⇐⇒ (A ⊆ X) ∧ (B ⊆ Y ).

(b) (X × Y ) ∪ (A × Y ) = (X ∪ A) × Y .

(c) (X × Y ) ∩ (A × B) = (X ∩ A) × (Y ∩ B).

(d) (X × Y )\(A × B) =
(
(X\A) × Y

)
∪
(
X × (Y \B)

)
.

8 Let {Aα ; α ∈ A } and {Bβ ; β ∈ B } be families of subsets of a set.
Prove the following:

(a)
(⋂

α Aα

)
×
(⋂

β Bβ

)
=
⋂

(α,β) Aα × Bβ .

(b)
(⋃

α Aα

)
×
(⋃

β Bβ

)
=
⋃

(α,β) Aα × Bβ.
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3 Functions

Functions are of fundamental importance for all mathematics. Of course, this con-
cept has undergone many changes on the way to its modern meaning. An important
step in its development was the removal of any connection to arithmetic, algorith-
mic or geometric ideas. This lead (neglecting certain formal hair-splitting discussed
in Remark 3.1) to the set theoretical definition which we present below.

In this section X, Y , U and V are arbitrary sets.

A function or map f from X to Y is a rule which, for each element of X,
specifies exactly one element of Y . We write

f : X → Y or X → Y , x �→ f(x) ,

and sometimes also f : X → Y , x �→ f(x). Here f(x) ∈ Y is the value of f at x.
The set X is called the domain of f and is denoted dom(f), and Y is the codomain
of f . Finally

im(f) :=
{

y ∈ Y ; ∃x ∈ X : y = f(x)
}

is called the image of f .

�

�

�

�����

If f : X → Y is a function, then

graph(f) :=
{

(x, y) ∈ X × Y ; y = f(x)
}

=
{ (

x, f(x)
)
∈ X × Y ; x ∈ X

}
is called the graph of f . Clearly, the graph of a function is a subset of the Cartesian
product X × Y . In the following diagrams of subsets G and H of X × Y , G is the
graph of a function from X to Y , whereas H is not the graph of such a function.

�

�

�

�
�

�
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3.1 Remark Let G be a subset of X × Y having the property that, for each x ∈ X,

there is exactly one y ∈ Y with (x, y) ∈ G. Then we can define a function f : X → Y

using the rule that, for each x ∈ X, f(x) := y where y ∈ Y is the unique element such

that (x, y) ∈ G. Clearly graph(f) = G. This observation motivates the following defini-

tion: A function X → Y is an ordered triple (X, G, Y ) with G ⊆ X × Y such that, for

each x ∈ X, there is exactly one y ∈ Y with (x, y) ∈ G. This definition avoids the use-

ful but imprecise expression ‘rule’ and uses only set theoretical concepts (see however

Remark 2.8). �

Simple Examples

Notice that we have not excluded X = ∅ and Y = ∅. If X is empty, then there is
exactly one function from X to Y , namely the empty function ∅ : ∅ → Y . If Y = ∅
but X �= ∅, then there are no functions from X to Y . Two functions f : X → Y
and g : U → V are equal, in symbols f = g, if

X = U , Y = V and f(x) = g(x) , x ∈ X .

Thus, for two functions to be equal, they must have the same domain, codomain
and rule. If one of these conditions fails, then the functions are distinct.

3.2 Examples (a) The function idX : X → X, x �→ x is the identity function
(of X). If the set X is clear from context, we often write id for idX .

(b) If X ⊆ Y , then i : X → Y , x �→ x is called the inclusion (embedding, injection)
of X into Y . Note that i = idX ⇐⇒ X = Y .

(c) If X and Y are nonempty and b ∈ Y , then X → Y , x �→ b is a constant
function.

(d) If f : X → Y and A ⊆ X, then f |A : A → Y , x �→ f(x) is the restriction of f
to A. Clearly f |A = f ⇐⇒ A = X.

(e) Let A ⊆ X and g : A → Y . Then any function f : X → Y with f |A = g is
called an extension of g, written f ⊇ g. For example, with the notation of (b)
we have idY ⊇ i. (The set theoretical notation f ⊇ g follows naturally from Re-
mark 3.1.)

(f ) Let f : X → Y be a function with im(f) ⊆ U ⊆ Y ⊆ V . Then there are ‘in-
duced’ functions f1 : X → U and f2 : X → V defined by fj(x) := f(x) for x ∈ X
and j = 1, 2. Usually we use the same symbol f for these induced functions and
hence consider f to be a function from X to U , from X to Y or from X to V as
needed.

(g) Let X �= ∅ and A ⊆ X. Then the characteristic function of A is

χA : X → {0, 1} , x �→
{

1 , x ∈ A ,

0 , x ∈ Ac .
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(h) If X1, . . . , Xn are nonempty sets, then the projections

prk :
n∏

j=1

Xj → Xk , x = (x1, . . . , xn) �→ xk , k = 1, . . . , n ,

are functions. �

Composition of Functions

Let f : X → Y and g : Y → V be
two functions. Then we define a new
function g ◦ f , the composition of f
and g (more precisely, ‘f followed
by g’), by

g ◦ f : X → V , x �→ g
(
f(x)

)
.

�

� Æ �

�

�����

�

�

�

3.3 Proposition Let f : X → Y , g : Y → U and h : U → V be functions. Then
the compositions (h ◦ g) ◦ f and h ◦ (g ◦ f) : X → V are well defined and

(h ◦ g) ◦ f = h ◦ (g ◦ f) (3.1)

(associativity of composition).

Proof This follows directly from the definition. �

In view of this proposition, it is unnecessary to use parentheses when com-
posing three functions. The function (3.1) can be written simply as h ◦ g ◦ f . This
notational simplification also applies to compositions of more than three functions.
See Examples 4.9(a) and 5.10.

Commutative Diagrams

It is frequently useful to represent compositions of functions in a diagram. In such
a diagram we write X

f→ Y in place of f : X → Y . The diagram

�
��

�
��

�

V

X Y
f

gh

is commutative if h = g ◦ f .
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Similarly the diagram

X Y

U V

ϕ g

f

ψ

�

�
� �

is commutative if g ◦ f = ψ ◦ ϕ. Occasionally one has complicated diagrams with
many ‘arrows’, that is, functions. Such diagrams are commutative if the following
is true: If X and Y are sets in the diagram and one can get from X to Y via two
different paths following the arrows, for example,

X
f1−→ A1

f2−→ A2
f3−→ · · · fn−→ Y and X

g1−→ B1
g2−→ B2

g3−→ · · · gm−→ Y ,

then the functions fn ◦ fn−1 ◦ · · · ◦ f1 and gm ◦ gm−1 ◦ · · · ◦ g1 are equal. For ex-
ample, the diagram

X Y

V U

j g

f

h

�

�
� �

�
�

�
�

�
�

�	














�

ψ ϕ

is commutative if ϕ = g ◦ f , ψ = h ◦ g and j = h ◦ g ◦ f = h ◦ ϕ = ψ ◦ f , which is
the associativity statement of Proposition 3.3.

Injections, Surjections and Bijections

Let f : X → Y be a function. Then f is surjective if im(f) = Y , injective if
f(x) = f(y) implies x = y for all x, y ∈ X, and bijective if f is both injective
and surjective. One says also that f is a surjection, injection or bijection respec-
tively. The expressions ‘onto’ and ‘one-to-one’ are often used to mean ‘surjective’
and ‘injective’.

3.4 Examples (a) The functions graphed below illustrate these properties:

�

�

Surjective, not injective

�

�

Injective, not surjective

�

�

Bijective
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(b) Let X1, . . . , Xn be nonempty sets. Then for each k ∈ {1, . . . , n} the kth pro-
jection prk :

∏n
j=1 Xj → Xk is surjective, but not, in general, injective. �

3.5 Proposition Let f : X → Y be a function. Then f is bijective if and only if
there is a function g : Y → X such that g ◦ f = idX and f ◦ g = idY . In this case,
g is uniquely determined by f .

Proof (i) ‘=⇒’ Suppose that f : X → Y is bijective. Since f is surjective, for each
y ∈ Y there is some x ∈ X with y = f(x). Since f is injective, this x is uniquely
determined by y. This defines a function g : Y → X with the desired properties.

(ii) ‘⇐=’ From f ◦ g = idY it follows immediately that f is surjective. Now let
x, y ∈ X and f(x) = f(y). Then we have x = g

(
f(x)

)
= g

(
f(y)

)
= y. Hence f is

injective.

(iii) If h : Y → X with h ◦ f = idX and f ◦ h = idY , then, from Proposi-
tion 3.3, we have

g = g ◦ idY = g ◦ (f ◦ h) = (g ◦ f) ◦ h = idX ◦ h = h .

Thus g is uniquely determined by f . �

Inverse Functions

Proposition 3.5 motivates the following definition: Let f : X → Y be bijective.
Then the inverse function f−1 of f is the unique function f−1 : Y → X such that
f ◦ f−1 = idY and f−1 ◦ f = idX .

The proof of the following proposition is left as an exercise (see Exercises 1
and 3).

3.6 Proposition Let f : X → Y and g : Y → V be bijective. Then g ◦ f : X → V
is bijective and

(g ◦ f)−1 = f−1 ◦ g−1 .

Let f : X → Y be a function and A ⊆ X. Then

f(A) :=
{

f(a) ∈ Y ; a ∈ A
}

is called the image of A under f . For each C ⊆ Y ,

f−1(C) :=
{

x ∈ X ; f(x) ∈ C
}

is called the preimage of C under f .
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3.7 Example Let f : X → Y be the function whose graph is below.

����

�

�

�

� �

Then f−1(C) = ∅ and f−1
(
f(A)

)
= A ∪ B, and, in particular, f−1

(
f(A)

)
⊃ A. �

Set Valued Functions

Let f : X → Y be a function. Then, using the above definitions, we have two
‘induced’ set valued functions,

f : P(X) → P(Y ) , A �→ f(A) and f−1 : P(Y ) → P(X) , B �→ f−1(B) .

Using the same symbol f for two different functions leads to no confusion since
the intent is always clear from context.

If f : X → Y is bijective, then f−1 : Y → X exists and
{
f−1(y)

}
= f−1

(
{y}

)
for all y ∈ Y . In this equation, and in general, the context makes clear which
version of f−1 is meant. If f is not bijective, then only the set valued function f−1

is defined, so no confusion is possible. In either case, we write f−1(y) for f−1
(
{y}

)
and call f−1(y) ⊆ X the fiber of f at y. The fiber f−1(y) is simply the solution set{

x ∈ X ; f(x) = y
}

of the equation f(x) = y. This could, of course, be empty.

3.8 Proposition The following hold for the set valued functions induced from f :
(i) A ⊆ B ⊆ X =⇒ f(A) ⊆ f(B).
(ii) Aα ⊆ X ∀α ∈ A =⇒ f

(⋃
α Aα

)
=
⋃

α f(Aα).

(iii) Aα ⊆ X ∀α ∈ A =⇒ f
(⋂

α Aα

)
⊆ ⋂

α f(Aα).
(iv) A ⊆ X =⇒ f(Ac) ⊇ f(X)\f(A).
(i′) A′ ⊆ B′ ⊆ Y =⇒ f−1(A′) ⊆ f−1(B′).
(ii′) A′

α ⊆ Y ∀α ∈ A =⇒ f−1
(⋃

α A′
α

)
=
⋃

α f−1(A′
α).

(iii′) A′
α ⊆ Y ∀α ∈ A =⇒ f−1

(⋂
α A′

α

)
=
⋂

α f−1(A′
α).

(iv′) A′ ⊆ Y =⇒ f−1(A′c) =
[
f−1(A′)

]c.
If g : Y → V is another function, then (g ◦ f)−1 = f−1 ◦ g−1.

The easy proofs of these claims are left to the reader.
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In short, Proposition 3.8(i′)–(iv′) says that the function f−1 : P(Y ) → P(X)
respects all set operations. The same is not true, in general, of the induced function
f : P(X) → P(Y ) as can be seen in (iii) and (iv).

Finally, we denote the set of all functions from X to Y by Funct(X,Y ).
Because of Remark 3.1, Funct(X,Y ) is a subset of P(X × Y ). For Funct(X,Y )
we write also Y X . This is consistent with the notation Xn for the nth Cartesian
product of the set X with itself, since this coincides with the set of all functions
from {1, 2, . . . , n} to X. If U ⊆ Y ⊆ V , then

Funct(X,U) ⊆ Funct(X,Y ) ⊆ Funct(X,V ) , (3.2)

where we have used the conventions of Example 3.2(f).

Exercises

1 Prove Proposition 3.6.

2 Prove Proposition 3.8 and show that the given inclusions are, in general, proper.

3 Let f : X → Y and g : Y → V be functions. Show the following:

(a) If f and g are injective (surjective), then so is g ◦ f .

(b) f is injective ⇐⇒ ∃h : Y → X such that h ◦ f = idX .

(c) f is surjective ⇐⇒ ∃h : Y → X such that f ◦ h = idY .

4 Let f : X → Y be a function. Show that the following are equivalent:

(a) f is injective.

(b) f−1
(
f(A)) = A, A ⊆ X.

(c) f(A ∩ B) = f(A) ∩ f(B), A, B ⊆ X.

5 Determine the fibers of the projections prk.

6 Prove that, for each nonempty set X, the function

P(X) → {0, 1}X , A �→ χA

is bijective.

7 Let f : X → Y be a function and i : A → X the inclusion of a subset A ⊆ X in X.
Show the following:

(a) f |A = f ◦ i.

(b) (f |A)−1(B) = A ∩ f−1(B), B ⊆ Y .
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4 Relations and Operations

In order to describe relationships between elements of a set X it is useful to have a
simple set theoretical meaning for the word ‘relation’: A (binary) relation on X is
simply a subset R ⊆ X × X. Instead of (x, y) ∈ R, we usually write xRy or x ∼

R
y.

A relation R on X is reflexive if xRx for all x ∈ X, that is, if R contains the
diagonal

∆X :=
{

(x, x) ; x ∈ X
}

.

It is transitive if
(xRy) ∧ (yRz) =⇒ xRz .

If
xRy =⇒ yRx

holds, then R is symmetric.
Let Y be a nonempty subset of X and R a relation on X. Then the set

RY := (Y × Y ) ∩ R is a relation on Y called the restriction of R to Y . Obvi-
ously xRY y if and only if x, y ∈ Y and xRy. Usually we write R instead of RY

when the context makes clear the set involved.

Equivalence Relations

A relation on X which is reflexive, transitive and symmetric is called an equivalence
relation on X and is usually denoted ∼ . For each x ∈ X, the set

[x] := { y ∈ X ; y ∼ x }

is the equivalence class of (or, containing) x, and each y ∈ [x] is a representative
of this equivalence class. Finally,

X/∼ :=
{

[x] ; x ∈ X
}

,

‘X modulo ∼’, is the set of all equivalence classes of X. Clearly X/∼ is a subset
of P(X).

A partition of a set X is a subset A ⊆ P(X)\{∅} with the property that,
for each x ∈ X, there is a unique A ∈ A such that x ∈ A. That is, A consists of
pairwise disjoint subsets of X whose union is X.

4.1 Proposition Let ∼ be an equivalence relation on X. Then X/∼ is a partition
of X.

Proof Since x ∈ [x] for all x ∈ X, we have X =
⋃

x∈X [x]. Now suppose that
z ∈ [x] ∩ [y]. Then z ∼ x and z ∼ y, and hence x ∼ y. This shows that [x] = [y].
Hence two equivalence classes are either identical or disjoint. �
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It follows immediately from the definition that the function

p := pX : X → X/∼ , x �→ [x]

is a well defined surjection, the (canonical) quotient function from X to X/∼.

4.2 Examples (a) Let X be the set of inhabitants of London. Define a relation
on X by x ∼ y :⇐⇒ (x and y have the same parents). This is clearly an equivalence
relation, and two inhabitants of London belong to the same equivalence class if
and only if they are siblings.

(b) The ‘smallest’ equivalence relation on a set X is the diagonal ∆X , that is, the
equality relation.

(c) Let f : X → Y be a function. Then

x ∼ y :⇐⇒ f(x) = f(y)

is an equivalence relation on X. The equivalence class of x ∈ X is [x] = f−1
(
f(x)

)
.

Moreover, there is a unique function f̃ such that the diagram

�
���

��

�

X/∼

X Y
f

f̃p

is commutative. The function f̃ is injective and im(f̃) = im(f). In particular, f̃ is
bijective if f is surjective.

(d) If ∼ is an equivalence relation on a set X and Y is a nonempty subset of X,
then the restriction of ∼ to Y is an equivalence relation on Y . �

Order Relations

A relation ≤ on X is a partial order on X if it is reflexive, transitive and anti-
symmetric, that is,

(x ≤ y) ∧ (y ≤ x) =⇒ x = y .

If ≤ is a partial order on X, then the pair (X,≤) is called a partially ordered
set. If the partial order is clear from context, we write simply X for (X,≤) and
say X is a partially ordered set. If, in addition,

∀x, y ∈ X : (x ≤ y) ∨ (y ≤ x) ,

then ≤ is called a total order on X and (X,≤) is a totally ordered set.
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4.3 Remarks (a) The following notation is useful:

x ≥ y :⇐⇒ y ≤ x ,

x < y :⇐⇒ (x ≤ y) ∧ (x �= y) ,

x > y :⇐⇒ y < x .

(b) If X is totally ordered, then, for each pair of elements x, y ∈ X, exactly one
of the following is true:

x < y , x = y , x > y .

If X is partially ordered but not totally ordered, then there are at least two ele-
ments x, y ∈ X which are incomparable, meaning that neither x ≤ y nor y ≤ x is
true. �

4.4 Examples (a) Let (X,≤) be a partially ordered set and Y a subset of X.
Then the restriction of ≤ to Y is a partial order.

(b)
(
P(X),⊆

)
is a partially ordered set and ⊆ is called the inclusion order

on P(X). In general,
(
P(X),⊆

)
is not totally ordered.

(c) Let X be a set and (Y,≤) a partially ordered set. Then

f ≤ g :⇐⇒ f(x) ≤ g(x) , x ∈ X ,

defines a partial order on Funct(X,Y ). The set Funct(X,Y ) is not, in general,
totally ordered, even if Y is totally ordered. �

Convention Unless otherwise stated, P(X), and by restriction, any subset
of P(X), is considered to be a partially ordered set with the inclusion order
as described above.

Let (X,≤) be a partially ordered set and A a nonempty subset of X. An el-
ement s ∈ X is an upper bound of A if a ≤ s for all a ∈ A. Similarly, s is a
lower bound of A if a ≥ s for all a ∈ A. The subset A is bounded above if it
has an upper bound, bounded below if it has a lower bound, and simply bounded
if it is bounded above and below.

An element m ∈ X is the maximum, max(A), of A if m ∈ A and m is an
upper bound of A. An element m ∈ X is the minimum, min(A), of A if m ∈ A and
m is a lower bound of A. Note that A has at most one minimum and at most one
maximum.
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Let A be a subset of a partially ordered set X which is bounded above. If the
set of all upper bounds of A has a minimum, then this element is called the least
upper bound of A or supremum of A and is written sup(A), that is,

sup(A) := min{ s ∈ X ; s is an upper bound of A } .

Similarly, for a nonempty subset A of X which is bounded below we define

inf(A) := max{ s ∈ X ; s is a lower bound of A } ,

and call inf(A), if this element exists, the greatest lower bound of A or infimum
of A. If A has two elements, A = {a, b}, we often use the notation a ∨ b := sup(A)
and a ∧ b := inf(A).

4.5 Remarks (a) It should be emphasized that a set which is bounded above
(or below) does not necessarily have a least upper (or greatest lower) bound (see
Example 10.3).

(b) If sup(A) and inf(A) exist, then, in general, sup(A) /∈ A and inf(A) /∈ A.

(c) If sup(A) exists and sup(A) ∈ A, then sup(A) = max(A). Similarly, if inf(A)
exists and inf(A) ∈ A, then inf(A) = min(A).

(d) If max(A) exists then sup(A) = max(A). Similarly, if min(A) exists then
inf(A) = min(A). �

4.6 Examples (a) Let A be a nonempty subset of P(X). Then

sup(A) =
⋃A , inf(A) =

⋂A .

(b) Let X be a set with at least two elements and X := P(X)\{∅} with the
inclusion order. Suppose further that A and B are nonempty disjoint subsets of X
and A := {A,B}. Then A ⊆ X and sup(A) = A ∪ B, but A has no maximum,
and A is not bounded below. In particular, inf(A) does not exist. �

Let X := (X,≤) and Y := (Y,≤) be partially ordered sets and f : X → Y
a function. (Here we use the same symbol ≤ for the partial orders on both X
and Y .) Then f is called increasing (or decreasing) if x ≤ y implies f(x) ≤ f(y) (or
f(x) ≥ f(y)). We say thatf is strictly increasing (or strictly decreasing) if x < y
implies that f(x) < f(y) (or f(x) > f(y)). Finally f is called (strictly) monotone
if f is (strictly) increasing or (strictly) decreasing.

Let X be an arbitrary set and Y := (Y,≤) a partially ordered set. A function
f : X → Y is called bounded, bounded above or bounded below if the same is
true of its image im(f) = f(X) in Y . If X is also a partially ordered set, then f is
called bounded on bounded sets if, for each bounded subset A of X, the restriction
f |A is bounded.
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4.7 Examples (a) Let X and Y be sets and f ∈ Y X . Proposition 3.8 says that
the induced functions f : P(X) → P(Y ) and f−1 : P(Y ) → P(X) are increasing.

(b) Let X be a set with at least two elements and X := P(X)\{X} with the
inclusion order. Then the identity function X → X , A �→ A is bounded on bounded
sets but not bounded. �

Operations

A function � : X × X → X is often called an operation on X. In this case we write
x � y instead of �(x, y). For nonempty subsets A and B of X we write A � B for
the image of A × B under � , that is,

A � B = { a � b ; a ∈ A, b ∈ B } . (4.1)

If A = {a}, we write a � B instead of A � B. Similarly A � b = {a � b ; a ∈ A }.
A nonempty subset A of X is closed under the operation � , if A � A ⊆ A, that
is, if the image of A × A under the function � is contained in A.

4.8 Examples (a) Let X be a set. Then composition ◦ of functions is an operation
on Funct(X,X).

(b) ∪ and ∩ are operations on P(X). �

An operation � on X is associative if

x � (y � z) = (x � y) � z , x, y, z ∈ X , (4.2)

and � is commutative if x � y = y � x for x, y ∈ X. If � is associative then the
parentheses in (4.2) are unnecessary and we write simply x � y � z.

4.9 Examples (a) By Proposition 3.3, composition is an associative operation
on Funct(X,X). It may not be commutative (see Exercise 3).

(b) ∪ and ∩ are associative and commutative on P(X). �

Let � be an operation on the set X. An element e ∈ X such that

e � x = x � e = x , x ∈ X ,

is called an identity element of X (with respect to the operation � ).

4.10 Examples (a) idX is an identity element in Funct(X,X) with respect to
composition.

(b) ∅ is an identity element of P(X) with respect to ∪ . X is an identity element
of P(X) with respect to ∩ .
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(c) Clearly X := P(X)\{∅} contains no identity element with respect to ∪ when-
ever X has more than one element. �

The following proposition shows that an identity element is unique if it exists
at all.

4.11 Proposition There is at most one identity element with respect to a given
operation.

Proof Let e and e′ be identity elements with respect to an operation � on a
set X. Then, directly from the definition, we have e = e � e′ = e′. �

4.12 Example Let � be an operation on a set Y and X a nonempty set. Then
we define the operation on Funct(X,Y ) induced from � by

(f � g)(x) := f(x) � g(x) , x ∈ X .

It is clear that � is associative or commutative whenever the same is true of � .
If Y has an identity element e with respect to � , then the constant function

X → Y , x �→ e

is the identity element of Funct(X,Y ) with respect to � . Henceforth we will
use the same symbol � for the operation on Y and for the induced operation
on Funct(X,Y ). From the context it will be clear which function the symbol rep-
resents. We will soon see that this simple and natural construction is extremely
useful. Important applications can be found in Examples 7.2(d), 8.2(b), 12.3(e)
and 12.11(a), as well as in Remark 8.14(b). �

Exercises

1 Let ∼ and ∼̇ be equivalence relations on the sets X and Y respectively. Suppose
that a function f ∈ Y X is such that x ∼ y implies f(x) ∼̇ f(y) for all x, y ∈ X. Prove
that there is a unique function f∗ such that the diagram below is commutative.

X Y

X/∼ Y/∼̇

pX pY

f

f∗

�

�
� �

2 Verify that the function f of Example 4.7(b) is not bounded.

3 Show that composition ◦ is not, in general, a commutative operation on Funct(X, X).



28 I Foundations

4 An operation � on a set X is called anticommutative if it satisfies the following:

(i) There is a right identity element r := rX , that is, ∃ r ∈ X : x � r = x, x ∈ X.

(ii) x � y = r ⇐⇒ (x � y) � (y � x) = r ⇐⇒ x = y for all x, y ∈ X.

Show that, whenever X has more than one element, an anticommutative opera-
tion � on X is not commutative and has no identity element.

5 Let � and � be anticommutative operations on X and Y respectively. Further, let
f : X → Y satisfy

f(rX) = rY , f(x � y) = f(x) � f(y) , x, y ∈ X .

Prove the following:

(a) x ∼ y :⇐⇒ f(x � y) = rY defines an equivalence relation on X.

(b) The function

f̃ : X/∼ → Y , [x] �→ f(x)

is well defined and injective. If, in addition, f is surjective, then f̃ is bijective.

6 Let (X,≤) be a partially ordered set with nonempty subsets A, B, C and D. Suppose
that A and B are bounded above and C and D are bounded below. Assuming that the
relevant suprema and infima exist, prove the following:

(a) sup(A ∪ B) = sup
{
sup(A), sup(B)

}
, inf(C ∪ D) = inf

{
inf(C), inf(D)

}
.

(b) If A ⊆ B and C ⊆ D, then

sup(A) ≤ sup(B) and inf(C) ≥ inf(D) .

(c) If A ∩ B and C ∩ D are nonempty, then

sup(A ∩ B) ≤ inf
{
sup(A), sup(B)

}
, inf(C ∩ D) ≥ sup

{
inf(C), inf(D)

}
.

(d) In (a), the claim that sup(A ∪ B) = sup
{
sup(A), sup(B)

}
cannot be strengthened to

sup(A ∪ B) = max
{
sup(A), sup(B)

}
.

(Hint: Consider the power set of a nonempty set.)

7 Let R be a relation on X and S a relation on Y . Define a relation R × S on X × Y
by

(x, y)(R × S)(u, v) :⇐⇒ (xRu) ∧ (ySv)

for (x, y), (u, v) ∈ X × Y . Prove that, if R and S are equivalence relations, then so is
R × S.

8 Show by example that the partially ordered set
(
P(X),⊆

)
may not be totally ordered.

9 Let A be a nonempty subset of P(X). Show that sup(A) =
⋃A and inf(A) =

⋂A
(see Example 4.6(a)).
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5 The Natural Numbers

In 1888, R. Dedekind published the book ‘Was sind and was sollen die Zahlen?’
(What are the numbers and what should they be?) [Ded95] about the set theoret-
ical foundation of the natural number system. It is a milestone in the development
of this subject, and indeed one of the high points of the history of mathematics.

Starting in this section with a simple and ‘natural’ axiom system for the nat-
ural numbers, we will construct in later sections the integers, the rational numbers,
the real numbers and finally the complex numbers. This constructive approach has
the advantage over the axiomatic formulation of the real numbers of D. Hilbert
1899 (see [Hil23]), that the entire structure of mathematics can be built up from a
few foundation stones coming from mathematical logic and axiomatic set theory.

The Peano Axioms

We define the natural numbers using a system of axioms due to G. Peano which
formalizes the idea that, given any natural number, there is always a next largest
natural number.

The natural numbers consist of a set N, a distinguished element 0 ∈ N, and
a function ν : N → N× := N\{0} with following properties:
(N0) ν is injective.
(N1) If a subset N of N contains 0 and if ν(n) ∈ N for all n ∈ N , then N = N.

5.1 Remarks (a) For n ∈ N, the element ν(n) is called the successor of n, and ν is
called the successor function. The element 0 is the only natural number which is
not a successor of a natural number, that is, the function ν : N → N× is surjective
(and, with (N0), bijective).
Proof Let

N :=
{

n ∈ N ; ∃n′ ∈ N : ν(n′) = n
}
∪ {0} = im(ν) ∪ {0} .

For n ∈ N we have ν(n) ∈ im(ν) ⊆ N . Since also 0 ∈ N , (N1) implies that N = N. From

this it follows immediately that im(ν) = N×. �

(b) Instead of 0, ν(0), ν
(
ν(0)

)
, ν
(
ν(ν(0))

)
, . . . one usually writes 0, 1, 2, 3, . . .

(c) Some authors prefer to start the natural numbers with 1 rather than with 0.
This is, of course, without mathematical significance.

(d) Axiom (N1) is one form of the principle of induction. We discuss this important
principle more thoroughly in Proposition 5.7 and Examples 5.8. �

5.2 Remarks (a) We will later see that everything one learns in school about the arith-
metic of numbers can be deduced from the Peano axioms. Even so, for a mathematician,
two important questions arise: (1) Does there exist a system (N, 0, ν) in which the Peano
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axioms hold? That is, is there a model for the natural numbers? (2) If so, how many
models are there? We briefly consider these questions here.

To simplify our discussion we introduce the following concept: A set M is called
an infinite system, if there is an injective function f : M → M such that f(M) ⊂ M .
Clearly the natural numbers, if they exist, form an infinite system. The significance of
such systems is seen in the following theorem proved by R. Dedekind: Any infinite system
contains a model (N, 0, ν) for the natural numbers.

Thus the question of the existence of the natural numbers can be reduced to the
question of the existence of infinite systems. Dedekind gave a proof of the existence of
such systems which implicitly uses the ‘comprehension axiom’ introduced by G. Frege in
1893: For each property E of sets, the set

ME := {x ; x is a set which satisfies E }

exists. In 1901 B. Russell recognized that this axiom leads to contradictions, so called
antinomies. Russell chose for E the property ‘x is a set and x is not an element of itself’.
Then the comprehension axiom ensures the existence of the set

M :=
{

x ; (x is a set) ∧ (x /∈ x)
}

.

This clearly leads to the contradiction

M ∈ M ⇐⇒ M /∈ M .

It is no surprise that such antinomies shook the foundations of the set theory. Closer
inspection showed that such problems in set theory arise only when one considers sets
which are ‘too big’. To avoid Russell’s antinomy one can distinguish two types of collec-
tions of objects: classes and sets. Sets are special ‘small’ classes. If a class is a set, then
it can be described axiomatically. The comprehension axiom then becomes: For each
property E of sets, the class

ME := {x ; x is a set which satisfies E }

exists. Then M =
{

x ; (x is a set) ∧ (x /∈ x)
}

is a class and not a set, and Russell’s
contradiction no longer occurs.

One needs, in addition, a separate axiom which implies the fact, which we have
already used many times, that For each set X and property E of sets,{

x ; (x ∈ X) ∧ E(x)
}

=:
{

x ∈ X ; E(x)
}

is a set.

For a more complete discussion of these questions we have to refer the reader to the
literature (for example, [FP85]).

Dedekind’s investigation showed that, to prove the existence of the natural numbers
in the framework of axiomatic set theory, one needs the Infinity Axiom: An inductive set
exists. Here an inductive set is a set N which contains ∅ and such that for all z ∈ N ,
z ∪ {z} is also in N . Consider the set

N :=
⋂{m ; m is an inductive set } ,

and the function ν : N → N defined by ν(z) := z ∪ {z}. Finally, set 0 := ∅. It can be
shown that N is itself an inductive set and that (N, 0, ν) satisfies the Peano axioms. Thus
(N, 0, ν) is a model for the natural numbers.
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Now let (N′, 0′, ν′) be some other model of the natural numbers. Then, in the
framework of set theory, it can be shown that there is a bijection ϕ : N → N′ such that
ϕ(0) = 0′ and ϕ ◦ ν = ν′ ◦ ϕ, that is, ϕ is an isomorphism from (N, 0, ν) to (N′, 0′, ν′).
Thus, the natural numbers are unique up to isomorphism. It is thus meaningful to speak
of the natural numbers. For proofs and details, see [FP85].

(b) In the previous remark we have limited our discussion to the von Neumann-Bernays-

Gödel (NBG) axiom system in which the concept of classes is central. This concept can,

in fact, be completely avoided. For example, the equally popular Zermelo-Fraenkel set

theory with the axiom of choice (ZFC) does not require this concept. Fortunately, it can

be shown that both axiom systems are equivalent in the sense that in both systems the

same statements about sets are provable. �

The Arithmetic of Natural Numbers

Starting from the Peano axioms we can deduce all of the usual rules of the arith-
metic of the natural numbers.

5.3 Theorem There are operations addition + , multiplication · and a partial
order ≤ on N which are uniquely determined by the following conditions:

(i) Addition is associative, commutative and has the identity element 0.
(ii) Multiplication is associative, commutative and has 1 := ν(0) as its identity

element.

(iii) The distributive law holds:

(� + m) · n = � · n + m · n , �,m, n ∈ N .

(iv) 0 · n = 0 and ν(n) = n + 1 for n ∈ N.
(v) N is totally ordered by ≤ and 0 = min(N).
(vi) For n ∈ N there is no k ∈ N with n < k < n + 1.

(vii) For all m,n ∈ N,

m ≤ n ⇐⇒ ∃ d ∈ N : m + d = n ,

m < n ⇐⇒ ∃ d ∈ N× : m + d = n .

The element d is unique and is called the difference of n and m, in sym-
bols: d := n − m.

(viii) For all m,n ∈ N,

m ≤ n ⇐⇒ m + � ≤ n + � , � ∈ N ,

m < n ⇐⇒ m + � < n + � , � ∈ N .

(ix) For all m,n ∈ N×, m · n ∈ N×.
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(x) For all m,n ∈ N,

m ≤ n ⇐⇒ m · � ≤ n · � , � ∈ N× ,

m < n ⇐⇒ m · � < n · � , � ∈ N× .

Proof We show only the existence and uniqueness of an operation + on N, such
that (i) and

n + ν(m) = ν(n + m) , n, m ∈ N , (5.1)

are satisfied. For the remaining claims we recommend the book [Lan30]. The proofs
are elementary. The main difficulty for beginners is to avoid using facts from ordinary
arithmetic before they are derived from the Peano axioms. In particular, at the beginning,
0 and 1 are simply certain distinguished elements of a set N, and have nothing to do with
the numbers 0 and 1 as we usually think of them.

(a) Suppose first that � is a commutative operation on N such that

0 � 0 = 0 , n � 1 = ν(n) and n � ν(m) = ν(n � m) , n, m ∈ N . (5.2)

Consider the set

N := {n ∈ N ; 0 � n = n } .

Clearly 0 is in N . If n is in N then 0 � n = n, and hence, from (5.2),

0 � ν(n) = ν(0 � n) = ν(n).

Thus ν(n) is also in N . From (N1) we then have N = N, that is,

0 � n = n , n ∈ N . (5.3)

(b) Suppose that � is another commutative operation on N which also satisfies
(5.2), that is,

0 � 0 = 0 , n � 1 = ν(n) and n � ν(m) = ν(n � m) , n, m ∈ N . (5.4)

For an arbitrary, but fixed, n ∈ N, set

M := {m ∈ N ; m � n = m � n } .

Just as in (a), it follows from (5.4) that 0 � n = n. From (5.3) we get 0 � n = n = 0 � n,
that is, 0 ∈ M . Now suppose that m is in M . Then m � n = m � n and hence, from (5.2)
and (5.4),

ν(m) � n = n � ν(m) = ν(m � n) = ν(m � n) = n � ν(m) = ν(m) � n .

Thus ν(m) is also in M . The axiom (N1) implies that M = N. Since n ∈ N was arbitrary,
we have shown that m � n = m � n for all m, n ∈ N. Consequently there is at most one
commutative operation � : N × N → N which satisfies (5.2).
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(c) We construct next an operation on N with the property (5.1). Define

N :=
{

n ∈ N ; ∃ϕn : N → N with ϕn(0) = ν(n)

and ϕn

(
ν(m)

)
= ν

(
ϕn(m)

)
∀m ∈ N

}
.

(5.5)

Setting ϕ0 := ν we see that 0 ∈ N . Let n ∈ N . Then there is a function ϕn : N → N such
that ϕn(0) = ν(n) and ϕn

(
ν(m)

)
= ν

(
ϕn(m)

)
for all m ∈ N. Define

ψ : N → N , m �→ ν
(
ϕn(m)

)
.

Then ψ(0) = ν
(
ϕn(0)

)
= ν

(
ν(n)

)
and also

ψ
(
ν(m)

)
= ν

(
ϕn(ν(m))

)
= ν

(
ν(ϕn(m))

)
= ν

(
ψ(m)

)
, m ∈ N .

Thus we have shown that n ∈ N implies ν(n) ∈ N . Once again, (N1) implies N = N.

We show further that, for each n ∈ N, the function ϕn in (5.5) is unique. For n ∈ N,
suppose that ψn : N → N is a function such that

ψn(0) = ν(n) and ψn

(
ν(m)

)
= ν

(
ψn(m)

)
, m ∈ N ,

and define
Mn :=

{
m ∈ N ; ϕn(m) = ψn(m)

}
.

From ϕn(0) = ν(n) = ψn(0) we deduce that 0 ∈ Mn. If m ∈ Mn, then it follows that
ϕn

(
ν(m)

)
= ν

(
ϕn(m)

)
= ν

(
ψn(m)

)
= ψn

(
ν(m)

)
. Thus ν(m) is also in Mn. The ax-

iom (N1) implies that Mn = N, which means that ϕn = ψn.

We have therefore shown that for each n ∈ N there is exactly one function

ϕn : N → N such that ϕn(0) = ν(n) and ϕn

(
ν(m)

)
= ν

(
ϕn(m)

)
, m ∈ N .

Now we define

+ : N × N → N , (n, m) �→ n + m :=

{
n , m = 0 ,

ϕn(m′) , m = ν(m′) .
(5.6)

Because of Remark 5.1(a), + is a well defined operation on N which satisfies (5.1). Also

n + 0 = n ,

n + 1 = n + ν(0) = ϕn(0) = ν(n) = ν(n + 0) ,
n ∈ N ,

and
n + ν(m) = ϕn(m) = ϕn

(
ν(m′)

)
= ν

(
ϕn(m′)

)
= ν(n + m)

for all n ∈ N, m ∈ N× and m′ := ν−1(m). Thus we have shown the existence of an
operation + on N which satisfies (5.1). We have already shown that n + 0 = n for all
n ∈ N. Together with (5.3) this implies that 0 is the identity element for + .

(d) We verify the associativity of addition. Let �, m ∈ N be arbitrary and set

N :=
{

n ∈ N ; (� + m) + n = � + (m + n)
}

.

Clearly 0 ∈ N and, by (5.1), for all n ∈ N we have

(� + m) + ν(n) = ν
(
(� + m) + n

)
= ν

(
� + (m + n)

)
= � + ν(m + n) = � +

(
m + ν(n)

)
.

Hence n ∈ N implies ν(n) ∈ N . Using axiom (N1) we conclude that N = N.
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(e) To prove the commutativity of addition, we consider first the set

N := {n ∈ N ; n + 1 = 1 + n } .

This set certainly contains 0. For n ∈ N it follows from (5.1) that

ν(n) + 1 = ν
(
ν(n)

)
= ν(n + 1) = ν(1 + n) = 1 + ν(n) .

Thus ν(n) ∈ N , and (N1) implies N = N. Hence we know that

n + 1 = 1 + n , n ∈ N . (5.7)

Now we fix n ∈ N and define

M :=
{

m ∈ N ; m + n = n + m
}

.

Once again 0 ∈ M . For m ∈ M we have from (d) and (5.7) that

ν(m) + n = (m + 1) + n = m + (1 + n) = m + (n + 1)

= (m + n) + 1 = ν(m + n) = ν(n + m) = n + ν(m) ,

where in the last step we have used (5.1) again. Thus ν(m) is in M , and from (N1) we have

M = N. Since n ∈ N was arbitrary, we have shown that n + m = m + n for all m, n ∈ N. �

Henceforth we use, without further comment, all of the familiar facts about
the arithmetic of natural numbers learned in school. For practice, the reader is
encouraged to prove a few of these, for example, 1 + 1 = 2, 2 · 2 = 4 and 3 · 4 = 12.

As usual, we write mn for m · n, and make the convention that ‘multiplica-
tion takes precedence over addition’, that is, mn + k means (m · n) + k (and not
m(n + k)). Finally, the elements of N× are called the positive natural numbers.

The Division Algorithm

A simple consequence of Theorem 5.3(x) is the following cancellation rule:

If m,n ∈ N and k ∈ N× satisfy mk = nk, then m = n. (5.8)

We call m ∈ N× a divisor of n ∈ N if there is some k ∈ N such that mk = n. If m
is a divisor of n we write m |n (‘m divides n’). The unique natural number k is
called the quotient of n by m and is written n

m or n/m. If m and n are two positive
natural numbers then it is often true that m does not divide n or vice versa. The
following proposition, called the division algorithm, clarifies the general situation.
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5.4 Proposition For each m ∈ N× and n ∈ N, there are unique l, k ∈ N such that

n = km + � and � < m .

Proof (a) We verify first the existence statement. Fix m ∈ N× and set

N := {n ∈ N ; ∃ k, � ∈ N : n = km + �, � < m } .

Our goal is to prove that N = N. Clearly 0 is in N because 0 = 0 · m + 0 by
Theorem 5.3(i) and (iv). Now suppose that n ∈ N . Then there are k, � ∈ N with
n = km + � and � < m from which follows n + 1 = km + (� + 1). If � + 1 < m then
n + 1 is in N . On the other hand, if � + 1 = m, then, by Theorem 5.3(iii), we have
n + 1 = (k + 1)m and so n + 1 is again in N . Thus we have shown that 0 ∈ N
and that n ∈ N implies n + 1 ∈ N . By induction, that is, by (N1), we conclude
that N = N.

(b) To prove uniqueness we suppose that there are m ∈ N× and k, k′, �, �′ ∈ N
such that

km + � = k′m + �′ and � < m , �′ < m . (5.9)

We can also assume that � ≤ �′, since the case �′ ≤ � would follow by symmetry.
From � ≤ �′ and (5.9) we have k′m + �′ = km + � ≤ km + �′ and hence k′m≤ km,
by Theorem 5.3(viii). Then, from Theorem 5.3(x), we get k′ ≤ k.

On the other hand, from �′ < m we have the inequalities

km ≤ km + � = k′m + �′ < k′m + m = (k′ + 1)m .

Here we have used (viii) and (iii) of Theorem 5.3. From (x) of the same theorem it
follows that k < k′ + 1. Together with k′ ≤ k we find that k′ ≤ k < k′ + 1, which,
because of Theorem 5.3(vi), is possible only if k = k′. From k = k′, (5.9) and the
uniqueness claim of Theorem 5.3(vii) it follows that � = �′. �

In the above proof we have made all references to Theorem 5.3 explicit. In
future discussion we will use these rules without reference.

The Induction Principle

We have already made considerable use of the induction axiom (N1). It is frequently
convenient to use this axiom in an alternative form, the well ordering principle.

5.5 Proposition The natural numbers N are well ordered, that is, each nonempty
subset of N has a minimum.
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Proof We prove this claim by contradiction. Suppose that A ⊆ N is nonempty
and has no minimum. Set

B := {n ∈ N ; n is lower bound of A } .

Clearly 0 ∈ B. Now suppose that n ∈ B. Since A has no minimum, n cannot be
in A, so we have, in fact, a > n for all a ∈ A. This implies that a ≥ n + 1 for all
a ∈ A, that is, n + 1 ∈ B. Because of the induction axiom (N1) we have B = N.
But this implies that A = ∅ because, if m ∈ A, then m ∈ N = B which means that
m is a lower bound and, hence a minimum element, of A, which is not possible.
We have therefore found the desired contradiction: A �= ∅ and A = ∅. �

For an example of the use of the well ordering principle, we discuss the prime
factorization of natural numbers. We say that a natural number p ∈ N is prime if
p ≥ 2 and p has no divisors except 1 and p.

5.6 Proposition Except for 0 and 1, every natural number is a product of finitely
many prime numbers, its prime factors. Here ‘products’ with only one factor are
allowed. This prime factorization is, up to the order of the factors, unique.

Proof Suppose that the claim is false. By Proposition 5.5 there is a smallest
natural number n0 which cannot be factored into prime numbers. In particular,
n0 cannot be a prime number, so there are n,m ∈ N with n0 = n · m and n,m > 1.
This implies n < n0 and m < n0. From the minimality of n0 it follows that n
and m are each products of finitely many prime numbers, and hence n0 = n · m
is also such a product. This contradicts our assumption, so we have we shown the
existence of a prime factorization for any natural number greater than 1.

To prove the uniqueness of prime factorizations we suppose, to the con-
trary, that there is a number with two different prime factorizations. Let p be
the least such number with prime factorizations p = p0p1 · · · pk = q0q1 · · · qn. We
have pi �= qj for all i and j, since any common factor could be divided out to give a
smaller natural number p′ with two different prime factorizations, in contradiction
to the choice of p.

We can suppose that p0 ≤ p1 ≤ · · · ≤ pk and q0 ≤ q1 ≤ · · · ≤ qn as well as
p0 < q0. Set q := p0q1 · · · qn. Then p0 |q and p0 |p, hence p0 |(p − q). Consequently
we have the prime factorization

p − q = p0r1 · · · r�

for some prime numbers r1, . . . , r�. Because p − q = (q0 − p0)q1 · · · qn, the number
p − q is positive. Write q0 − p0 as a product of prime numbers: q0 − p0 = t0 · · · ts.
Then

p − q = t0 · · · tsq1 · · · qn
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is a second prime factorization of p − q. It is clear that p0 does not divide q0 − p0.
Hence we have two prime factorizations of p − q, only one of which contains p0.
Because 0 < p − q < p, this contradicts the minimality of p. �

All of the proofs in this section have depended on the induction axiom (N1)
either directly, or via the well ordering principle. This axiom is used so frequently
in mathematics that it is worthwhile formalizing ‘proof by induction’. For each
n ∈ N, let A(n) be a statement. To prove by induction on n that A(n) is true for
each n ∈ N, one uses the following procedure:

(a) Prove that A(0) is true.

(b) This step has two parts:

(α) Induction hypothesis: Suppose that A(n) is true for some n ∈ N.

(β) Induction step (n → n + 1): Prove that A(n + 1) follows from (α) and
other previously proved statements.

If (a) and (b) can be done, then A(n) is true for all n ∈ N. To see this, let

N :=
{

n ∈ N ; A(n) is true
}

.

Then (a) implies that 0 ∈ N , and from (b) we have that n ∈ N implies n + 1 ∈ N
for all n ∈ N. It follows from (N1) that N = N.

In many applications it is useful to start the induction with some number
other than 0. This leads to a slight generalization of the above method.

5.7 Proposition (induction principle) Let n0 ∈ N and, for each n ≥ n0, let A(n)
be a statement. If

(i) A(n0) is true, and

(ii) for each n ≥ n0, A(n + 1) can be proved from the assumption that A(n) is
true,

then A(n) is true for all n ≥ n0.

Proof Set N :=
{

n ∈ N ; A(n + n0) is true
}
. Then N = N follows from (N1) as

above. �

For m ∈ N and n ∈ N×, we write

mn := m · m · · · · · m︸ ︷︷ ︸
n times

.

Using this notation we can give some simple applications of the induction principle.
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5.8 Examples (a) For n ∈ N×, we have 1 + 3 + 5 + · · · + (2n − 1) = n2.
Proof (By induction) We can start the induction with n0 = 1 since 1 = 1 · 1 = 12. The
induction hypothesis is

Suppose that for some n ∈ N we have 1 + 3 + 5 + · · · + (2n − 1) = n2 .

The induction step proceeds as follows:

1 + 3 + 5 + · · · +
(
2(n + 1) − 1

)
= 1 + 3 + 5 + · · · + (2n + 1)

= 1 + 3 + 5 + · · · + (2n − 1) + (2n + 1)

= n2 + 2n + 1 .

Here we have used the induction hypothesis in the last step. Since n2 + 2n + 1 = (n + 1)2,

which follows easily from the distributive law (Theorem 5.3(iii)), we have completed the

induction step and hence proved the claim. �

(b) For all n ∈ N with n ≥ 5, we have 2n > n2.
Proof We start the induction with n0 = 5 since 32 = 25 > 52 = 25. The induction hy-
pothesis is

Suppose, that for some n ∈ N with n ≥ 5, we have 2n > n2 . (5.10)

The induction step can be done as follows: From (5.10) we have

2n+1 = 2 · 2n > 2 · n2 = n2 + n · n . (5.11)

Since n ≥ 5, we have also n · n ≥ 5n > 2n + 1. Together with (5.11), this implies

2n+1 > n2 + 2n + 1 = (n + 1)2.

This completes the induction step and we have proved the claim. �

We formulate one more version of the induction principle which allows one
to assume that all of the statements A(k) for n0 ≤ k ≤ n are true in proving the
induction step n → n + 1.

5.9 Proposition Let n0 ∈ N, and for each n ≥ n0, let A(n) be a statement. If

(i) A(n0) is true, and

(ii) for each n ≥ n0, A(n + 1) can be proved from the assumption that A(k) is
true for all n0 ≤ k ≤ n,

then A(n) is true for all n ≥ n0.

Proof Set
N :=

{
n ∈ N ; n ≥ n0 and A(n) is false

}
and suppose that N �= ∅. By the well ordering principle (Proposition 5.5), N has
a minimum element, m := min(N), which, by (i), satisfies m > n0. Thus there is a
unique n ∈ N with n + 1 = m. Further, it follows from our choice of m that A(k)
is true for all k ∈ N such that n0 ≤ k ≤ n. Then (ii) implies that A(n + 1) = A(m)
is true, a contradiction. �
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5.10 Example Let � be an associative operation on a set X. Then the value of
any valid expression involving � , elements of X and parentheses, is independent
of the placement of the parentheses. For example,

(a1 � a2) � (a3 � a4) = ((a1 � a2) � a3) � a4 = a1 � (a2 � (a3 � a4)) .

Proof In this proof, Kn always stands for some ‘expression of length n’, that is, an
expression consisting of n elements a1, . . . , an ∈ X, n − 1 operation symbols and an
arbitrary number of (correctly nested) parentheses, for example,

K7 :=
(
(a1 � a2) � (a3 � a4)

)
�
(
(a5 � (a6 � a7))

)
.

We will prove by induction on n that

Kn =
(
· · · (a1 � a2) � a3) � · · ·) � an−1

)
� an , n ∈ N .

For n = 3, the claim is true by definition of associativity. Our induction hypothesis is

Kk =
(
· · · (a1 � a2) � a3) � · · ·) � ak−1

)
� ak

for all expressions Kk of length k ∈ N with 3 ≤ k ≤ n.

Now let Kn+1 have length n + 1. Then there are �, m ∈ N× such that � + m = n + 1 and
expressions K� and Km such that Kn+1 = K� � Km. Now we have two cases:

Case 1: m = 1. Then � = n, Km = an+1, and by the induction hypothesis,

K� =
(
· · · (a1 � a2) � a3) · · ·

)
� an .

Consequently,

Kn+1 =
(
(· · · (a1 � a2) � a3) · · ·) � an

)
� an+1 .

Case 2: m > 1. By the induction hypothesis, Km can be written in the form
Km = Km−1 � an+1, and so

Kn+1 = K� � (Km−1 � an+1) = (K� � Km−1) � an+1 .

But K� � Km−1 is an expression of length n, so, by the induction hypothesis again,

K� � Km−1 =
(
· · · (a1 � a2) � a3) · · ·

)
� an .

This implies
Kn+1 =

(
(· · · (a1 � a2) � a3) · · ·) � an

)
� an+1 ,

completing the induction step. �

Recursive Definitions

We come now to a further application of induction: recursive definitions. Its sig-
nificance will be made clear in the examples at the end of this section.
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5.11 Proposition Let X be a nonempty set and a ∈ X. For each n ∈ N×, let
Vn : Xn → X be a function. Then there is a unique function f : N → X with the
following properties:

(i) f(0) = a.

(ii) f(n + 1) = Vn+1

(
f(0), f(1), . . . , f(n)

)
, n ∈ N.

Proof (a) We show first, using induction, that there can be at most one such
function. Let f, g : N → X be such that f(0) = g(0) = a and

f(n + 1) = Vn+1

(
f(0), . . . , f(n)

)
,

g(n + 1) = Vn+1

(
g(0), . . . , g(n)

)
,

n ∈ N . (5.12)

We want to show that f = g, that is, f(n) = g(n) for all n ∈ N. The condition
f(0) = g(0) ( = a) starts the induction. For the induction hypothesis we assume
that f(k) = g(k) for 0 ≤ k ≤ n. From (5.12) it follows that f(n + 1) = g(n + 1).
From Proposition 5.9 we have that f(n) = g(n) for all n ∈ N, that is, f = g.

(b) We turn to the existence of the function f . We first claim that, for each
n ∈ N, there is a function fn : {0, 1, . . . , n} → X such that

fn(0) = a ,

fn(k) = fk(k) ,

fn(k + 1) = Vk+1

(
fn(0), . . . , fn(k)

)
,

0 ≤ k < n .

Once again, the proof of this claim uses induction. Clearly the claim is true for
n = 0 since there are no k ∈ N with 0 ≤ k < 0. To do the induction step n → n + 1,
define

fn+1(k) :=
{

fn(k) , 0 ≤ k ≤ n ,

Vn+1

(
fn(0), . . . , fn(n)

)
, k = n + 1 .

By the induction hypothesis,

fn+1(k) = fn(k) = fk(k) , k ∈ N , 0 ≤ k ≤ n , (5.13)

and, together with (5.13), we have

fn+1(k + 1) = fn(k + 1) = Vk+1

(
fn(0), . . . , fn(k)

)
= Vk+1

(
fn+1(0), . . . , fn+1(k)

)
for 0 < k + 1 ≤ n, and hence

fn+1(n + 1) = Vn+1

(
fn(0), . . . , fn(n)

)
= Vn+1

(
fn+1(0), . . . , fn+1(n)

)
.

This completes the induction step and proves the existence of the functions fn for
all n ∈ N.
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(c) After these preliminary steps we finally define f : N → X by

f : N → X , f(n) :=
{

a , n = 0 ,

fn(n) , n ∈ N× .

Because of the properties of the functions fn proved in (b), we have

f(n + 1) = fn+1(n + 1) = Vn+1

(
fn+1(0), . . . , fn+1(n)

)
= Vn+1

(
f0(0), . . . , fn(n)

)
= Vn+1

(
f(0), . . . , f(n)

)
.

This completes the proof. �

5.12 Example Let � be an associative operation on a set X and xk ∈ X for all
k ∈ N. For each n ∈ N, define

n⊙
k=0

xk := x0 � x1 � · · · � xn . (5.14)

This definition is not complete unless we explain the meaning of the three dots on
the right. This is accomplished most easily using a recursive definition. Thus, for
n ∈ N×, let

Vn : Xn → X , (y0, . . . , yn−1) �→ yn−1 � xn .

By Proposition 5.11, there is a unique function f : N → X such that f(0) = x0

and
f(n) = Vn

(
f(0), . . . , f(n − 1)

)
= f(n − 1) � xn , n ∈ N× .

Now define
⊙n

k=0 xk := f(n) for n ∈ N. From this definition we get the recursion
rules

0⊙
k=0

xk = x0 ,
n⊙

k=0

xk =
n−1⊙
k=0

xk � xn , n ∈ N× ,

which justify the notation of (5.14). �

When we use the symbol + or · for an associative operation on a set X, then
we will call + an addition and · a multiplication on X. For sums and products
we use the usual notation

n∑
k=0

xk := x0 + x1 + · · · + xn and
n∏

k=0

xk := x0 · x1 · · · · · xn .

Note that the order is significant since the operation may not be commutative.
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5.13 Remarks (a) Sums and products are independent of the choice of index,
that is,

n∑
k=0

xk =
n∑

j=0

xj and
n∏

k=0

xk =
n∏

j=0

xj .

If addition + and multiplication · are commutative, we have

n∑
k=0

xk =
n∑

j=0

xσ(j) and
n∏

k=0

xk =
n∏

j=0

xσ(j)

for any permutation σ of the numbers 0, . . . , n, that is, for any bijective function
σ : {0, . . . , n} → {0, . . . , n}.
(b) Let + and · be associative and commutative operations on X which satisfy
the distributive law (x + y) · z = x · z + y · z for x, y, z ∈ X. Then the following
hold:

(α)
n∑

k=0

ak +
n∑

k=0

bk =
n∑

k=0

(ak + bk).

(β)
n∏

k=0

ak ·
n∏

k=0

bk =
n∏

k=0

(ak · bk).

(γ)
m∑

j=0

aj ·
n∑

k=0

bk =
∑

0≤j≤m
0≤k≤n

(aj · bk).

The right hand side of (γ) is the sum of the terms aj · bk for all possible 0 ≤ j ≤ m
and 0 ≤ k ≤ n. These rules can be proved using induction — a job we leave to the
reader. �

5.14 Examples (a) For a further use of a recursive definition consider a nonempty
set X and an associative operation � on X with identity element e. For a ∈ X
define

a0 := e , an+1 := an � a , n ∈ N .

From Proposition 5.11 it follows that an, the nth power of a, is defined for all
n ∈ N. Clearly a1 = a as well as

en = e , an � am = an+m , (an)m = anm , n,m ∈ N . (5.15)

If a and b commute, that is, a � b = b � a, then

an � bn = (a � b)n , n ∈ N .

If the operation is commutative and written using additive notation, then the
identity element is denoted by 0X or simply 0 when there is no chance of confusion.
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In the commutative case we define recursively

0 · a := 0X , (n + 1) · a := (n · a) + a , n ∈ N , a ∈ X ,

and call n · a, n times a. Then

n · a =
n∑

k=1

a := a + · · · + a︸ ︷︷ ︸
n terms

, n ∈ N× ,

and the rules in (5.15) become

n · 0X = 0X , n · a + m · a = (n + m) · a , m · (n · a) = (mn) · a

and
n · a + n · b = n · (a + b)

for a, b ∈ X and m,n ∈ N.

Once again we leave the simple proofs of these statements to the reader.

(b) Define a function N → N, n �→ n! , the factorial function, recursively by

0! := 1 , (n + 1)! := (n + 1)n! , n ∈ N .

It is not difficult to see that n! =
∏n

k=1 k for n ∈ N×. Note that the factorial
function grows very quickly:

0! = 1 , 1! = 1 , 2! = 2 , 3! = 6 , 4! = 24 , . . . , 10! > 3, 628, 000 . . . ,

100! > 9 · 10157 , . . . , 1, 000! > 4 · 102,567 , . . . , 10, 000! > 2 · 1035,659 , . . .

In Chapter VI we derive a formula which can be used to estimate this rapid
growth. �

Exercises

1 Provide complete proofs for the rules in Remark 5.13(b) and the rules of exponents
in Example 5.14(a).

2 Verify the following equalities using induction:

(a)
∑n

k=0 k = n(n + 1)/2, n ∈ N.

(b)
∑n

k=0 k2 = n(n + 1)(2n + 1)/6, n ∈ N.

3 Verify the following inequalities using induction:

(a) For all n ≥ 2, we have n + 1 < 2n.

(b) If a ∈ N with a ≥ 3, then an > n2 for all n ∈ N.

4 Let A be a set with n elements. Show that P(A) has 2n elements.
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5 (a) Show that m! (n − m)! divides n! for all m, n ∈ N with m ≤ n.
(Hint: (n + 1)! = n! (n + 1 − m) + n! m.)

(b) For m, n ∈ N, the binomial coefficient
(

n
m

)
∈ N is defined by

(
n
m

)
:=

{
n!

m! (n−m)!
, m ≤ n ,

0 , m > n .

Prove the following:

(i)
(

n
m

)
=
(

n
n−m

)
.

(ii)
(

n
m−1

)
+
(

n
m

)
=
(

n+1
m

)
, 1 ≤ m ≤ n.

(iii)
∑n

k=0

(
n
k

)
= 2n.

(iv)
∑m

k=0

(
n+k

n

)
=
(

n+m+1
n+1

)
.

Remark The formula (ii) makes calculating small binomial coefficients easy when they
are written down in the form of a Pascal triangle. In this triangle, the symmetry (i) and
the equation (iv) are easy to see.

� � � � � � �
n = 5 1 5 10 10 5 1

k
=

5

n = 4 1 4 6 4 1

k
=

4

n = 3 1 3 3 1

k
=

3

n = 2 1 2 1

k
=

2

n = 1 1 1

k
=

1

n = 0 1

k
=

0

︸ ︷︷ ︸

6 Simplify the sum

S(m, n) :=
n∑

k=0

[(m + n + k

k

)
2n+1−k −

(m + n + k + 1

k

)
2n−k

]

for m, n ∈ N. (Hint: For 1 ≤ j < � we have
(

�
j

)
−
(

�
j−1

)
=
(

�+1
j

)
− 2

(
�

j−1

)
.)

7 Let p ∈ N with p > 1. Prove that p is a prime number if and only if, for all m, n ∈ N,

p |mn =⇒ (p |m or p |n) .
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8 (a) Let n ∈ N×. Show that none of the n consecutive numbers

(n + 1)! + 2, (n + 1)! + 3, . . . , (n + 1)! + (n + 1)

is prime. Hence there are arbitrarily large gaps in the set of prime numbers.

(b) Show that there is no greatest prime number.
(Hint: Suppose that there is a greatest prime number and let {p0, . . . , pm} be the set of
all prime numbers. Consider q := p0 · · · · · pm + 1.)

9 The famous American mathematician M.I. Stake has finally found a mathematical
proof of Thomas Jefferson’s assertion that ‘all men are created equal’:

Proposition If M is a finite set of men and a, b ∈ M , then a and b are equal.

Proof We prove the claim by induction on the number of men in M :

(a) If M contains exactly one man, then the claim is obviously true.

(b) Induction step: Suppose that the claim is true for all sets of n men. Let M be a set
containing n + 1 men and let a and b be two men in M . We will show that a and b are
equal. Let Ma = M \ {a} and Mb = M \ {b}. These sets contain n men each. Let c be in
the intersection of Ma and Mb. Since a, c ∈ Mb, the induction hypothesis implies that a
and c are equal. Similarly, since b, c ∈ Ma, we have that b and c are equal. The claim
then follows from the transitivity of equality. �

What is wrong with this proposition?

10 Show that 7 divides 1 + 2(2n) + 2(2n+1) for all n ∈ N.

11 Fix some g ∈ N with g ≥ 2. Show that each n ∈ N× can be written in the form

n =

�∑
j=0

yjg
j (5.16)

where yk ∈ {0, . . . , g − 1 } for k ∈ {0, . . . , �} and y� > 0. Show further that the expres-

sion (5.16) is unique, that is, if n =
∑m

j=0 zjg
j with zk ∈ {0, . . . , g − 1} for k ∈ {0, . . . , m}

and zm > 0, then � = m and yk = zk for k ∈ {0, . . . , �}.
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6 Countability

In the previous section we saw that ‘infinite sets’ are necessary for the construction
of the natural numbers. However, the bijection N → 2N, n �→ 2n, which suggests
that there are exactly as many even numbers as natural numbers, encourages
caution in dealing with infinity. How can there be room for the odd numbers
1, 3, 5, . . . in N? In this section we consider the concept of infinity again, and, in
particular, we show that there is more than one kind of infinity.

A set X is called finite, if X is empty or if there are n ∈ N× and a bijection
from {1, . . . , n} to X. If a set is not finite, it is called infinite.

6.1 Examples (a) The set N is infinite.

Proof Suppose, to the contrary, that N is finite. Since N is nonempty, there is a bijec-

tion ϕ from N to {1, . . . , m} for some m ∈ N×. Thus ψ := ϕ |{1, . . . , m} is an injection

from {1, . . . , m} to itself, and so, by Exercise 1, a bijection. Since ϕ(m + 1) ∈ {1, . . . , m}
there is, in particular, some n ∈ {1, . . . , m} such that ϕ(n) = ψ(n) = ϕ(m + 1). But this

contradicts the injectivity of ϕ. �

(b) It is not difficult to see that any infinite system as in Remark 5.2(a) is an
infinite set (see Exercise 2). �

The above discussion suggests that the ‘size’ of a finite set X can be deter-
mined by counting, that is, with a bijection from {1, . . . , n} to X. For infinite sets,
of course, this idea will not work. Nonetheless it is very useful to define Num(X)
for both infinite and finite sets by

Num(X) :=

⎧⎪⎨⎪⎩
0 , X = ∅ ,

n , n ∈ N× and a bijection from {1, . . . , n} to X exists ,

∞ , X is infinite .1

If X is finite with Num(X) = n ∈ N, then we say that X has n elements or
that X is an n element set.

6.2 Remark If m,n ∈ N× and ϕ and ψ are bijections from X to {1, . . . , m} and
{1, . . . , n} respectively, then ϕ ◦ ψ−1 is a bijection from {1, . . . , n} to {1, . . . , m},
and it follows from Exercise 2 that m = n. Thus the above definition makes sense,
that is, Num(X) is well defined. �

1The symbol ∞ (‘infinity’) is not a natural number. It is nonetheless useful to (par-
tially) extend addition and multiplication on N to N̄ := N ∪ {∞} using the conventions
n + ∞ := ∞ + n := ∞ for all n ∈ N̄, and n · ∞ := ∞ · n := ∞ for n ∈ N× ∪ {∞}. Further, we
define n < ∞ for all n ∈ N.
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Permutations

Let X be a finite set. A bijective function from X to itself is called a permutation
of X. (Note that, by Exercise 1, an injective function from X to itself is necessarily
bijective too.) We denote the set of all permutations of X by SX .

6.3 Proposition If X is an n element set, then Num(SX) = n! . That is, there are
n! permutations of an n element set.

Proof We consider first the case when X = ∅. Then there is a unique function
∅ : ∅ → ∅. This is function is bijective2 so the claim is true this case.

We prove the case n ∈ N× by induction. Since SX = {idX} for any one ele-
ment set X, we can start the induction with n0 = 1. The induction hypothesis is
that for each n element set X, we have Num(SX) = n! .

Now let Y = {a1, . . . , an+1} be an (n + 1) element set. In view of the in-
duction hypothesis, there are, for each j ∈ {1, . . . , n + 1}, exactly n! permutations
of Y which send aj to a1. So in total (see Exercise 5) there are (n + 1)n! = (n + 1)!
permutations of Y . �

Equinumerous Sets

Two sets X and Y are called equinumerous or equipotent, written X ∼ Y , if there
is a bijection from X to Y . If M is a set of sets then ∼ is clearly an equivalence
relation on M (see Proposition 3.6).

A set X is called countably infinite if X ∼ N, and we say X is countable if
X ∼ N or X is finite. Finally, X is uncountable if X is not countable.

6.4 Remark If X ∼ N then it follows from Example 6.1(a) that X is not finite.
Thus a set cannot be both finite and countably infinite. �

Of course, the set of natural numbers is countably infinite. More interest-
ing is the observation that proper subsets of countably infinite sets can them-
selves be countably infinite, as the example of the set of even natural numbers
2N = { 2n ; n ∈ N } shows. In the other direction, we will meet, in the next sec-
tion, countably infinite sets which properly contain N.

Before we investigate further the properties of countable sets, we show the
existence of uncountable sets. To that end we prove the following fundamental
result due to G. Cantor.

2This is vacuously true since none of the conditions in the definition of bijective is ever tested.
The real intention here is not to make n = 0 a special case, thus avoiding cumbersome case
distinctions in upcoming proofs.
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6.5 Theorem There is no surjection from a set X to P(X).

Proof For a function ϕ : X → P(X), consider the subset

A :=
{

x ∈ X ; x /∈ ϕ(x)
}

of X. We show that A is not in the image of ϕ. Indeed if y ∈ X with ϕ(y) = A,
then either y ∈ A and hence y /∈ ϕ(y) = A, a contradiction, or y /∈ A = ϕ(y) and
so y ∈ A which is also a contradiction. This shows that ϕ is not surjective. �

An immediate consequence of this theorem is the existence of uncountable
sets.

6.6 Corollary P(N) is uncountable.

Countable Sets

We now return to countable sets and prove some seemingly obvious propositions:

6.7 Proposition Any subset of a countable set is countable.

Proof (a) Let X be a countable set and A ⊆ X. We are done if A is finite (see
Exercise 9), so we can assume that A is infinite, in which case X must be countably
infinite. That is, there are a bijection ϕ from X to N and a bijection ψ := ϕ |A
from A to ϕ(A). Therefore we can assume, without loss of generality, that X = N
and A is an infinite subset of N.

(b) We define recursively a function α : N → A by

α(0) := min(A) , α(n + 1) := min
{

m ∈ A ; m > α(n)
}

.

Because of Proposition 5.5 and the supposition that Num(A) = ∞, α : N → A is
well defined. It is clear that

α(n + 1) > α(n) , α(n + 1) ≥ α(n) + 1 , n ∈ N . (6.1)

(c) We have α(n + k) > α(n) for n ∈ N and k ∈ N×. This follows easily from
the first inequality of (6.1) by induction on k. In particular, α is injective.

(d) We verify the surjectivity of α. First we prove by induction that

α(m) ≥ m , m ∈ N . (6.2)

For m = 0, this is certainly true. The induction step m → m + 1 follows from the
second inequality of (6.1) and the induction hypothesis,

α(m + 1) ≥ α(m) + 1 ≥ m + 1 .
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Now let n0 ∈ A be given. We need to find some m0 ∈ N such that α(m0) = n0.
Consider the set B :=

{
m ∈ N ; α(m) ≥ n0

}
. Because of (6.2), B is not empty.

So there exists, by Proposition 5.5, some m0 := min(B). If m0 = 0, then

min(A) = α(0) ≥ n0 ≥ min(A) ,

and hence n0 = α(0). So we can suppose that n0 > min(A) and so m0 ∈ N×. But
then α(m0 − 1) < n0 ≤ α(m0) and, by the definition of α, we have α(m0) = n0. �

6.8 Proposition A countable union of countable sets is countable.

Proof For each n ∈ N, let Xn be a countable set. By Proposition 6.7, we can
assume that the Xn are countably infinite and pairwise disjoint. Thus we have
Xn = {xn,k ; k ∈ N } with xn,k �= xn,j for k �= j, that is, xn,k is the image of k ∈ N
under a bijection from N to Xn. Now we order the elements of X :=

⋃∞
n=0 Xn as

indicated by the arrows in the ‘infinite matrix’ below. This induces a bijection
from X to N.

x0,0

x1,0

x2,0

x3,0

x4,0

...

x0,1

x1,1

x2,1

x3,1

...

x0,2

x1,2

x2,2

...

x0,3

x1,3

...

x0,4

...

. . .

��
�
�

�

��

�

�
�
�

�

�

�

(6.3)

We leave to the reader the task of defining this bijection explicitly. �

6.9 Proposition A finite product of countable sets is countable.

Proof Let Xj , j = 0, 1, . . . , n be countable sets, and X :=
∏n

j=0 Xj . By definition
X =

(∏n−1
j=0 Xj

)
× Xn, so it suffices to consider the case n = 1. Thus we suppose

X := X0 × X1 with X0 and X1 countably infinite. Write X0 = { yk ; k ∈ N } and
X1 = { zk ; k ∈ N }, and set xj,k := (yj , zk) for j, k ∈ N. Using this notation we
have X = {xj,k ; j, k ∈ N } and so we can use (6.3) again to define a bijection
from X to N. �

Infinite Products

Proposition 6.9 is no longer correct if we allow ‘infinite products’ of countable
sets. To make this claim more precise, we need to explain first what an ‘infinite
product’ is. Suppose that {Xα ; α ∈ A } is a family of subsets of a fixed set.
Then the Cartesian product

∏
α∈A Xα is defined to be the set of all functions
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ϕ : A → ⋃
α∈A Xα such that ϕ(α) ∈ Xα for each α ∈ A. In place of ϕ one often

writes {xα ; α ∈ A }, where, of course, xα := ϕ(α).
In the special case that A = {1, . . . , n} for some n ∈ N×,

∏
α∈A Xα is clearly

identical to the product
∏n

k=1 Xk which was introduced in Section 2. If Xα = X
for each α ∈ A, then we write XA :=

∏
α∈A Xα.

6.10 Remark It is clear that
∏

α∈A Xα = ∅ if one (or more) of the Xα is empty. On the
other hand, even if Xα 
= ∅ for each α ∈ A, it is not possible to prove that

∏
α∈A Xα is

nonempty using the axioms of set theory we have seen so far. To do that one needs to
know that a function ϕ : A → ⋃

α∈A Xα exists such that ϕ(α) ∈ Xα for each α ∈ A, that
is, a rule which chooses a single element from each set Xα. To ensure that such a function
exists one needs the axiom of choice, which we formulate as follows: For any family of
sets {Xα ; α ∈ A }, ∏

α∈A

Xα 
= ∅ ⇐⇒ (Xα 
= ∅ ∀α ∈ A) .

In the following we will use this naturally appearing axiom without comment. Readers

who are interested in the foundations of mathematics are directed to the literature, for

example, [Ebb77] and [FP85]. �

Surprisingly, in contrast to Proposition 6.9, countably infinite products of
finite sets are, in general, not countable, as the following proposition shows.

6.11 Proposition The set {0, 1}N is uncountable.

Proof Let A ∈ P(N). Then the characteristic function χA is an element of {0, 1}N.
It is clear that the function

P(N) → {0, 1}N , A �→ χA (6.4)

is injective. For ϕ ∈ {0, 1}N, let A(ϕ) := ϕ−1(1) ∈ P(N). Then χA(ϕ) = ϕ. This
shows that the function (6.4) is surjective. (See also Exercise 3.6.) Thus {0, 1}N

and P(N) are equinumerous and the claim follows from Corollary 6.6. �

6.12 Corollary The sets {0, 1}N and P(N) are equinumerous.

Exercises

1 Let n ∈ N×. Prove that any injective function from {1, . . . , n} to itself is bijective.
(Hint: Use induction on n. Let f : {1, . . . , n + 1} → {1, . . . , n + 1} be an injective function
and k := f(n + 1). Consider the functions

g(j) :=

⎧⎪⎨⎪⎩
n + 1 , j = k ,

k , j = n + 1 ,

j otherwise ,

together with h := g ◦ f and h |{1, . . . , n}.)
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2 Prove the following:

(a) Let m, n ∈ N×. Then there is a bijective function from {1, . . . , m} to {1, . . . , n} if and
only if m = n.

(b) If M is an infinite system, then Num(M) = ∞ (Hint: Exercise 1).

3 Show that the number of m element subsets of an n element set is
(

n
m

)
. (Hint: Let N

be an n element set and M an m element subset of N . From Proposition 6.3 deduce that
there are m! (n − m)! bijections from {1, . . . , n} to N such that {1, . . . , m} goes to M .)

4 Let M and N be finite sets. How many injective functions are there from M to N?

5 Let X0, . . . , Xm be finite sets. Show that X :=
⋃m

j=0 Xj is also finite and that

Num(X) ≤
m∑

j=0

Num(Xj) .

When do we get equality?

6 Let X0, . . . , Xm be finite sets. Prove that X :=
∏m

j=0 Xj is also finite and that

Num(X) =

m∏
j=0

Num(Xj) .

7 Show that a nonempty set X is countable if and only if there is a surjection from N
to X.

8 Let X be a countable set. Show that the set of all finite subsets of X is countable.
(Hint: Consider the functions Xn → En(X), (x1, . . . , xn) �→ {x1, . . . , xn} where En(X)
is the set of all subsets with at most n elements.)

9 Show that any subset of a finite set is finite.
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7 Groups and Homomorphisms

In Theorem 5.3 we defined the difference n − m of two natural numbers m and n
when m ≤ n. We defined also the quotient n/m of two natural numbers m and n
when m is a divisor of n. In both cases, the given restrictions on m and n are needed
to ensure that the difference and the quotient are once again natural numbers.
If we want to define the ‘difference’ n − m or the ‘quotient’ n/m of arbitrary
natural numbers m and n, then we have to leave the realm of natural numbers.
In Sections 9–11 we will construct new kinds of numbers and so extend the set of
natural numbers to larger number systems in which these operations can be used
(almost) without restriction.

Of course these new number systems must be constructed so that the usual
rules of addition and multiplication hold. For this purpose, it is extremely useful to
investigate these rules themselves, independent of any connection to a particular
number system. Such an investigation also provides further practice in the logical
deduction of propositions from definitions and axioms.

A thorough discussion of the questions appearing here and in the following
sections is algebra rather than analysis, and so our presentation is relatively short
and we prove only a few of the most important theorems. Our goal is to be able to
recognize general algebraic structures which appear over and over again in various
disguises. The derivation of a large number of arithmetic rules from a small number
of axioms will allow us to bring order to an otherwise huge mass of formulas and
results, and to keep our attention on the essential. The propositions that we derive
from the axioms are true whenever the axioms are true, independent of the context
in which they hold. Things that have been proved once, do not need to be proved
again for each special case.

In this and the following sections we give only a few concrete examples of the
new concepts. We are primarily interested in providing a language and hope that
the reader will recognize in later sections the usefulness of this language and will
see also the mathematical content behind the formalism.

Groups

Groups are systems consisting of one set, one operation and three axioms. Since
they have such a simple algebraic structure, they occur everywhere in mathematics.

A pair (G,�) consisting of a nonempty set G and an operation � is called
a group if the following holds:
(G1) � is associative.
(G2) � has an identity element e.
(G3) Each g ∈ G has an inverse h ∈ G such that g � h = h � g = e.
A group (G,�) is called commutative or Abelian if � is a commutative operation
on G. If the operation is clear from the context, we often write simply G for (G,�).
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7.1 Remarks Let G = (G,�) be a group.

(a) By Proposition 4.11, the identity element e is unique.

(b) Each g ∈ G has a unique inverse which we denote (temporarily) by g�. In
particular e� = e.

Proof In view of (G3), only the uniqueness needs to be proved. Suppose that h and k
are inverses of g ∈ G, that is, g � h = h � g = e and g � k = k � g = e. Then

h = h � e = h � (g � k) = (h � g) � k = e � k = k ,

which shows the uniqueness.

Since e � e = e the second claim is clear. �

(c) For each pair a, b ∈ G, there is a unique x ∈ G such that a � x = b and a
unique y ∈ G such that y � a = b. That is, the ‘equations’ a � x = b and y � a = b
have unique solutions.

Proof Let a, b ∈ G be given. If we set x := a� � b and y := b � a�, then a � x = b and
y � a = b. This proves the existence statement. To verify the uniqueness of the solution
of the first equation, suppose that x, z ∈ G are such that a � x = b and a � z = b. Then

x = (a� � a) � x = a� � (a � x) = a� � b = a� � (a � z) = (a� � a) � z = z .

A similar argument for the equation y � a = b completes the proof. �

(d) For each g ∈ G, we have (g�)� = g.

Proof Directly from the definition of the inverse we get the equations

g � g� = g� � g = e ,

(g�)� � g� = g� � (g�)� = e ,

which, together with (c), imply that g = (g�)�. �

(e) Let H be a nonempty set with an associative operation � and identity ele-
ment e. If every element h ∈ H has a left inverse h such that h � h = e, then (H,�)
is a group and h = h�. Similarly, if every element h ∈ H has a right inverse h such
that h � h = e, then (H,�) is a group and h = h�.

Proof Suppose h is in H, h is a left inverse of h, and h is a left inverse of h. Then

h � h = e and so

h = e � h =
(
h � h

)
� h = h � (h � h) = h � e = h ,

from which h � h = e follows. Therefore h is also a right inverse of h, and thereby an

inverse of h. Similarly one shows that, if every element has a right inverse, then each

right inverse is also a left inverse. �
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(f ) For arbitrary group elements g and h, (g � h)� = h� � g�.

Proof Since (h� � g�)� (g � h) = h� � (g� � g)� h = h� � e� h = h� � h = e, the claim

follows from (e). �

In order to show that an axiom system is free of contradictions, it suffices to
exhibit some mathematical system which satisfies the axioms. In the case of the
group axioms (G1)–(G3), this is quite easy to do, as the following examples show.

7.2 Examples (a) Let G := {e} be a one element set. Then {G,�} is an Abelian
group, the trivial group, with the (only possible) operation e � e = e.

(b) Let G := {a, b} be a set with operation � defined
by the table on the right. Then (G,�) is an Abelian
group.

� a b
a a b
b b a

(c) Let X be a nonempty set and SX the set of all bijections from X to itself.
Then SX := (SX , ◦) is a group with identity element idX when ◦ denotes the
composition of functions. Further, the inverse function f−1 is the inverse of f ∈ SX

in the group. In view of Exercise 4.3, SX is, in general, not commutative. When X
is finite, the elements of SX are called permutations (see Section 6) and SX is called
the permutation group of X.

(d) Let X be a nonempty set and (G,�) a group. With the induced operation �
as in Example 4.12, (GX ,�) is a group. The inverse of f ∈ GX is the function

f � : X → G , x �→
(
f(x)

)�
.

In particular, for m ≥ 2, Gm with the operation

(g1, . . . , gm) � (h1, . . . , hm) = (g1 � h1, . . . , gm � hm)

is a group.

(e) Let G1, . . . , Gm be groups. Then G1 × · · · × Gm with operation defined anal-
ogously to (d) is a group called the direct product of G1, . . . , Gm. �

Subgroups

Let G = (G,�) be a group and H a nonempty subset of G which is closed under
the operation � , that is,
(SG1) H � H ⊆ H.
If, in addition,
(SG2) h� ∈ H for all h ∈ H,
then H := (H,�) is itself a group and is called a subgroup of G. Here we use the
same symbol � for the restriction of the operation to H. Since H is nonempty,
there is some h ∈ H and so, from (SG1) and (SG2), e = h� � h is also in H.
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7.3 Examples Let G = (G,�) be a group.

(a) The trivial subgroup {e} and G itself are subgroups of G, the smallest and
largest subgroups with respect to inclusion (see Example 4.4.(b)).

(b) If Hα, α ∈ A are subgroups of G, then
⋂

α Hα is also a subgroup of G. �

Cosets

Let N be a subgroup of G and g ∈ G. Then g � N is the left coset and N � g is
the right coset of g ∈ G with respect to N . If we define

g ∼ h :⇐⇒ g ∈ h � N , (7.1)

then ∼ is an equivalence relation on G: Indeed ∼ is reflexive because e ∈ N . If
g ∈ h � N and h ∈ k � N , then

g ∈ (k � N) � N = k � (N � N) = k � N ,

since, of course,
N � N = N . (7.2)

Thus ∼ is transitive. If g ∈ h � N , then there is some n ∈ N with g = h � n.
Then it follows from (SG2) that h = g � n� ∈ g � N . Thus ∼ is also symmetric
and (7.1) defines an equivalence relation on G. For the equivalence classes [·] with
respect to ∼ , we have

[g] = g � N , g ∈ G . (7.3)

For this reason, we denote G/∼ by G/N , and call G/N the set of left cosets of G
modulo N .

Of particular importance are subgroups N such that

g � N = N � g , g ∈ G . (7.4)

Such a subgroup is called a normal subgroup of G. In this case one calls g � N
the coset of g modulo N since each left coset is a right coset and vice versa.

For a normal subgroup N of G it follows from (7.2), (7.4) and the associativity
of the operation, that

(g � N) � (h � N) = g � (N � h) � N = (g � h) � N , g, h,∈ G .

This shows that there is a well defined operation on G/N , induced from � , such
that

(G/N) × (G/N) → G/N , (g � N,h � N) �→ (g � h) � N . (7.5)

We will use the same symbol � for this induced operation.
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7.4 Proposition Let G be a group and N a normal subgroup of G. Then G/N
with the induced operation is a group, the quotient group of G modulo N .

Proof The reader can easily check that the induced operation is associative.
Since (e � N) � (g � N) = (e � g) � N = g � N , the identity element of G/N is
N = e � N . Since also

(g� � N) � (g � N) = (g� � g) � N = e � N = N

the claim follows from Remark 7.1(e). �

7.5 Remarks (a) In the notation of (7.3), [e] = N is the identity element of G/N
and [g]� = [g�] is the inverse of [g] ∈ G/N . Because of (7.3) and (7.5) we have

[g] � [h] = [g � h] , g, h ∈ G .

In other words, to combine two cosets with the operation � , one can choose a
representative of each coset, combine these elements using � and then take the
coset which contains the resulting element. Since the operation on G/N is well
defined, the final result is independent of the particular choice of representatives.

(b) Any subgroup N of an Abelian group G is normal and so G/N is a group.
Of course, G/N is also Abelian. �

Homomorphisms

Among functions between groups, those which preserve the group structure are of
particular interest.

Let G = (G,�) and G′ = (G′,�) be groups. A function ϕ : G → G′ is called
a (group) homomorphism if

ϕ(g � h) = ϕ(g) � ϕ(h) , g, h ∈ G .

A homomorphism from G to itself is called a (group) endomorphism.

7.6 Remarks (a) Let e and e′ be the identity elements of G and G′ respectively,
and let ϕ : G → G′ be a homomorphism. Then

ϕ(e) = e′ and
(
ϕ(g)

)� = ϕ(g�) , g ∈ G .

Proof From e′ � ϕ(e) = ϕ(e) = ϕ(e � e) = ϕ(e) � ϕ(e) and Remark 7.1(c) it follows

that ϕ(e) = e′. Suppose g ∈ G. Then e′ = ϕ(e) = ϕ(g� � g) = ϕ(g�) � ϕ(g) and, similarly,

e′ = ϕ(g) � ϕ(g�). Thus, from Remark 7.1(b), we get
(
ϕ(g)

)�
= ϕ(g�). �
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(b) Let ϕ : G → G′ be a homomorphism. The kernel of ϕ, ker(ϕ), defined by

ker(ϕ) := ϕ−1(e′) =
{

g ∈ G ; ϕ(g) = e′
}

,

is a normal subgroup of G.
Proof For all g, h ∈ ker(ϕ) we have

ϕ(g � h) = ϕ(g) � ϕ(h) = e′ � e′ = e′ .

Thus (SG1) is satisfied. Because ϕ(g�) =
(
ϕ(g)

)�
= (e′)� = e′, (SG2) also holds, and

so ker(ϕ) is a subgroup of G. Let h ∈ g � ker(ϕ). Then there is some n ∈ G such that
ϕ(n) = e′ and h = g � n. For m := g � n � g�, we have

ϕ(m) = ϕ(g) � ϕ(n) � ϕ(g�) = ϕ(g) � ϕ(g�) = e′ ,

and hence m ∈ ker(ϕ). Since m � g = g � n = h, this implies that h ∈ ker(ϕ) � g. Simi-

larly one can show ker(ϕ) � g ⊆ g � ker(ϕ), and so ker(ϕ) is a normal subgroup of G. �

(c) Let ϕ : G → G′ be a homomorphism and N := ker(ϕ). Then

g � N = ϕ−1
(
ϕ(g)

)
, g ∈ G ,

and so
g ∼ h ⇐⇒ ϕ(g) = ϕ(h) , g, h ∈ G ,

where ∼ denotes the equivalence relation (7.1).
Proof For h ∈ g � N we have

ϕ(h) ∈ ϕ(g � N) = ϕ(g) � ϕ(N) = ϕ(g) � {e′} =
{
ϕ(g)

}
,

and so h ∈ ϕ−1
(
ϕ(g)

)
. Conversely if h ∈ ϕ−1

(
ϕ(g)

)
, that is, ϕ(h) = ϕ(g), then

ϕ(g� � h) = ϕ(g�) � ϕ(h) =
(
ϕ(g)

)� � ϕ(g) = e′ ,

which means that g� � h ∈ N and hence h ∈ g � N . �

(d) A homomorphism is injective if and only if its kernel is trivial, that is,
ker(ϕ) = {e}.
Proof This follows directly from (c). �

(e) The image im(ϕ) of a homomorphism ϕ : G → G′ is a subgroup of G′. �

7.7 Examples (a) The constant function G → G′, g �→ e′ is a homomorphism,
the trivial homomorphism.

(b) The identity function idG : G → G is an endomorphism.

(c) Compositions of homomorphisms (endomorphisms) are homomorphisms (en-
domorphisms).
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(d) Let N be a normal subgroup of G. Then the quotient function

p : G → G/N , g �→ g � N

is a surjective homomorphism, the quotient homomorphism, with ker(p) = N .

Proof Since N is a normal subgroup of G, the quotient group G/N is well defined.

Because of (7.1) and Proposition 4.1, the quotient function p is well defined, and Re-

mark 7.5(a) shows that p is a homomorphism. Since N is the identity element of G/N ,

ker(p) = N .

(e) If ϕ : G → G′ is a bijective homomorphism, then so is ϕ−1 : G′ → G. �

Isomorphisms

A homomorphism ϕ : G → G′ is called a (group) isomorphism from G to G′ if ϕ is
bijective. In this circumstance, we say that the groups G and G′ are isomorphic and
write G ∼= G′. An isomorphism from G to itself, that is, a bijective endomorphism,
is called a (group) automorphism of G.

7.8 Examples (a) The identity function idG : G → G is an automorphism. If
ϕ and ψ are automorphisms of G, then so are ϕ ◦ ψ and ϕ−1. It follows easily
from this that the set of all automorphisms of a group G, with composition as
operation, forms a group, the automorphism group of G. This is a subgroup of the
permutation group SG.

(b) For each a ∈ G, the function g �→ a � g � a� is an automorphism of G.

(c) Let ϕ : G → G′ be a homomorphism. Then there is a unique injective homo-
morphism ϕ̃ : G/ ker(ϕ) → G′ such that the diagram

�
���

��

�

G/ ker(ϕ)

G G′
ϕ

ϕ̃p

is commutative. If ϕ is surjective, then ϕ̃ is an isomorphism.

Proof It follows from Remark 7.6(c) and Example 4.2(c) that there is a unique injective

function ϕ̃ which makes the diagram commutative, and that im(ϕ) = im(ϕ̃). It is easy to

check that ϕ̃ is a homomorphism. �

(d) Let (G,�) be a group, G′ a nonempty set, and ϕ : G → G′ a bijection from G
to G′. Define an operation � on G′ by

g′ � h′ := ϕ−1(g′) � ϕ−1(h′) , g′, h′ ∈ G′ .

Then (G′,�) is a group and ϕ is an isomorphism from G to G′. The operation �
is called the operation on G′ induced from � via ϕ .
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(e) If G = {e} and G′ = {e′} are trivial groups, then G and G′ are isomorphic.

(f ) Let G be the group of Example 7.2(b) and G′ the group produced when the
symbols a and b are interchanged in the table. Then G and G′ are isomorphic. More
precisely, the operation on G′ is induced from the operation G via the function
ϕ : {a, b} → {a, b} defined by ϕ(a) := b and ϕ(b) := a.

(g) Let X and Y be nonempty sets and ϕ : X → Y a bijective function. Then

ϕ̂ : SX → SY , f �→ ϕ ◦ f ◦ ϕ−1

is an isomorphism from the permutation group SX to the permutation group SY . �

If ϕ is an isomorphism from the group (G,�) to the group (G′,�), then
even though the groups may differ in the labeling of their elements, they have
identical group structure. For example, if g and h are two elements of G, then to
calculate g � h one can just as well calculate ϕ(g) � ϕ(h) in G′, and then g � h is
the image of ϕ(g) � ϕ(h) under the inverse isomorphism ϕ−1. In practice it may be
much easier to work with (G′,�) than with (G,�). (See, in particular, Sections 9
and 10.)

From the viewpoint of group theory, isomorphic groups are essentially iden-
tical. In fact, isomorphism ∼= is an equivalence relation on any set G of groups,
as is easy to verify. Hence G can be partitioned using ∼= into equivalence classes,
called isomorphism classes. It suffices then to investigate the set G/∼= of isomor-
phism classes rather than G itself. In other words, one ‘identifies’ (makes identical)
isomorphic groups. This is the sense in which one speaks of the trivial group, since,
by Example 7.8(e), any two trivial groups are isomorphic. Similarly, there is (up
to isomorphism) only one group of order1 two, that is, with exactly two elements
(see Example 7.8(f)). If n ∈ N×, then, by Example 7.8(g), there is only one per-
mutation group SX with Num(X) = n to consider, for example, the permutation
group (or the symmetric group) of order n! ,

Sn := S{1,...,n} ,

that is, the permutation group on the set {1, . . . , n}. (See Proposition 6.3.)

Convention In the following, we usually denote the operation in a group G
by · , and, instead of x · y, write simply xy for x, y ∈ G. With this ‘multi-
plicative’ notation, the operation is called (group) multiplication, and for x�

we write x−1 (‘x inverse’). If the group is Abelian, it is common to use ‘addi-
tive notation’ meaning that the group operation is written + and is called
addition, and the inverse x� of x is written −x (‘negative x’).

The reader is again reminded that notation is not important, it is the axioms
that matter. The same symbol can have completely different meanings in different

1The order of a finite group is the number of its elements.
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contexts, even when the same axioms apply. The use of familiar symbols, such as
+ or · , should not lead the reader to think that the familiar context is intended.
One has to be clear about which axioms are in play and use only those rules which
follow from them.

That a single symbol can have various context-dependent meanings may seem
illogical and confusing to the beginner. Nonetheless it makes possible an elegant
and concise presentation of complex ideas, and avoids overwhelming the reader
with a multitude of different symbols.

Exercises

1 Let N be a subgroup of a finite group G. Show that Num(G) = Num(N) · Num(G/N)
so, in particular, the order of a subgroup divides the order of the group.

2 Verify the claims in Examples 7.2(c) and (d).

3 Prove the claim in Example 7.3(b) and show that the intersection of a set of normal
subgroups is also normal.

4 Prove Remark 7.6(e). Is im(ϕ) a normal subgroup of G′?

5 Let ϕ : G → G′ be a homomorphism and N ′ a normal subgroup of G′. Show that
ϕ−1(N ′) is a normal subgroup of G.

6 Let G be a group and X a nonempty set. Then G acts (from the left) on X if there
is a function

G × X → X , (g, x) �→ g · x
such that the following hold:

(GA1) e · x = x for all x ∈ X.

(GA2) g · (h · x) = (gh) · x for all g, h ∈ G and x ∈ X.

(a) For each g ∈ G, show that x �→ g · x is a bijection on X with inverse x �→ g−1 · x.

(b) For x ∈ X, G · x is called the orbit of x (under the action of G). Show that the
relation ‘y is in the orbit of x’ is an equivalence relation on X.

(c) Show that if H is a subgroup of G, then (h, g) �→ h · g and (h, g) �→ hgh−1 define
actions of H on G.

(d) Show that

Sm × Nm → Nm , (σ, α) �→ σ · α := (ασ(1), . . . , ασ(m))

defines an action of Sm on Nm.

7 Let G = (G,�) be a finite group of order m with identity element e. Show that for
each g ∈ G, there is a least natural number k > 0 such that

gk :=

k⊙
j=1

g = e .

Show that gm = e for all g ∈ G. (Hint: Exercise 1.)
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8 The tables below define three operations on the set G = {e, a, b, c}.

� e a b c

e e a b c
a a e c b
b b c e a
c c b a e

� e a b c

e e a b c
a a e c b
b b c a e
c c b e a

⊕ e a b c

e e a b c
a a b c e
b b c e a
c c e a b

(a) Verify that (G, �) and (G,⊕) are isomorphic groups.

(b) Show that the groups (G,�) and (G, �) are not isomorphic.

(c) Determine all other possible group structures on G. Sort these groups into isomor-
phism classes.

9 Show that S3 is not Abelian.

10 Let G and H be groups, and let

p : G × H → G , (g, h) �→ g

be the projection onto the first factor. Show that p is a surjective homomorphism.
Set H ′ := ker(p). Show that (G × H)/H ′ and G are isomorphic groups.

11 Let G be a set with an operation � and identity element. For g ∈ G, define the
function Lg : G → G, h �→ g � h, called left translation by g. Suppose that

L := {Lg ; g ∈ G } ⊆ SG ,

that is, each Lg is bijective. Prove that

(G,�) is a group ⇐⇒ L is a subgroup of SG .
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8 Rings, Fields and Polynomials

In this section we consider sets on which two operations are defined. Here we as-
sume that, with respect to one of the operations, the set forms an Abelian group
and that the two operations satisfy an appropriate ‘distributive law’. This leads
to the concepts of ‘rings’ and ‘fields’, which formalize the rules of arithmetic. As
particularly important examples of rings we consider power series rings and polyno-
mial rings in one (and many) indeterminates and derive some of their fundamental
properties. Polynomial functions are relatively easy to work with and are impor-
tant in analysis because ‘complicated functions can be approximated arbitrarily
well by polynomials’, a claim that we will make more precise later.

Rings

A triple (R,+, ·) consisting of a nonempty set R and operations, addition + and
multiplication · , is called a ring if:

(R1) (R,+) is an Abelian group.

(R2) Multiplication is associative.

(R3) The distributive law holds:

(a + b) · c = a · c + b · c , c · (a + b) = c · a + c · b , a, b, c ∈ R .

Here we make the usual convention that multiplication takes precedence over ad-
dition. For example, a · b + c means (a · b) + c (the multiplication d := a · b is done
first and the addition d + c second) and not a · (b + c). Also we usually write ab
for a · b.

A ring is called commutative if multiplication is commutative. In this case,
the distributive law (R3) reduces to

(a + b)c = ac + bc , a, b, c ∈ R . (8.1)

If there is an identity element with respect to multiplication, then it is written 1R

or simply 1, and is called the unity (or multiplicative identity) of R, and we say
(R,+, ·) is a ring with unity. When the addition and multiplication operations are
clear from context, we write simply R instead of (R,+, ·).

8.1 Remarks Let R := (R,+, ·) be a ring.

(a) The identity element of the additive group (R,+) of a ring R is, as in Exam-
ple 5.14, denoted by 0R, or simply 0, and is called the zero (or additive identity)
of the ring R. In view of Proposition 4.11, 0R and also 1R, if it exists, are unique.

(b) From Remark 7.1(d) it follows that −(−a) = a for each a ∈ R.
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(c) For each pair a, b ∈ R, there is, by Remark 7.1(c), a unique solution x ∈ R of
the equation a + x = b, namely x = b + (−a) =: b − a (‘b minus a’), the difference
of a and b.

(d) For all a ∈ R, we have 0a = a0 = 0 and −0 = 0. If a �= 0 and there is some
b �= 0 with ab = 0 or ba = 0, then a is called a zero divisor of R. If R is commutative
and has no zero divisors, that is, ab = 0 implies a = 0 or b = 0, then R is called a
domain.

Proof Since 0 = 0 + 0, we have a0 = a(0 + 0) = a0 + a0. It then follows from (c) and

the equation a0 + 0 = a0 that a0 = 0. Similarly one can show that 0a = 0. The second

claim also follows from (c). �

(e) For all a, b ∈ R, we have a(−b) = (−a)b = −(ab) =: −ab and (−a)(−b) = ab.
Proof From 0 = b + (−b) and (d) we get 0 = a0 = ab + a(−b). Hence, just as above,
a(−b) = −ab. Similarly one can show that (−a)b = −ab. Using this fact twice we get

(−a)(−b) = −
(
a(−b)

)
= −(−ab) = ab ,

in which the last equality follows from (b). �

(f ) If R is a ring with unity then (−1)a = −a for all a ∈ R.

Proof This is a special case of (e). �

(g) In view of Example 5.14(a), n · a = na is well defined for all n ∈ N and a ∈ R
and the rules of this example hold. In particular, 0N · a := 0R. From (d) we also
have 0R · a := 0R, and so dropping the subscripts from 0N and 0R leads to no
ambiguity. Similarly, if R is a ring with unity, then 1N · a = 1R · a = a. �

8.2 Examples (a) The trivial ring has exactly one element 0 and is itself denoted
by 0. A ring with more than one element is nontrivial. The trivial ring is clearly
commutative and has a unity element. If R is a ring with unity, then it follows
from 1R · a = a for each a ∈ R, that R is trivial if and only if 1R = 0R.

(b) Let R := (R,+, ·) be a ring and X a nonempty set. Then RX is a ring with
the operations

(f + g)(x) := f(x) + g(x) , (fg)(x) := f(x)g(x) , x ∈ X , f, g ∈ RX .

If R is a commutative ring (a ring with unity), then so is RX := (RX ,+, ·) (see
Example 4.12). In particular, for m ≥ 2, the direct product Rm of the ring R with
the operations

(a1, . . . , am) + (b1, . . . , bm) = (a1 + b1, . . . , am + bm)

and
(a1, . . . , am)(b1, . . . , bm) = (a1b1, . . . , ambm)

is a ring called the product ring. If R is a nontrivial ring with unity and X has at
least two elements, then RX has zero divisors.
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Proof For the first claim, see Example 4.12. For the second claim, suppose that x, y ∈ X

are such that x 
= y, and f, g ∈ RX satisfy f(x) = 1 and f(x′) = 0 for all x′ ∈ X\{x} as

well as g(y) = 1 and g(y′) = 0 for all y′ ∈ X\{y}. Then fg = 0. �

(c) Suppose R is a ring and S is a nonempty subset of R that satisfies the following:
(SR1) S is a subgroup of (R,+).
(SR2) S · S ⊆ S.
Then S is itself a ring, a subring of R, and R is called an overring of S. Clearly,
0 = {0} and R are subrings of R. Even if R is a ring with unity, the same may not
be true of S (see (e)). Even so, if 1R ∈ S, then 1R is the unity of S. Of course, if
R is commutative then so is S. The converse is not true in general.

(d) Intersections of subrings are subrings.

(e) Let R be a nontrivial ring with unity and S the set of all g ∈ RN with g(n) = 0
for almost all, that is, for all but finitely many n ∈ N. Then S is a subring of RN

without unity. (Why?)

(f ) Let X be a set. For subsets A and B of X define their symmetric difference
A � B by

A � B := (A ∪ B)\(A ∩ B) = (A\B) ∪ (B\A) .

Then
(
P(X),�,∩

)
is a commutative ring with unity. �

Let R and R′ be rings. A (ring) homomorphism is a function ϕ : R → R′

which is compatible with the ring operations, that is,

ϕ(a + b) = ϕ(a) + ϕ(b) , ϕ(ab) = ϕ(a)ϕ(b) , a, b ∈ R . (8.2)

If, in addition, ϕ is bijective, then ϕ is called a (ring) isomorphism and R and R′

are isomorphic.
A homomorphism ϕ from R to itself is a (ring) endomorphism. If ϕ is an

isomorphism, then it is a (ring) automorphism.1

8.3 Remarks (a) A ring homomorphism ϕ : R → R′ is, in particular, a group
homomorphism from (R,+) to (R′,+). The kernel, ker(ϕ), of ϕ is defined to be
the kernel of this group homomorphism, that is,

ker(ϕ) =
{

a ∈ R ; ϕ(a) = 0
}

= ϕ−1(0) .

(b) The zero function R → R′, a �→ 0R′ is a homomorphism with ker(ϕ) = R.

(c) Let R and R′ be rings with unity and ϕ : R → R′ a homomorphism. As
(b) shows, it does not follow that ϕ(1R) = 1R′ . This can be seen as a consequence
of the fact that, with respect to multiplication, a ring is not a group. �

1We will use the words ‘homomorphism’, ‘isomorphism’, ‘endomorphism’, etc. when it is clear
from the context what type of homomorphism — group, ring (and later field, vector space or
algebra) — is intended.
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The Binomial Theorem

We next show that the ring axioms (R1)–(R3) have other important consequences
beyond the rules in Remark 8.1.

8.4 Theorem (binomial theorem) Let a and b be two commuting elements (that
is, ab = ba) of a ring R with unity. Then, for all n ∈ N,

(a + b)n =
n∑

k=0

(n

k

)
akbn−k . (8.3)

Proof First we note that, by Examples 5.14, Remark 8.1(g) and Exercise 5.5,
both sides of (8.3) are well defined, and that the claim is true for n = 0. If (8.3)
holds for some n ∈ N, then

(a + b)n+1 = (a + b)n(a + b) =
( n∑

k=0

(n

k

)
akbn−k

)
(a + b)

=
n∑

k=0

(n

k

)
ak+1bn−k +

n∑
k=0

(n

k

)
akbn+1−k

= an+1 +
n−1∑
k=0

(n

k

)
ak+1bn−k +

n∑
k=1

(n

k

)
akbn+1−k + bn+1

= an+1 +
n∑

k=1

{( n

k − 1

)
+
(n

k

)}
akbn+1−k + bn+1 .

From Exercise 5.5 we have
(

n
k−1

)
+
(

n
k

)
=
(

n+1
k

)
, and so

(a + b)n+1 = an+1 +
n∑

k=1

(n + 1
k

)
akbn+1−k + bn+1 .

The claim then follows from the induction principle of Proposition 5.7. �

The Multinomial Theorem

We want to generalize the binomial theorem so that, on the left side of (8.3), sums
with more than two terms are allowed. To make this formula as simple as possible,
it is useful to introduce the following notation:

For m ∈ N with m ≥ 2, an element α = (α1, . . . , αm) ∈ Nm is called a multi-
index (of order m). The length |α| of a multi-index α ∈ Nm is defined by

|α| :=
m∑

j=1

αj .
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Set also

α! :=
m∏

j=1

(αj)! ,

and define the natural (partial) order on Nm by

α ≤ β :⇐⇒ (αj ≤ βj , 1 ≤ j ≤ m) .

Finally, let R be a commutative ring with unity and m ∈ N with m ≥ 2. Then
we set

aα :=
m∏

j=1

(aj)αj

for a = (a1, . . . , am) ∈ Rm and α = (α1, . . . , αm) ∈ Nm.

8.5 Theorem (multinomial theorem) Let R be a commutative ring with unity.
Then for all m ≥ 2,

( m∑
j=1

aj

)k

=
∑
|α|=k

k!
α!

aα , a = (a1, . . . , am) ∈ Rm , k ∈ N . (8.4)

Here
∑

|α|=k is the sum over all multi-indices of length k in Nm.

Proof We begin by proving, by induction on m, that

k!/α! ∈ N× for k ∈ N and α ∈ Nm with |α| = k . (8.5)

We consider first the case m = 2. Let α ∈ N2 be an arbitrary multi-index of
length k. Then α = (�, k − �) for some � ∈ N with 0 ≤ � ≤ k, and so, by Exer-
cise 5.5(b),

k!
α!

=
k!

�! (k − �)!
=
(k

�

)
∈ N× .

Now suppose that (8.5) is true for some m ≥ 2. Let α ∈ Nm+1 be arbitrary
with |α| = k. Set α′ := (α2, . . . , αm+1) ∈ Nm. It follows from the induction hypoth-
esis and Exercise 5.5(a) that

k!
α!

=
(k − α1)!

α′!

( k

α1

)
∈ N× . (8.6)

This completes the induction and the proof of (8.5).

To prove (8.4) we again use induction on m. The case m = 2 is the binomial
theorem. Thus we suppose that a = (a1, . . . , am, am+1) ∈ Rm+1 for m ≥ 2 and
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k ∈ N are given. We set b :=
∑m+1

j=2 aj and calculate using Theorem 8.4 and the
induction hypothesis as follows:

(m+1∑
j=1

aj

)k

= (a1 + b)k =
k∑

α1=0

( k

α1

)
aα1
1 bk−α1

=
k∑

α1=0

( k

α1

)
aα1
1

∑
|α′|=k−α1

(k − α1)!
α′!

aα2
2 · · · · · aαm+1

m+1

=
k∑

α1=0

∑
|α′|=k−α1

(k − α1)!
α′!

( k

α1

)
aα1
1 · · · · · aαm+1

m+1

=
∑
|α|=k

k!
α!

aα ,

where in the last step we have used (8.6). This completes the induction and the
proof of the theorem. �

8.6 Remarks (a) The multinomial coefficients are defined by2

( k

α

)
:=

k!
α! (k − |α|)! , k ∈ N , α ∈ Nm , |α| ≤ k .

Then
(

k
α

)
∈ N× and, if R is a commutative ring with unity,

(1 + a1 + · · · + am)k =
∑
|α|≤k

( k

α

)
aα , a = (a1, . . . , am) ∈ Rm , k ∈ N .

Proof If β := (α1, . . . , αm, k − |α|) ∈ Nm+1, then we have |β| = k for all |α| ≤ k and(
k
α

)
= k!/β! . The claim now follows from Theorem 8.5. �

(b) Clearly Theorem 8.5 and (a) are also true if a1, . . . , am are pairwise commuting
elements of an arbitrary ring with unity. �

Fields

A ring R has especially nice properties when R\{0} forms a group with respect
to multiplication. Such rings are called fields. Specifically, K is a field when the
following are satisfied:

2We use the same symbol
( )

for multinomial coefficients and binomial coefficients. This

should cause no misunderstanding, since, for a multinomial coefficient
( k

α

)
, we have α ∈ Nm

with m ≥ 2, and for a binomial coefficient
( k

�

)
, � is always a natural number.
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(F1) K is a commutative ring with unity.

(F2) 0 �= 1.

(F3) K× := K\{0} is an Abelian group with respect to multiplication.

The Abelian group K× = (K×, ·) is called the multiplicative group of K.

Of course, a field has all the properties that we have shown to occur in rings.
Since K× is an Abelian group, we get as well the following important rules from
Remarks 7.1.

8.7 Remarks Let K be a field.

(a) For all a ∈ K×, (a−1)−1 = a.

(b) A field has no zero divisors.

Proof Suppose that ab = 0. If a 
= 0 then multiplication of ab = 0 by a−1 yields b = 0. �

(c) Let a ∈ K× and b ∈ K. Then there is a unique x ∈ K with ax = b, namely the
quotient b

a := b/a := ba−1 (‘b over a’).

(d) For a, c ∈ K and b, d ∈ K×, we have the following:3

(i)
a

b
=

c

d
⇐⇒ ad = bc.

(ii)
a

b
± c

d
=

ad ± bc

bd
.

(iii)
a

b
· c

d
=

ac

bd
.

(iv)
a

b

/ c

d
=

ad

bc
, c �= 0.

Proof The first three claims are proved by multiplying both sides of the equation by bd

and then using the rule that bdx = bdy implies x = y. Rule (iv) is an easy consequence

of (i). �

(e) In view of (c), for a, b ∈ K× the equation ax = b has a unique solution. On the
other hand, by Remark 8.1(d), any x ∈ K is a solution of the equation 0x = 0. This
is because 0 has no multiplicative inverse. Indeed, the existence of 0−1 would imply
0 · 0−1 = 1 and then, since 0 · 0−1 = 0, we would have 0 = 1, contradicting (F2).
This illustrates the special role of zero with respect to multiplication which finds
expression in the definition of K× and in the familiar idea that ‘division by zero
is not allowed’.

3Using the symbols ± and ∓ one can write two equations as if they were one: For one of these
equations, the upper symbol (+ or −) is used throughout, and for the other, the lower symbol is
used throughout.
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(f ) Let K ′ be a field and ϕ : K → K ′ a homomorphism with ϕ �= 0. Then

ϕ(1K) = 1K′ and ϕ(a−1) = ϕ(a)−1 , a ∈ K× .

Proof Since ϕ is a group homomorphism from K× to K′×, this follows from Re-

mark 7.6(a). �

When we use the words ‘homomorphism’, ‘isomorphism’, etc. in connection
with fields, we mean, of course, ‘ring homomorphism’, ‘ring isomorphism’, etc. and
not group homomorphism.

The following example shows that fields do, in fact, exist and therefore that
the axioms (F1)–(F3) do not lead to contradictions.

8.8 Example Define addition + and multiplication · on {0, 1} using the tables
below.

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Then one can verify that F2 :=
(
{0, 1},+, ·

)
is a field. Indeed, up to isomorphism,

F2 is the only field with two elements. �

Ordered Fields

The rings and fields which are important in analysis usually have an order structure
in addition to their algebraic structure. Of course, to prove interesting theorems,
one expects that these two structures should be compatible in some way. Thus, a
ring R with an order ≤ is called an ordered ring if the following holds:4

(OR0) (R,≤) is totally ordered.

(OR1) x < y =⇒ x + z < y + z, z ∈ R.

(OR2) x, y > 0 =⇒ xy > 0.

Of course, an element x ∈ R is called positive if x > 0 and negative if x < 0.
We gather in the next proposition some simple properties of ordered fields.

8.9 Proposition Let K be an ordered field and x, y, a, b ∈ K.

(i) x > y ⇐⇒ x − y > 0.

(ii) If x > y and a > b, then x + a > y + b.

(iii) If a > 0 and x > y, then ax > ay.

(iv) If x > 0, then −x < 0. If x < 0, then −x > 0.

4Here, and in the following, we write a, b, . . . , w > 0 for a > 0, b > 0, . . . , w > 0.
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(v) Let x > 0. If y > 0, then xy > 0. If y < 0, then xy < 0.

(vi) If a < 0 and x > y, then ax < ay.

(vii) x2 > 0 for all x ∈ K×. In particular, 1 > 0.

(viii) If x > 0, then x−1 > 0.

(ix) If x > y > 0, then 0 < x−1 < y−1 and xy−1 > 1.

Proof All of these claims are easy consequences of the axioms (OR1) and (OR2).
We verify only that (ix) follows from (i), (viii) and (OR2), and leave the remaining
proofs to the reader.

If x > y > 0, then x − y > 0, x−1 > 0 and y−1 > 0. From (OR2) we get

0 < (x − y)x−1y−1 = y−1 − x−1 ,

which implies x−1 < y−1, and

0 < (x − y)y−1 = xy−1 − 1 ,

which implies xy−1 > 1. �

The claims (ii) and (vii) of Proposition 8.9 imply that the field F2 of Ex-
ample 8.8 cannot be ordered since otherwise we would have 0 = 1 + 1 > 0. In the
next section we show that ordered fields do exist.

For an ordered field K, the absolute value function, |·| : K → K and the sign
function, sign(·) : K → K are defined by

|x| :=

⎧⎨⎩
x , x > 0 ,
0 , x = 0 ,

−x , x < 0 ,

sign x :=

⎧⎨⎩
1 , x > 0 ,
0 , x = 0 ,

−1 , x < 0 .

8.10 Proposition Let K be an ordered field and x, y, a, ε ∈ K with ε > 0.

(i) x = |x| sign(x), |x| = x sign(x).
(ii) |x| = | − x|, x ≤ |x|.
(iii) |xy| = |x| |y|.
(iv) |x| ≥ 0 and

(
|x| = 0 ⇐⇒ x = 0

)
.

(v) |x − a| < ε ⇐⇒ a − ε < x < a + ε.

(vi) |x + y| ≤ |x| + |y| (triangle inequality).

Proof The first four claims follow immediately from the definitions. From (vi)
and (ii) of Proposition 8.9 we have

|x − a| < ε ⇐⇒ −ε < x − a < ε ⇐⇒ a − ε < x < a + ε ,
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which proves (v). To verify (vi), we first suppose that x + y ≥ 0. Then it fol-
lows from (ii) that |x + y| = x + y ≤ |x| + |y|. If x + y < 0, then −(x + y) > 0,
and hence

|x + y| = | − (x + y)| = |(−x) + (−y)| ≤ | − x| + | − y| = |x| + |y| ,

which completes the proof. �

8.11 Corollary (reversed triangle inequality) In any ordered field K we have

|x − y| ≥
∣∣|x| − |y|

∣∣ , x, y ∈ K .

Proof The triangle inequality applied to the equation x = (x − y) + y yields
|x| ≤ |x − y| + |y|, that is, |x| − |y| ≤ |x − y|. Interchanging x and y in this in-
equality gives |y| − |x| ≤ |y − x| = |x − y|. �

Formal Power Series

Let R be a nontrivial ring with unity. On the set RN = Funct(N, R) define addition
by

(p + q)n := pn + qn , n ∈ N , (8.7)

and multiplication by convolution,

(pq)n := (p · q)n :=
n∑

j=0

pjqn−j = p0qn + p1qn−1 + · · · + pnq0 (8.8)

for n ∈ N. Here pn denotes the value of p ∈ RN at n ∈ N and is called the nth co-
efficient of p. In this situation an element p ∈ RN is called a formal power series
over R, and we set R[[X]] := (RN,+, ·). The following proposition shows that R[[X]]
is a ring. Note that this ring is not the same as the function ring RN introduced
in Example 8.2(b).

8.12 Proposition R[[X]] is a ring with unity, the formal power series ring over R.
If R is commutative, then so is R[[X]].

Proof Because of (8.7) and Example 7.2(d),
(
R[[X]],+

)
is an Abelian group.

We show next that (R2) holds. If p, q, r ∈ R[[X]], then

(
(pq)r

)
n

=
n∑

j=0

(pq)jrn−j =
n∑

j=0

j∑
k=0

pkqj−krn−j (8.9)
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for all n ∈ N. The double sum in (8.9)
is done over all pairs (j, k) correspond-
ing to the dots in the diagram on
the right. Since addition is an associa-
tive and commutative operation, the
summation can be done in any order.
In particular, the summation can be
changed from ‘column first’ to ‘row
first’, in which case the right side
of (8.9) becomes

�

�

�

�

� � �
�

�

�

�

�

� � � �

�

�

n∑
k=0

n∑
j=k

pkqj−krn−j =
n∑

k=0

pk

n−k∑
�=0

q�rn−k−� =
n∑

k=0

pk(qr)n−k =
(
p(qr)

)
n

,

where we have set � := j − k.
The validity of (R3) is clear, as well as the fact that the formal power series p

with p0 = 1 and pn = 0 for n ∈ N× is the unity element of R[[X]]. The last claim
is trivial. �

We write X for the power series

Xn :=
{

1 , n = 1 ,

0 otherwise .

Then for Xm we have (see Example 5.14(a))

Xm
n :=

{
1 , n = m ,

0 , n �= m ,
m, n ∈ N . (8.10)

In particular, X0 is the unity element of R[[X]].
For a ∈ R, we denote by aX0 the constant power series,

aX0
n :=

{
a , n = 0 ,

0 , n > 0 ,

and by RX0 the set of all constant power series. From (8.7) and (8.8), it is clear
that RX0 is a subring of R[[X]] containing the unity element, and that the function

R → RX0 , a �→ aX0 (8.11)

is an isomorphism. In the following we will usually identify R with RX0, that is,
we will write a for the constant power series aX0 and consider R to be a subring
of R[[X]]. Note that (8.8) also implies

(ap)n = apn , n ∈ N , a ∈ R , p ∈ R[[X]] . (8.12)
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Polynomials

A polynomial over R is a formal power series p ∈ R[[X]] such that {n ; pn �= 0 } is
finite, in other words, pn = 0 ‘almost everywhere’. It is easy to see that the set of
all polynomials in R[[X]] is a subring of R[[X]] containing the unity element. This
subring is denoted by R[X] and called the polynomial ring over R.

If p is a polynomial, then there is some n ∈ N such that pk = 0 for k > n.
From (8.10) and (8.12) it follows that p can be written in the form

p =
∑

k

pkXk =
n∑

k=0

pkXk = p0 + p1X + p2X
2 + · · · + pnXn (8.13)

where p0, . . . , pn ∈ R. Of course, it is possible that pk = 0 for some (or all) k ≤ n.
When polynomials are written as in (8.13), the rules (8.7) and (8.8) take the form∑

k

pkXk +
∑

k

qkXk =
∑

k

(pk + qk)Xk (8.14)

and (∑
k

pkXk
)(∑

j

qjX
j
)

=
∑

n

( n∑
j=0

pjqn−j

)
Xn . (8.15)

Note that (8.15) can be obtained by applying the distributive law and the rule

(aXj)(bXk) = abXj+k , a, b ∈ R , j, k ∈ N ,

to the left side of the equation.

As a simple application of the fact that R[X] is a ring, we prove the fol-
lowing addition theorem for binomial coefficients which generalizes formula (ii) of
Exercise 5.5.

8.13 Proposition For all �,m, n ∈ N,

(m + n

�

)
=

�∑
k=0

(m

k

)( n

� − k

)
=

�∑
k=0

( m

� − k

)(n

k

)
.

Proof For 1 + X ∈ R[X] it follows from (5.15) that

(1 + X)m(1 + X)n = (1 + X)m+n . (8.16)

Since X commutes with 1 = 1X0 = X0, that is, X1 = 1X, the binomial theo-
rem (8.4) implies

(1 + X)j =
j∑

i=0

(j

i

)
Xi , j ∈ N . (8.17)
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Thus, from (8.15), we get

(1 + X)m(1 + X)n =
( m∑

k=0

(m

k

)
Xk

)( n∑
j=0

(n

j

)
Xj

)
=
∑

�

( �∑
k=0

(m

k

)( n

� − k

))
X� ,

and then, with (8.16) and (8.17), it follows that

∑
�

( �∑
k=0

(m

k

)( n

� − k

))
X� =

∑
�

(m + n

�

)
X� ,

taking into account that
(

�
k

)
= 0 for k > �. The claim can now be obtained by

matching the coefficients of X� on both sides of the equal sign.5 �

If p =
∑

k pkXk �= 0 is a polynomial, then there is, by Proposition 5.5, a
smallest m ∈ N such that pk = 0 for k > m. The number m is called the degree
of p, written deg(p), and pm is called the leading coefficient of p. By convention,
the degree of the zero polynomial, p = 0, is −∞ (‘negative infinity’) for which the
following relations hold:6

−∞ < k , k ∈ N , −∞ + k = k + (−∞) = −∞ , k ∈ N ∪ {−∞} . (8.18)

For k + (−∞) we write also k − ∞.
It is clear that

deg(p + q) ≤ max
(
deg(p),deg(q)

)
, deg(pq) ≤ deg(p) + deg(q) (8.19)

for all p, q ∈ R[X]. If R has no zero divisors, in particular, if R is a field, then we
have

deg(pq) = deg(p) + deg(q) . (8.20)

It is also convenient to write an arbitrary element p ∈ R[[X]] in the form

p =
∑

k

pkXk , (8.21)

which explains the name ‘formal power series’. Since ‘infinite sums’ have no mean-
ing in R[[X]], this should be considered only as an alternative way of writing the
function p ∈ RN. That is, Xk is simply a placeholder used to indicate that the
function p has the value pk ∈ R at k ∈ N. Even so, the relations (8.14)–(8.15) can
be used to calculate with such infinite sums.

5Here we use the fact that two polynomials, that is, two functions from N to R, are equal if
and only if their coefficients match up.

6The conventions in (8.18) are chosen so that rules such as (8.19) hold for also zero polyno-
mials. Of course, −∞ is not a natural number, nor can it be an element of some Abelian group
which contains the natural numbers. (Why not?)
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Polynomial Functions

Let p =
∑n

k=0 pkXk be a polynomial over R. Then we define the value of p at
x ∈ R by

p(x) :=
n∑

k=0

pkxk ∈ R .

This defines a function
p : R → R , x �→ p(x) ,

the polynomial function, p ∈ RR, corresponding to p ∈ R[X].

8.14 Remarks (a) The polynomial function corresponding to the constant poly-
nomial a is the constant function (x �→ a) ∈ RR. The polynomial function corre-
sponding to X is the identity function idR ∈ RR.

(b) Let R be commutative. Then for all p, q ∈ R[X],

(p + q)(x) = p(x) + q(x) , (pq)(x) = p(x)q(x) , x ∈ R ,

that is, the function
R[X] → RR , p �→ p (8.22)

is a homomorphism when RR has the ring structure of Example 8.2(b). Moreover
this homomorphism takes 1 to 1.

Proof The simple verification is left to the reader. �

(c) If R is a nontrivial finite ring, then the function (8.22) is not injective. The
rings which are important in analysis are infinite and for such rings the function
(8.22) is injective.

Proof For the first claim, we note that, since R has at least two elements, the set

R[X] = RN is, by Propositions 6.7 and 6.11, uncountable. Since RR is a finite set,

there can be no injective function from R[X] to RR. The second claim is proved in

Remark 8.19(d). �

(d) Let M be a ring with unity. Suppose that there is a function R × M → M
which we denote by (a, m) �→ am. Then we can define the value of p =

∑n
k=0 pkXk

at m ∈ M by

p(m) :=
n∑

k=0

pkmk .

A trivial, but important, case is when R is a subring of M . Then any p ∈ R[X]
can be considered also as an element of M [X] and hence R[X] ⊆ M [X]. In Re-
mark 12.12 we will return to this general situation.
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(e) Let p =
∑

k pkXk ∈ R[[X]] be a formal power series. Then a definition of
the form p(x) :=

∑
k pkxk for x ∈ R is meaningless since ‘infinite sums’ are, in

general, undefined in R. Even so, in Section II.9 we will meet certain formal
power series which have the property that for certain x ∈ R the value of p at x,
p(x) :=

∑
k pkxk ∈ R, makes sense.

(f ) For an efficient calculation of p(x), note that p can be written in the form

p =
((

· · ·
(
(pnX + pn−1)X + pn−2

)
· · ·

)
X + p1

)
X + p0

(which can easily be proved using induction). This suggests an ‘iterative process’
for evaluating p(x): Calculate xn, xn−1, . . . , x0 using

xn := x , xk−1 := pkxk + pk−1 , k = n, n − 1, . . . , 1 ,

and then set p(x) = x0. This ‘algorithm’ is easy to program and requires only
n multiplications and n additions. A ‘direct’ calculation, on the other hand, re-
quires 2n − 1 multiplications and n additions. �

Division of Polynomials

For polynomials over a field K, we now prove an important version of the division
algorithm of Proposition 5.4.

8.15 Proposition Let K be a field and p, q ∈ K[X] with q �= 0. Then there are
unique polynomials r and s such that

p = sq + r and deg(r) < deg(q) . (8.23)

Proof (a) Existence: If deg(p) < deg(q), then s := 0 and r := p satisfy (8.23). So
we can assume that n := deg(p) ≥ deg(q) =: m. Thus we have

p =
n∑

k=0

pkXk , q =
m∑

j=0

qjX
j , pn �= 0 , qm �= 0 .

Set s(1) := pnq−1
m Xn−m ∈ K[X]. Then p(1) := p − s(1)q is a polynomial such that

deg(p(1)) < deg(p). If deg(p(1)) < m, then s := s(1) and r := p(1) satisfy (8.23).
Otherwise we apply the above argument to p(1) in place of p. Repeating as neces-
sary, after a finite number of steps we find polynomials r and s which satisfy (8.23).

(b) Uniqueness: Suppose that s(1) and r(1) are other polynomials with the
property that p = s(1)q + r(1) and deg(r(1)) < deg(q). Then (s(1) − s)q = r − r(1).
If s(1) − s �= 0, then from (8.20) we would get

deg(r − r(1)) = deg
(
(s(1) − s)q

)
= deg(s(1) − s) + deg(q) > deg(q) ,

which, because deg(r − r(1)) ≤ max
(
deg(r),deg(r(1))

)
< deg(q), is not possible.

Thus s(1) = s and also r(1) = r. �
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Note that the above proof is ‘constructive’, that is, the polynomials r and s
can be calculated using the method described in (a).

As a first application of Proposition 8.15 we prove that a polynomial can be
‘expanded about’ any a ∈ K.

8.16 Proposition Let K be a field, p ∈ K[X] a polynomial of degree n ∈ N and
a ∈ K. Then there are unique b0, b1, . . . , bn ∈ K such that

p =
n∑

k=0

bk(X − a)k = b0 + b1(X − a) + b2(X − a)2 + · · · + bn(X − a)n . (8.24)

In particular, bn �= 0.

Proof Since deg(X − a) = 1, it follows from Proposition 8.15 that there are
unique p(1) ∈ K[X] and b0 ∈ K such that p = (X − a)p(1) + b0. From (8.20) we
have that deg(p(1)) = deg(p) − 1 so the claim can then be proved by induction. �

Linear Factors

A direct consequence of Proposition (8.16) is the following factorization theorem.

8.17 Theorem Let K be a field and p ∈ K[X] with deg(p) ≥ 1. If a ∈ K is a zero
of p, that is, if p(a) = 0, then X − a ∈ K[X] divides p, that is, p = (X − a)q for
some unique q ∈ K[X] with deg(q) = deg(p) − 1.

Proof Evaluating both sides of (8.24) at a gives 0 = p(a) = b0, and so

p =
n∑

k=1

bk(X − a)k =
(n−1∑

j=0

bj+1(X − a)j
)
(X − a) ,

which proves the claim. �

8.18 Corollary A nonconstant polynomial of degree m over a field has at most
m zeros.

8.19 Remarks Let K be a field.

(a) In general, a nonconstant polynomial may have no zeros. For example, if K is
an ordered field, then by Proposition 8.9(ii) and (vii), the polynomial X2 + 1 has
no zeros.

(b) Let p ∈ K[X] with deg(p) = m ≥ 1. If a1, . . . , an ∈ K are all the zeros of p,
then p can be written uniquely in the form

p = q

n∏
j=1

(X − aj)m(j)
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where q ∈ K[X] has no zeros and m(j) ∈ N×. Here m(j) is called the multiplicity
of the zero aj of p. The zero aj is simple if m(j) = 1. In addition,

∑n
j=1 m(j) ≤ m.

Proof This follows from Theorem 8.17 by induction. �

(c) If p and q are polynomials over K of degree ≤ n such that p(ai) = q(ai) for
some distinct a1, a2, . . . , an+1 ∈ K, then p = q (identity theorem for polynomials).

Proof From (8.19) we have deg(p − q) ≤ n. Since p − q has n+1 zeros, the claim follows

from Corollary 8.18. �

(d) If K is an infinite field, that is, if the set K is infinite, then the homomor-
phism (8.22) is injective.7

Proof If p, q ∈ K[X] are such that p = q, then p(x) = q(x) for all x ∈ K. Since K is

infinite, p = q follows from (c). �

Polynomials in Several Indeterminates

To complete this section, we extend the above results to the case of formal power
series and polynomials in m indeterminates. In analogy to the m = 1 cases, namely
R[[X]] and R[X], for m ∈ N×, we define addition and multiplication on the set
R(Nm) = Funct(Nm, R) by

(p + q)α := pα + qα , α ∈ Nm , (8.25)

and
(pq)α :=

∑
β≤α

pβqα−β , α ∈ Nm . (8.26)

In (8.26), the sum is over all multi-indices β ∈ Nm with β ≤ α. In this situation,
p ∈ R(Nm) is called a formal power series in m indeterminates over R. We set

R[[X1, . . . , Xm]] :=
(
R(Nm),+, ·

)
,

where + and · are as in (8.25) and (8.26).
A formal power series p ∈ R[[X1, . . . , Xm]] is called a polynomial in m inde-

terminates over R if pα = 0 for almost all α ∈ Nm. The set of all such polynomials
is written R[X1, . . . , Xm].

Set X := (X1, . . . , Xm) and, for α ∈ Nm, denote by Xα the formal power
series (that is, the function Nm → R) such that

Xα
β :=

{
1 , β = α ,

0 , β �= α ,
β ∈ Nm .

Then each p ∈ R[[X1, . . . , Xm]] can be written uniquely in the form

p =
∑

α∈Nm

pαXα .

7For finite fields this statement is false. See Remark 8.14(c) and Exercise 16.
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The rules (8.25) and (8.26) become∑
α∈Nm

pαXα +
∑

α∈Nm

qαXα =
∑

α∈Nm

(pα + qα)Xα (8.27)

and ( ∑
α∈Nm

pαXα
)( ∑

β∈Nm

qβXβ
)

=
∑

α∈Nm

(∑
β≤α

pβqα−β

)
Xα . (8.28)

Once again (8.27) and (8.28) can be obtained by using the distributive law and
the rule

aXαbXβ = abXα+β , a, b ∈ R , α, β ∈ Nm .

The degree of a polynomial

p =
∑

α∈Nm

pαXα ∈ R[X1, . . . , Xm] (8.29)

is defined by8

deg(p) := max{ |α| ∈ N ; pα �= 0 } .

A polynomial of the form pαXα with α ∈ Nm is called a monomial. The polyno-
mial (8.29) is homogeneous of degree k if pα = 0 whenever |α| �= k. Every homo-
geneous polynomial of degree k ∈ N has the form∑

|α|=k

pαXα , pα ∈ R .

Polynomials of degree ≤ 0 are called constant, polynomials of degree 1 are called
linear, and polynomials of degree 2 are called quadratic.

8.20 Remarks (a) R[[X1, . . . , Xm]] is a ring with unity X0 = X(0,0,...,0), that is, X0

is the function Nm → R which has the value 1 at (0, 0, . . . , 0) and is zero otherwise.
If R is commutative then so is R[[X1, . . . , Xm]]. The polynomial ring in the inde-
terminates X1, . . . , Xn, that is, R[X1, . . . , Xn], is a subring of R[[X1, . . . , Xm]]. R is
isomorphic to the subring RX0 := { aX0 ; a ∈ R } of R[X1, . . . , Xn]. By means of
this isomorphism we identify R and RX0, and hence we consider R to be a subring
of R[X1, . . . , Xn] and write a for aX0.

(b) Let R be a commutative ring and p ∈ R[X1, . . . , Xm]. Then we define the value
of p at x := (x1, . . . , xm) ∈ Rm by

p(x) :=
∑

α∈Nm

pαxα ∈ R ,

8We use the conventions that max(∅) = −∞ and min(∅) = ∞.
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and the corresponding polynomial function (in m variables) by

p : Rm → R , x �→ p(x) .

The function
R[X1, . . . , Xm] → R(Rm) , p �→ p (8.30)

is a homomorphism when R(Rm) is given the ring structure of Example 8.2(b).

(c) Let K be an infinite field. Then the homomorphism (8.30) is injective.
Proof Let p ∈ K[X1, . . . , Xm]. Then, by Remark 7.6(d), it suffices to show that p is
zero if p(x) = 0 for all x = (x1, . . . , xm) ∈ Km. Clearly p =

∑
α pαXα can be written in

the form

p =

n∑
j=0

qjX
j
m (8.31)

for suitable n ∈ N and qj ∈ K[X1, . . . , Xm−1]. This suggests a proof by induction on the
number of indeterminates: For m = 1, the claim is true by Remark 8.19(d). We suppose
next that the claim is true for 1 ≤ k ≤ m − 1. Using (8.31), set

p(x′) :=
n∑

j=0

q
j
(x1, . . . , xm−1)X

j ∈ K[X] , x′ := (x1, . . . , xm−1) ∈ Km−1 .

Because p(x) = 0 for x ∈ Km, we have p(x′)(ξ) = 0 for each ξ ∈ K and fixed x′ ∈ Km−1.

Remark 8.19(d) implies that p(x′) = 0, that is, q
j
(x1, . . . , xm−1) = 0 for all 0 ≤ j ≤ n.

Since x′ ∈ Km−1 was arbitrary, we have, by induction, that qj(X1, . . . , Xm−1) = 0 for

all j = 0, . . . , n. This, of course, implies p = 0. �

Convention Let K be an infinite field and m ∈ N×. Then we identify the
polynomial ring K[X1, . . . , Xm] with its image in K(Km) under the homomor-
phism (8.30). In other words, we identify the polynomial p ∈ K[X1, . . . , Xm]
with the polynomial function

Km → K , x �→ p(x) .

Hence K[X1, . . . , Xm] is a subring of K(Km), which we call the polynomial
ring in m indeterminates over R.

Exercises

1 Let a and b be commuting elements of a ring with unity and n ∈ N.
Prove the following:

(a) an+1 − bn+1 = (a − b)
∑n

j=0 ajbn−j .

(b) an+1 − 1 = (a − 1)
∑n

j=0 aj .

Remark
∑n

j=0 aj is called a finite geometric series in R.



I.8 Rings, Fields and Polynomials 81

2 For a ring R with unity, show that (1 − X)
∑

k Xk =
(∑

k Xk
)
(1 − X) = 1 in R[[X]].

Remark
∑

k Xk is called a geometric series.

3 Show that a polynomial ring in one indeterminate over a field has no zero divisors.

4 Show that a finite field cannot be ordered.

5 Prove Remarks 8.20(a) and (b).

6 Let R be a ring with unity. A subring I is called an ideal of R if RI = IR = I. An
ideal is proper if it is a proper subset of R. Show the following:

(a) An ideal I is proper if and only if 1 /∈ I.

(b) A field K has exactly two ideals: {0} and K.

(c) If ϕ : R → R′ is a ring homomorphism, then ker(ϕ) is an ideal of R.

(d) The intersection of a set of ideals is an ideal.

(e) Let I be an ideal of R and let R/I be the quotient group (R, +)/I. Define an operation
on R/I by

R/I × R/I → R/I , (a + I, b + I) �→ ab + I .

Show that, with this operation as multiplication, R/I is a ring and the quotient homo-
morphism p : R → R/I is a ring homomorphism.

Remark R/I is called the quotient ring of R modulo I, and, for a ∈ R, a + I is the coset
of a modulo I. Instead of a ∈ b + I, we often write a ≡ b (mod I) (‘a is congruent to b
modulo I’).

7 Let R be a commutative ring with unity and m ∈ N with m ≥ 2. Let

Sm × Nm → Nm , (σ, α) �→ σ · α

be the action of the symmetric group Sm on Nm as in Exercise 7.6(d). Show the following:

(a) The equation
σ ·∑α aαXα :=

∑
α aαXσ·α

defines an action

Sm × R[X1, . . . , Xm] → R[X1, . . . , Xm] , (σ, p) �→ σ · p

of Sm on the polynomial ring R[X1, . . . , Xm].

(b) For each σ ∈ Sm, p �→ σ · p is an automorphism of R[X1, . . . , Xm].

(c) Determine the orbits S3 · p in the following cases:

(i) p := X1.

(ii) p := X2
1 .

(iii) p := X2
1X2X

3
3 .

(d) A polynomial p ∈ R[X1, . . . , Xm] is called symmetric if Sm · p = {p}, that is, when it
is fixed by all permutations. Show that p is symmetric if and only if it has the form

p =
∑

[α]∈Nm/Sm
a[α]

(∑
β∈[α] X

β
)

where a[α] ∈ R for all [α] ∈ Nm/Sm.



82 I Foundations

(e) Determine all symmetric polynomials in 3 indeterminates of degree ≤ 3.

(f) Show that the elementary symmetric functions

s1 :=
∑

1≤j≤m Xj

s2 :=
∑

1≤j<k≤m Xj · Xk

...

sk :=
∑

1≤j1<j2<···<jk≤m Xj1 · Xj2 · · · · · Xjk

...

sm := X1X2 · · ·Xm

are symmetric polynomials.

(g) Show that the polynomial

(X − X1)(X − X2) · · · (X − Xm) ∈ R[X1, . . . , Xm][X]

in one indeterminate X over the ring R[X1, . . . , Xm] satisfies

(X − X1)(X − X2) · · · (X − Xm) =
∑m

k=0(−1)kskXm−k

where s0 := 1 ∈ R.

8 Let R be a commutative ring with unity. For r ∈ R, define the power series p[r] ∈ R[[X]]
by p[r] :=

∑
k rkXk. Show the following:

(a)
(
p[1]

)m
=
∑

k

(m + k − 1

k

)
Xk, m ∈ N×.

(b)

m∏
j=1

p[aj ] =
∑

k

( ∑
|α|=k

aα)Xk, a := (a1, . . . , am) ∈ Rm, m ∈ N with m ≥ 2.

(c)
∑

α∈Nm

|α|=k

1 =
(m + k − 1

k

)
.

(d)
∑

α∈Nm

|α|≤k

1 =
(m + k

k

)
.

9 Verify that, for an arbitrary set X,
(
P(X), �,∩

)
is a commutative ring with unity

(see Example 8.2(f)).

10 Let K be an ordered field and a, b, c, d ∈ K.

(a) Prove the inequality
|a + b|

1 + |a + b| ≤ |a|
1 + |a| +

|b|
1 + |b| .

(b) Show that, if b > 0, d > 0 and
a

b
<

c

d
, then

a

b
<

a + c

b + d
<

c

d
.

(c) Show that, if a, b ∈ K×, then
∣∣∣a
b

+
b

a

∣∣∣ ≥ 2.
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11 Show that, in any ordered field K, we have

sup{a, b} = max{a, b} =
a + b + |a − b|

2
,

inf{a, b} = min{a, b} =
a + b − |a − b|

2
,

a, b ∈ K .

12 Let R be an ordered ring and a, b ∈ R such that a ≥ 0 and b ≥ 0. Suppose that there
is some n ∈ N× such that an = bn. Show that a = b.

13 Prove the statements in Examples 8.2(d) and (e).

14 Let K be a field. For p =
∑n

k=0 pkXk ∈ K[X], set

Dp :=
n∑

k=1

kpkXk−1 ∈ K[X] ,

if n ∈ N×, and Dp = 0, if p is constant. Prove that

D(pq) = pDq + qDp , p, q ∈ K[X] .

15 Find r, s ∈ K[X] with deg(r) < 3 such that

X5 − 3X4 + 4X3 = s(X3 − X2 + X − 1) + r .

16 Let K be a finite field. Show that the homomorphism

K[X] → KK , p �→ p

from Remark 8.14(b) is not, in general, injective. (Hint: p := X2 − X ∈ F2[X].)
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9 The Rational Numbers

After the algebraic investigations of the previous two sections, we return to our
original question about the extension of the natural numbers to larger number
systems. We want such extensions to preserve the usual commutivity, associativity
and distributive laws of the natural numbers. As well, arbitrary differences and
(almost arbitrary) quotients of elements should exist. In view of Remarks 8.1
and 8.7, these desired properties characterize fields, so a more precise goal is to
‘embed’ N in a field such the restriction of the field operations to N coincide with
the usual addition and multiplication of natural numbers as seen in Theorem 5.3.
Since N has a total order which is compatible with the operations + and · , we
expect that this order structure should also extend to the entire field. Theorem 5.3
shows that the rules for calculating with the natural numbers, at least, do not
contradict the rules that occur in ordered fields. We will see in this section that
our question has an essentially unique answer. To show this we first embed N in
the ring of integers, and then extend this ring to the field of rational numbers.

The Integers

From Theorem 5.3 we see that N = (N,+, ·) is ‘almost’ a commutative ring with
unity. The only property missing is the existence of an additive inverse −n for
each n ∈ N.

Suppose that Z is a ring which contains N, and that the ring operations on Z
restrict to the usual operations on N. Then for all (m,n) ∈ N2 the difference m − n
is a well defined element of Z, and

m − n = m′ − n′ ⇐⇒ m + n′ = m′ + n , (m′, n′) ∈ N2 . (9.1)

For the sum of two such elements we have

(m − n) + (m′ − n′) = (m + m′) − (n + n′) , (9.2)

and for their product

(m − n) · (m′ − n′) = (mm′ + nn′) − (mn′ + m′n) . (9.3)

Note that the additions and multiplications in parentheses on the right side of
each equation can be carried out completely within N. This observation suggests
defining addition and multiplication on (m,n) ∈ N2 using (9.2) and (9.3). In doing
so we should not overlook (9.1) which indicates that two different pairs of natural
numbers may correspond to a single element of the ring we are constructing. The
following theorem shows the success of this strategy.

9.1 Theorem There is a smallest domain (commutative ring without zero divisors)
with unity, Z, such that N ⊆ Z and the ring operations on Z restrict to the usual
operations on N. This ring is unique up to isomorphism and is called the ring of
integers.
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Proof We outline only the most important steps in the proof and leave to the reader the
easy verifications that the operations are well defined and that the ring axioms (R1)–(R3)
are satisfied.

Define an equivalence relation on N2 by

(m, n) ∼ (m′, n′) :⇐⇒ m + n′ = m′ + n ,

and set Z := N2/∼. Define addition and multiplication on Z by[
(m, n)

]
+
[
(m′, n′)

]
:=

[
(m + m′, n + n′)

]
and [

(m, n)
]
·
[
(m′, n′)

]
:=

[
(mm′ + nn′, mn′ + m′n)

]
.

The rules of arithmetic in N from Theorem 5.3 imply that Z := (Z, +, ·) is a commutative
ring without zero divisors. The zero and unity of Z are the equivalence classes [(0, 0)]
and [(1, 0)] respectively.

The function
N → Z , m �→

[
(m, 0)

]
(9.4)

is injective and compatible with the addition and multiplication operations in N and Z.
Consequently, we can identify N with its image under (9.4). Then N ⊆ Z, and the oper-
ations on Z restrict to the usual operations on N.

Now let R ⊇ N be some commutative ring with unity and without zero divisors,

such that the operations on R restrict to the usual operations on N. Since Z, by con-

struction is clearly minimal, there is a unique injective homomorphism ϕ : Z → R with

ϕ |N = (inclusion of N in R). This implies the claimed uniqueness up to isomorphism. �

In the following we do not distinguish different isomorphic copies of Z and
speak of the (unique) ring of integers. (Another approach: Fix once and for all
a particular representative of the isomorphism class of Z and call it the ring of
integers.) The elements of Z are the integers, and −N× := {−n ; n ∈ N× } is the
set of negative integers. Clearly Z = N× ∪ {0} ∪ (−N×) = N ∪ (−N×) as disjoint
unions.

The Rational Numbers

In the ring Z, we can now form arbitrary differences m − n, but, in general, the
quotient of two integers m/n remains undefined, even if n �= 0. For example, the
equation 2x = 1 has no solution in Z since, if 2(m − n) = 1 with m,n ∈ N, then
2m = 2n + 1, contradicting Proposition 5.4. To overcome this ‘defect’ we will con-
struct a field K which contains Z as a subring. Of course, we choose K ‘as small
as possible’.

Following the pattern established for the extension of N to Z, we suppose first
that K is a such field. Then, for a, c ∈ Z and b, d ∈ Z× := Z\{0}, we have rela-
tion (i) of Remark 8.7(d). This suggests that we introduce ‘fractions’ first as pairs
of integers and define operations on these pairs so that the rules of Remark 8.7(d)
hold. The following theorem shows that this idea works.
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9.2 Theorem There is, up to isomorphism, a unique smallest field Q, which
contains Z as a subring.

Proof Once again we give only the most important steps in the proof and leave the
verifications to the reader.

Define an equivalence relation on Z × Z× by

(a, b) ∼ (a′, b′) :⇐⇒ ab′ = a′b ,

and set Q := (Z × Z×)/∼. Define addition and multiplication on Q by[
(a, b)

]
+
[
(a′, b′)

]
:=

[
(ab′ + a′b, bb′)

]
and [

(a, b)
]
·
[
(a′, b′)

]
:=

[
(aa′, bb′)

]
.

With these operations Q := (Q, +, ·) is a field.

The function

Z → Q , z �→
[
(z, 1)

]
(9.5)

is an injective ring homomorphism, and so we can identify Z with its image under (9.5)
in Q. Thus Z is a subring of Q.

Let Q be a field which contains Z as a subring. By construction, Q is minimal and

so there is a unique injective homomorphism ϕ : Q → Q such that ϕ |Z = (inclusion of Z
in Q). This implies the claimed uniqueness of Q up to isomorphism. �

The elements of Q are called rational numbers. (Again, we do not distinguish
isomorphic copies of Q.)

9.3 Remarks (a) It is not hard to see that

r ∈ Q ⇐⇒ ∃ (p, q) ∈ Z × N× with r = p/q .

By Proposition 5.5, N is well ordered, and so, for a fixed r ∈ Q, the set{
q ∈ N× ; ∃ p ∈ Z with

p

q
= r

}
has a unique minimum q0 := q0(r). With p0 := p0(r) := rq0(r) we get a unique
representation r = p0/q0 of r in lowest terms.

(b) In the construction of Q as an ‘extension field’ of Z in Theorem 9.2, no use
is made of the fact that the elements of Z are ‘numbers’. All that was necessary
was that Z be a domain. So this proof shows that any domain R is a subring of
a unique (up to isomorphism) minimal field Q. This field is called the quotient
field of R.
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(c) Let K be a field. Then the polynomial ring K[X] is a domain (see Exer-
cise 8.3). The corresponding quotient field, K(X), is called the field of rational
functions over K. Consequently a rational function over K is a quotient of two
polynomials over K,

r = p/q , p, q ∈ K[X] , q �= 0 ,

with the condition that, if p′, q′ ∈ K[X], then p′/q′ = p/q = r if pq′ = p′q. �

9.4 Proposition Z and Q are countably infinite.

Proof Since N ⊆ Z ⊆ Q, Example 6.1(a) shows that Z and Q are infinite. It is
not difficult to see that

ϕ : N → Z , ϕ(n) :=

{
n/2 , n even ,

−(n + 1)/2 , n odd ,

is a bijection, and hence Z is countable. In view of Proposition 6.9, Z × N× is also
countable. Expressing each element of Q in lowest terms as in Remark 9.3(a), one
sees that there is a bijection from Q to a certain subset of Z × N×. It then follows
from Proposition 6.7 that Q is countable. �

We define an order on Q by

m

n
≤ m′

n′ :⇐⇒ m′n − mn′ ∈ N , m,m′ ∈ Z , n, n′ ∈ N× .

One can easily check that ≤ is well defined.

9.5 Theorem Q := (Q,≤) is an ordered field and the order on Q restricts to the
usual order on N.

Proof The simple verifications are left as an exercise. �

Even though Z is not a field, the order on Q restricts to a total order on Z
for which Proposition 8.9(i)–(vii) hold. In contrast to N, neither Z nor Q is well
ordered by ≤ .1 For example, neither Z, nor the set of even integers

2Z = { 2n ; n ∈ Z } ,

nor the set of odd integers

2Z + 1 = { 2n + 1 ; n ∈ Z }

has a minimum — a fact which the Peano axioms, Theorem 5.3(vii) and Proposi-
tion 8.9(iv) make clear.

1However, it is possible to construct another order ≺ on Q so that (Q,≺) is well ordered.
See Exercise 9.
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Rational Zeros of Polynomials

With the construction of the field Q we have found a number system in which
familiar school arithmetic can be used without restriction. In particular, in Q we
can now solve (uniquely) any equation of the form ax = b with arbitrary a, b ∈ Q
and a �= 0.

What about solutions of equations of the form xn = b with b ∈ Q and n ∈ N×?
Here we can prove a general result which, in a sense, shows that such equations
have few solutions.

9.6 Proposition Any rational zero of a polynomial of the form

f = Xn + an−1X
n−1 + · · · + a1X + a0 ∈ Z[X]

is an integer.

Proof Suppose x ∈ Q\Z is a zero of the above polynomial. Write x = p/q in
lowest terms. Because x /∈ Z, we have p ∈ Z× and q > 1. The statement f(p/q) = 0
is equivalent to

pn = −q

n−1∑
j=0

ajp
jqn−1−j .

Because q > 1, there is a prime number r with r |q. Thus r divides pn too and
also p (see Exercise 5.7). Consequently, p′ := p/r and q′ := q/r are integers and
p′/q′ = p/q = x. Since p′ �= 0 and q′ < q, this contradicts the assumption that the
representation x = p/q is in lowest terms. �

9.7 Corollary Let n ∈ N× and a ∈ Z. If the equation xn = a has any solutions
in Q, then all such solutions are integers.

Square Roots

We consider now the special case of the quadratic equation x2 = a, not just in Q,
but in an arbitrary ordered field K.

9.8 Lemma Let K be an ordered field and a ∈ K×. If the equation x2 = a has
a solution, then a > 0. If b ∈ K is a solution, then the equation has exactly two
solutions, namely b and −b.

Proof The first claim is clear since any solution b is nonzero and hence a = b2 > 0
by Proposition 8.9(vii). Because (−b)2 = b2, if b is a solution, then so is −b. By
Proposition 8.9(iv), b = −b would imply b = a = 0, and so b and −b are two
distinct solutions. By Corollary 8.18, no further solutions can exist. �
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Let K be an ordered field and a ∈ K with a > 0. If the equation x2 = a has
a solution in K, then, by Lemma 9.8, it has exactly one positive solution. This is
called the square root of a and is written

√
a. In this case we say, ‘The square root

of a exists in K’. In addition we set
√

0 := 0.

9.9 Remarks (a) If
√

a and
√

b exist for some a, b ≥ 0, then
√

ab also exists
and

√
ab =

√
a
√

b.

Proof From x2 = a and y2 = b it follows that (xy)2 = x2y2 = ab. This shows the exis-

tence of
√

ab as well as the equation
√

ab =
√

a
√

b. �

(b) For all x ∈ K, we have |x| =
√

x2.

Proof If x ≥ 0, then
√

x2 = x. Otherwise, if x < 0, then
√

x2 = −x. �

(c) For a ∈ Z,
√

a exists in Q if and only if a is the square of a natural number. �

Exercises

1 Let K be a field and a ∈ K×. For m ∈ N, define a−m := (a−1)m.

(a) Prove that a−m = 1/am and am−n = am/an for all m, n ∈ N.

(b) By (a), ak is defined for all k ∈ Z. Verify the following rules:

aka� = ak+� , akbk = (ab)k , (ak)� = ak�

for a, b ∈ K× and k, � ∈ Z.

2 For n ∈ Z, nZ is an ideal of Z, and so the quotient ring Zn := Z/nZ, Z modulo n,
is well defined (see Exercise 8.6). Show the following:

(a) For n ∈ N×, Zn has exactly n elements. What is Z0?

(b) If n ≥ 2 and n ∈ N is not a prime number, then Zn has zero divisors.

(c) If p ∈ N is a prime number, then Zp is a field.

(Hint: (b) Proposition 5.6. (c) For a ∈ N with 0 < a < p one needs to find some x ∈ Z
such that ax ∈ 1 + pZ. By repeated use of the division algorithm (Proposition 5.4) find
positive numbers r0, . . . , rk and q, q0, . . . , qk such that a > r0 > r1 > · · · > rk and

p = qa+r0 , a = q0r0+r1 , r0 = q1r1+r2, . . . , rk−2 = qk−1rk−1+rk , rk−1 = qkrk .

It follows that rj = mja + njp for j = 0, . . . , k with mj , nj ∈ Z. Show that, since p is a
prime number, rk = 1.)

Remark Instead of a ≡ b (mod nZ) (see Exercise 8.6) we usually write a ≡ b (mod n) for
n ∈ Z. Thus a ≡ b (mod n) means that a − b ∈ nZ.

3 Let X be an n element set. Show the following:

(a) Num
(
P(X)

)
= 2n.

(b) Num
(
Peven(X)

)
= Num

(
Podd(X)

)
for n > 0. Here Peven(X) and Podd(X) are de-

fined by
Peven(X) :=

{
A ⊆ X ; Num(A) ≡ 0 (mod 2)

}
,

Podd(X) :=
{

A ⊆ X ; Num(A) ≡ 1 (mod 2)
}

.

(Hint: Exercise 6.3 and Theorem 8.4.)



90 I Foundations

4 An ordered field K is called Archimedean if, for all a, b ∈ K such that a > 0, there is
some n ∈ N such that b < na. Verify that Q := (Q,≤) is Archimedean.

5 Show that any rational zero of a polynomial p =
∑n

k=0 akXk ∈ Z[X] of degree n ≥ 1
is in a−1

n Z. (Hint: Consider an−1
n p.)

6 On the symmetric group Sn define the sign function by

sign σ :=
∏

1≤j<k≤n

σ(j) − σ(k)

j − k
, σ ∈ Sn .

Show the following:

(a) sign(Sn) ⊆ {±1}.
(b) sign(σ ◦ τ) = (sign σ)(sign τ) for σ, τ ∈ Sn. That is, sign is a homomorphism from Sn

to the multiplicative group
(
{±1}, ·

)
. The kernel of this homomorphism is called the

alternating group An, that is, An := {σ ∈ Sn ; sign σ = 1 }. The permutations in An are
called even, those in Sn\An are called odd.

(c) An has order n!/2 for n ≥ 2, and 1 for n = 1.

(d) sign is surjective for n ≥ 2.

(e) A transposition is a permutation which interchanges two numbers and leaves the
others fixed. For n ≥ 2, any permutation σ ∈ Sn can be represented as a composition
of transpositions: σ = σ1 ◦ σ2 ◦ · · · ◦ σN , and then sign σ = (−1)N , independent of this
representation. Thus the number of transpositions in the representation is even for even
permutations and odd for odd permutations.

7 Give a complete proof of Theorem 9.5.

8 For k ∈ N and q0, . . . , qk ∈ N×, the rational number

q0 +
1

q1 +
1

q2 +
1

q3 +
1

...

qk−1 +
1

qk

is called a continued fraction. Show that each x ∈ Q with x ≥ 0 can be represented as a
continued fraction, and that this representation is unique if qk 
= 1. (Hint: Let x = r/r0

in lowest terms. By the division algorithm there are unique q0 ∈ N and r1 ∈ N such that
r1 < r0 and r = q0r0 + r1. If necessary, use the division algorithm on the pair (r0, r1).
Repeating as needed, construct q0, . . . , qk.)

9 Construct an order ≺ on Q such that (Q,≺) is well ordered. (Hint: Consider Propo-

sition 9.4 and (6.3).)
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10 The Real Numbers

We have seen that the equation x2 = a for positive a is, in general, not solvable
in Q. Since x2 is the area of a square with side x, this means, for example, that there
is no square of area 2 — so long as we stay within the field of rational numbers.
As is known from high school, in order to remedy this unsatisfactory situation, we
must allow squares with sides whose lengths are ‘irrational numbers’. This means
that our field Q is too small, and we need a larger field which contains Q as a
subfield, and in which the equation x2 = a for a > 0 always has a solution. In
other words, we seek an ordered extension field of Q in which the equation x2 = a
is solvable for each a > 0.

Order Completeness

The desired extension field is characterized by its completeness property. We say
a totally ordered set X is order complete (or X satisfies the completeness axiom),
if every nonempty subset of X which is bounded above has a supremum.

10.1 Proposition Let X be a totally ordered set. Then the following are equivalent:

(i) X is order complete.

(ii) Every nonempty subset of X which is bounded below has an infimum.

(iii) For all nonempty subsets A, B of X such that a ≤ b for all (a, b) ∈ A × B,
there is some c ∈ X such that a ≤ c ≤ b for all (a, b) ∈ A × B.

Proof ‘(i)=⇒(ii)’ Let A be a nonempty subset of X which is bounded below.
Then B := {x ∈ X ; x ≤ a for all a ∈ A } is nonempty and bounded above by any
a ∈ A. By assumption, m := sup(B) exists. Since any element of A is an upper
bound of B, and m is the least upper bound of B, we have m ≤ a for all a ∈ A.
Thus m is in B, and, by Remark 4.5(c), m = max(B). By definition, this means
that m = inf(A).

‘(ii)=⇒(iii)’ Let A and B be nonempty subsets of X such that a ≤ b for
(a, b) ∈ A × B. Each a ∈ A is a lower bound of B, so, by assumption, c := inf(B)
exists. Since c is the greatest lower bound, we have c ≥ a for a ∈ A. Of course,
c being a lower bound of B means c ≤ b for all b ∈ B.

‘(iii)=⇒(i)’ Let A be a nonempty subset of X which is bounded above. Set
B := { b ∈ X ; b ≥ a for all a ∈ A }. Then is B nonempty and a ≤ b for all a ∈ A
and all b ∈ B. By hypothesis, there is some c ∈ X such that a ≤ c ≤ b for all a ∈ A
and b ∈ B. It follows that c = min(B), that is, c = sup(A). �

Item (iii) of Proposition 10.1 is called the Dedekind cut property.
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10.2 Corollary A totally ordered set is order complete if and only if every
nonempty bounded subset has a supremum and an infimum.

The following example shows that ordered fields are not necessarily order
complete.

10.3 Example Q is not order complete.

Proof We consider the sets

A := {x ∈ Q ; x > 0 and x2 < 2 } , B := {x ∈ Q ; x > 0 and x2 > 2 } .

Clearly 1 ∈ A and 2 ∈ B. From b − a = (b2 − a2)/(b + a) > 0 for (a, b) ∈ A × B it follows
that a < b for (a, b) ∈ A × B. Now suppose that there is some c ∈ Q such that

a ≤ c ≤ b , (a, b) ∈ A × B . (10.1)

Then for ξ := (2c + 2)/(c + 2) we have

ξ > 0 , ξ = c − c2 − 2

c + 2
, ξ2 − 2 =

2(c2 − 2)

(c + 2)2
. (10.2)

By Corollary 9.7 and Remark 4.3(b), either c2 < 2 or c2 > 2 is true. In the first case it

follows from (10.2) that ξ > c and ξ2 < 2, that is, ξ > c and ξ ∈ A, which contradicts

(10.1). In the second case (10.2) implies the inequalities ξ < c and ξ2 > 2, that is, ξ < c

and ξ ∈ B, which once again contradicts (10.1). Thus there is no c ∈ Q which satisfies

(10.1), and the claim follows from Proposition 10.1. �

Dedekind’s Construction of the Real Numbers

The following theorem, which shows that there is only one order complete extension
field of Q, is the most fundamental result of analysis and the starting point for
all research into the ‘limiting processes’ which are at the center of all analytic
investigation.

10.4 Theorem There is, up to isomorphism, a unique order complete extension
field R of Q. This extension is called the field of real numbers.

Proof For this fundamental theorem there are several proofs. The proof we present here
uses Dedekind cuts, a concept originally due to R. Dedekind. Once again, we sketch only
the essential ideas. For the (boring) technical details, see [Lan30]. Another proof, due to
G. Cantor, will be given in Section II.6.

Motivated by Proposition 10.1(iii), the idea is to ‘fill in’ the missing number c
between two subsets A and B of Q by simply identifying c with the ordered pair (A, B).
That is, the new numbers we construct are ordered pairs (A, B) of subsets of Q. It is
then necessary to give the set of such pairs the structure of an ordered field and show
that this field is order complete and contains an isomorphic copy of Q.
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It suffices to consider pairs (A, B) with a ≤ b for (a, b) ∈ A × B and such that
A ∪ B = Q. Such a pair is determined by either of the sets A or B. Choosing B leads to
the following formal definition. Let R ⊆ P(Q) be the set of all R ⊆ Q with the following
properties:

(D1) R 
= ∅, Rc = Q\R 
= ∅.
(D2) Rc = {x ∈ Q ; x < r for all r ∈ R }.
(D3) R has no minimum.

The function
Q → R , r �→ {x ∈ Q ; x > r } (10.3)

is injective, so we identify Q with its image in R, that is, we consider Q to be a subset
of R.

For R, R′ ∈ R, we define

R ≤ R′ :⇐⇒ R ⊇ R′ . (10.4)

Examples 4.4(a) and (b) show that ≤ is a partial order on R. If R and R′ are distinct,
then there is some r ∈ R with r ∈ (R′)c or some r′ ∈ R′ with r′ ∈ Rc. In the first case,
r < r′ for each r′ ∈ R′ and so r′ ∈ R for r′ ∈ R′. Consequently R′ ⊆ R, that is, R′ ≥ R.
In the second case, we have similarly R′ ≤ R. Therefore (R,≤) is a totally ordered set.

Let R be a nonempty subset of R which is bounded below, that is, there is some
A ∈ R such that R ⊆ A for all R ∈ R. Set S :=

⋃R. Then S is not empty, and, since
S ⊆ A, we have ∅ 
= Ac ⊆ Sc which implies that Sc is nonempty. Thus S satisfies (D1).
It is clear that S also satisfies (D2) and (D3) and so S is in R. Since S is itself a lower
bound of R, indeed the greatest lower bound, we have, as in Example 4.6(a), S = inf(R).
From Proposition 10.1 we conclude that R is order complete.

Define addition on R by

R × R → R , (R, S) �→ R + S = { r + s ; r ∈ R, s ∈ S } .

It is easy to verify that this operation is well defined, associative and commutative,
and has the identity element O := {x ∈ Q ; x > 0 }. Further, the additive inverse of
R ∈ R is −R := {x ∈ Q ; x + r > 0 for all r ∈ R }. Thus (R, +) is an Abelian group
and R > O ⇐⇒ −R < O.

Define multiplication on R by

R · R′ := { rr′ ∈ Q ; r ∈ R, r′ ∈ R′ } for R, R′ ≥ O

and

R · R′ :=

⎧⎪⎨⎪⎩
−
(
(−R) · R′) , R < O , R′ ≥ O ,

−
(
R · (−R′)

)
, R ≥ O , R′ < O ,

(−R) · (−R′) , R < O , R′ < O .

Then one can show that R := (R, +, ·,≤) is an ordered field which contains Q as a subfield
and that the order on R restricts to the usual order on Q.

Now let S be some order complete extension field of Q. Define a function by

S → R , r �→ {x ∈ Q ; x > r } .

One can prove that this is an increasing isomorphism. Consequently, R is unique up to

isomorphism. �
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The proof of Example 10.3 shows that the set

R := {x ∈ Q ; x > 0 and x2 > 2 }

is in R, but not in Q. In fact, one can show that R =
√

2 in R.

The Natural Order on R

The elements of R are called the real numbers and the order on R is the natural
order on the real numbers. The restriction of this order to the subsets

N ⊂ Z ⊂ Q ⊂ R

is, of course, the ‘usual order’ on each subset. A real number x is called positive
(or negative) if x > 0 (or x < 0). Thus

R+ := {x ∈ R ; x ≥ 0 }

is the set of nonnegative real numbers.

Since R is totally ordered, we can think of the real numbers as ‘points’ on the
number line1. Here we agree that x is ‘to the left of y’ when x < y, and that the
integers Z are ‘equally spaced’. The arrow gives the ‘orientation’ of the number
line, that is, the direction in which ‘the numbers increase’.

�� �� �� � � � � � �� �

This picture of R is based on the intuitive ideas that the real numbers are ‘un-
bounded in both directions’ and that they form a continuum, that is, the number
line has ‘no holes’. The first claim will be justified in Proposition 10.6. The second
is exactly the Dedekind continuity property.

The Extended Number Line

To extend our use of the symbols ±∞ to the real numbers, we set R̄ := R ∪ {±∞},
the extended number line, and make the convention that

−∞ < x < ∞ , x ∈ R ,

so that R̄ is a totally ordered set. We insist again that ±∞ are not real numbers.

1We use here, of course, the usual intuitive ideas of point and line. For a purely axiomatic
development of these concepts, the very readable book of P. Gabriel [Gab96] is recommended
(especially for the interesting historical comments).
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As well as the order structure, we (partially) extend the operations · and +
to R̄ as follows: For x ∈ R̄, we define

x + ∞ := ∞ for x > −∞ , x − ∞ := −∞ for x < ∞ ,

and

x · ∞ :=
{ ∞ , x > 0 ,

−∞ , x < 0 ,
x · (−∞) :=

{ −∞ , x > 0 ,

∞ , x < 0 ,

and, for x ∈ R, define

x

∞ :=
x

−∞ := 0 ,
x

0
:=

{ ∞ , x > 0 ,

−∞ , x < 0 .

Of course, we assume also that these operations are commutative.2 In particular,
the following hold:

∞ + ∞ = ∞ , −∞ − ∞ = −∞ , ∞ · ∞ = ∞ ,

(−∞) · ∞ = ∞ · (−∞) = −∞ , (−∞) · (−∞) = ∞ .

Note that

∞ − ∞ , 0 · (±∞) ,
±∞
+∞ ,

±∞
−∞ ,

0
0

,
±∞
0

are not defined, and that R̄ is not a field. (Why not?)

A Characterization of Supremum and Infimum

Using the extended number line, we can define a supremum and an infimum for
sets of real numbers which otherwise do not have these: If M is a nonempty subset
of R which is not bounded above (in R), then ∞ is the least upper bound of M in R̄
and so we set sup(M) := ∞. Similarly, if M is a nonempty subset of R which is not
bounded below, then inf(M) := −∞. We define also sup(∅) = −∞ and inf(∅) = ∞.
The use of these conventions is justified by the following characterization of the
supremum and infimum of sets of real numbers.

10.5 Proposition

(i) If A ⊆ R and x ∈ R, then

(α) x < sup(A) ⇐⇒ ∃ a ∈ A such that x < a.

(β) x > inf(A) ⇐⇒ ∃ a ∈ A such that x > a.

(ii) Every subset A of R has a supremum and an infimum in R̄.

2Compare the footnote on page 46.
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Proof (i) If A = ∅, then the claim follows directly from our convention. Suppose
then that A �= ∅. We prove only (α) since (β) is proved similarly.

‘=⇒’ If, to the contrary, x < sup(A) is such that a ≤ x for all a ∈ A, then x is
an upper bound of A, which, by the definition of sup(A), is not possible.

‘⇐=’ Let a ∈ A be such that x < a. Then clearly x < a ≤ sup(A).

(ii) If A is a nonempty subset of R which is bounded above, then Theorem 10.4
guarantees the existence of sup(A) in R, and hence also in R̄. On the other hand, if
A = ∅ or A is not bounded above, then sup(A) = −∞ or sup(A) = ∞ respectively.
The claim about the infimum follows similarly. �

The Archimedean Property

10.6 Proposition (Archimedes) N is not bounded above in R, that is, for each
x ∈ R there is some n ∈ N such that n > x.

Proof Let x ∈ R. For x < 0, the claim is obviously true. Suppose that x ≥ 0
and hence the set A := {n ∈ N ; n ≤ x } is nonempty and bounded above by x.
Then s := sup(A) exists in R. By Proposition 10.5, there is some a ∈ A such that
s − 1/2 < a. Now set n := a + 1 so that n > s. Then n is not in A and so n > x. �

10.7 Corollary

(i) Let a ∈ R. If 0 ≤ a ≤ 1/n for all n ∈ N×, then a = 0.

(ii) For each a ∈ R with a > 0 there is some n ∈ N× such that 1/n < a.

Proof If 0 < a ≤ 1/n for all n ∈ N×, then it follows that n ≤ 1/a for all n ∈ N×.
Thus N would be bounded above in R, contradicting Proposition 10.6.

(ii) is an equivalent reformulation of (i). �

The Density of the Rational Numbers in R

The next proposition shows that Q is ‘dense’ in R, that is, real numbers can be
‘approximated’ by rational numbers. We will consider this idea in much greater
generality in the next chapter. In particular, we will see that the real numbers are
uniquely characterized by this approximation property.

10.8 Proposition For all a, b ∈ R such that a < b, there is some r ∈ Q such
that a < r < b.

Proof (a) By assumption we have b − a > 0. Thus, by Proposition 10.6, there is
some n ∈ N such that n > 1/(b − a) > 0. This implies nb > na + 1.
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(b) By Proposition 10.6 again, there are m1,m2 ∈ N such that m1 > na and
m2 > −na, that is, −m2 < na < m1. Consequently there is some m ∈ Z such that
m − 1 ≤ na < m (proof?). Together with (a), this implies

na < m ≤ 1 + na < nb .

The claim then follows by setting r := m/n ∈ Q. �

nth Roots

At the beginning of this section we motivated the construction of R by the de-
sire to take the square root of arbitrary positive rational numbers. The following
proposition shows that we have attained this goal and considerably more.

10.9 Proposition For all a ∈ R+ and n ∈ N×, there is a unique x ∈ R+ such
that xn = a.

Proof (a) We prove first the uniqueness claim. It suffices to show that xn < yn

if 0 < x < y and n ≥ 2. This follows from

yn − xn = (y − x)
n−1∑
j=0

yjxn−j > 0 (10.5)

(see Exercise 8.1).
(b) To prove the existence of a solution, we can, without loss of generality,

assume that n ≥ 2 and a /∈ {0, 1}.
We begin with the case a > 1. Then, from Proposition 8.9(iii), we have

xn > an > a > 0 for all x > a . (10.6)

Now set A := {x ∈ R+ ; xn ≤ a }. Then 0 ∈ A and, by (10.6), x ≤ a for all x ∈ A.
Thus s := sup(A) is a well defined real number such that s ≥ 0. We will prove that
sn = a holds by showing that sn �= a leads to a contradiction.

Suppose first that sn < a so that a − sn > 0. By Corollary 10.7 and Propo-
sition 10.8, the inequality

b :=
n−1∑
k=0

(n

k

)
sk > 0

implies that there is some ε ∈ R such that 0 < ε < (a − sn)/b. By making ε smaller
if needed, we can further suppose that ε ≤ 1. Then εk ≤ ε for all k ∈ N×, and, using
the binomial theorem, we have

(s + ε)n = sn +
n−1∑
k=0

(n

k

)
skεn−k ≤ sn +

(n−1∑
k=0

(n

k

)
sk
)
ε < a .
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This shows that s + ε ∈ A, a contradiction of sup(A) = s < s + ε. Therefore sn < a
cannot be true.

Now suppose that sn > a. Then, in particular, s > 0 and

b :=
∑∗( n

2j − 1

)
s2j−1 > 0 ,

where the symbol
∑∗ means that we sum over all indices j ∈ N× such that 2j ≤ n.

Proposition 10.8 implies that there is some ε ∈ R such that 0 < ε < (sn − a)/b and
ε ≤ 1 ∧ s. Thus we have

(s − ε)n = sn +
n−1∑
k=0

(−1)n−k
(n

k

)
skεn−k

≥ sn −
∑∗( n

2j − 1

)
s2j−1εn−2j+1 ≥ sn − ε

∑∗( n

2j − 1

)
s2j−1

> a .

(10.7)

Now let x ∈ R+ with x ≥ s − ε. Then it follows from (10.7) that xn ≥ (s − ε)n > a,
that is, x /∈ A. This shows that s − ε is an upper bound of A, which is not possible,
because s − ε < s and s = sup(A). Thus the assumption sn > a cannot be true.

Since R is totally ordered, the only remaining possibility is that sn = a.
Finally we consider the case a ∈ R+ with 0 < a < 1. Set b := 1/a > 1. Then,

from the above, there is a unique y > 0 with yn = b, and so x := 1/y is the unique
solution of xn = a. �

10.10 Remarks (a) If n ∈ N× is odd, then the equation xn = a has a unique
solution x ∈ R for each a ∈ R.
Proof If a ≥ 0, then the claim follows from Proposition 10.9 and the fact that y < 0
implies yn < 0 for n ∈ 2N + 1. If a < 0, then the claim follows from what we have just
shown, and the fact that x �→ −x is a bijection between the solution set of xn = a and
the solution set of xn = −a: If xn = a, then, since n is odd,

(−x)n = (−1)nxn = (−1)a = −a .

Similarly, xn = −a implies (−x)n = a. �

(b) Suppose that either n ∈ N is odd and a ∈ R, or n ∈ N is even and a ∈ R+.
Denote by n

√
a the unique solution (in R if n is odd, or in R+ if n is even) of the

equation xn = a. We call n
√

a the nth root of a.
If n is even and a > 0, then the equation xn = a has, besides n

√
a, the solu-

tion − n
√

a in R, the ‘negative nth root of a’.
Proof Since n is even, we have (−1)n = 1, and so(

− n
√

a
)n

= (−1)n( n
√

a
)n

= a ,

which proves the claim. �
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(c) The functions

R+ → R+ , x �→ n
√

x , n ∈ 2N ,

and
R → R , x �→ n

√
x , n ∈ 2N + 1 ,

are strictly increasing.

Proof It follows from (10.5) that 0 < n
√

x < n
√

y for all 0 < x < y. If x < y < 0 and

n ∈ 2N + 1, then from the definition in (b) and what we have just proved, it follows that
n
√

x < n
√

y. The remaining cases are trivial. �

(d) Let a ∈ R+ and r = p/q ∈ Q in lowest terms. Define the rth power of a by

ar :=
(

q
√

a
)p

.

Note that, because of the uniqueness of the representation of r in lowest terms,
ar is well defined.

(e) Corollary 9.7 and Proposition 10.9 show, in particular, that
√

2 ∈ R\Q, that
is,

√
2 is a real number which is not rational. The elements of R\Q are called

irrational numbers. �

The Density of the Irrational Numbers in R

In Proposition 10.8 we saw that the rational numbers Q are dense in R. The next
proposition shows that the irrational numbers R\Q have this same property.

10.11 Proposition For any a, b ∈ R such that a < b, there is some ξ ∈ R\Q such
that a < ξ < b.

Proof Suppose a, b ∈ R satisfy a < b. By Proposition 10.8 there are rational num-
bers r1, r2 ∈ Q such that a < r1 < b and r1 < r2 < b. Setting ξ := r1+(r2−r1)

/√
2

we have r1 < ξ and

r2 − ξ = (r2 − r1)
(
1 − 1

/√
2
)

> 0 ,

and hence ξ < r2. Thus r1 < ξ < r2 and also a < ξ < b. Finally ξ cannot be a
rational number since otherwise

√
2 = (r2 − r1)

/
(ξ − r1) would also be rational. �

By Corollary 9.7, the square root of any natural number which is not the
square of a natural number, is irrational. In particular, there are ‘many’ irrational
numbers. In Section II.7 we will show that R is uncountable. Since Q is count-
able, Proposition 6.8 implies that there are, in fact, uncountably many irrational
numbers.
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Intervals

An interval is a subset J of R such that

(x, y ∈ J, x < y) =⇒ (z ∈ J for x < z < y) .

Clearly ∅, R, R+, −R+ are intervals, but R× is not. If J is a nonempty interval,
then inf(J) ∈ R̄ is the left endpoint and sup(J) ∈ R̄ is the right endpoint of J .
It is an easy exercise to show that a nonempty interval J is determined by its
endpoints and whether or not these endpoints are in J . Thus J is closed on the
left if a := inf(J) is in J , and otherwise it is open on the left. Similarly, J is closed
on the right if b := sup(J) is in J , and otherwise it is open on the right. The
interval J is called open if it is empty or is open on the left and right. In this case
we write (a, b) for J , that is,

(a, b) = {x ∈ R ; a < x < b } , −∞ ≤ a ≤ b ≤ ∞ ,

with the convention that (a, a) := ∅. If J is closed on the left and right or is empty,
then J is called a closed interval which we write as

[a, b] = {x ∈ R ; a ≤ x ≤ b } , −∞ < a ≤ b < ∞ .

Further, we write (a, b] (or [a, b)) if J is open on the left and closed on the
right (or closed on the left and open on the right). Each one element subset {a}
of R is a closed interval. An interval is perfect if is contains at least two points.
It is bounded if both endpoints are in R, and is unbounded otherwise. Each
unbounded interval of R, other than R itself, has the form [a,∞), (a,∞), (−∞, a]
or (−∞, a) with a ∈ R. If J is a bounded interval, then the nonnegative number
|J | := sup(J) − inf(J) is called the length of J .

Exercises

1 Determine the following subsets of R2:

A :=
{

(x, y) ∈ R2 ; |x − 1| + |y + 1| ≤ 1
}

,

B :=
{

(x, y) ∈ R2 ; 2x2 + y2 > 1, |x| ≤ |y|
}

,

C :=
{

(x, y) ∈ R2 ; x2 − y2 > 1, x − 2y < 1, y − 2x < 1
}

.

2 (a) Show that
Q
(√

2
)

:=
{
a + b

√
2 ; a, b ∈ Q

}
is a subfield of R which contains Q but which is not order complete. Is

√
3 in Q

(√
2
)
?

(b) Prove that Q is the smallest subfield of R.

3 For a, b ∈ R+ and r, s ∈ Q, show the following:
(a) ar+s = aras, (b) (ar)s = ars, (c) arbr = (ab)r.

4 For m, n ∈ N× and a, b ∈ R+, show the following:

(a) a1/m < a1/n, if m < n and 0 < a < 1.

(b) a1/m > a1/n, if m < n and a > 1.
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5 Let f : R → R be an increasing function. Suppose that a, b ∈ R satisfy a < b, f(a) > a
and f(b) < b. Prove that f has at least one fixed point, that is, there is some x ∈ R such
that f(x) = x. (Hint: Consider z := sup

{
y ∈ R ; a ≤ y ≤ b, y ≤ f(y)

}
and f(z).)

6 Prove Bernoulli’s inequality : If x ∈ R with x > −1 and n ∈ N, then

(1 + x)n ≥ 1 + nx .

7 Let M ⊆ R be nonempty with inf(M) > 0. Show that the set M ′ := { 1/x ; x ∈ M }
is bounded above and that sup(M ′) = 1/ inf(M).

8 For nonempty subsets A and B of R, prove the following:

sup(A + B) = sup(A) + sup(B) , inf(A + B) = inf(A) + inf(B) .

9 (a) For nonempty subsets A and B of (0,∞), prove the following:

sup(A · B) = sup(A) · sup(B) , inf(A · B) = inf(A) · inf(B) .

(b) Find nonempty subsets A and B of R such that

sup(A) · sup(B) < sup(A · B) and inf(A) · inf(B) > inf(A · B) .

10 Let n ∈ N× and x = (x1, . . . , xn) ∈ [R+]n. Then the geometric mean and arithmetic

mean of x1, . . . , xn are defined by g(x) := n

√∏n
j=1 xj and a(x) := (1/n)

∑n
j=1 xj respec-

tively. Prove that g(x) ≤ a(x) (inequality of the geometric and arithmetic means).

11 For x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, define x � y :=
∑n

j=1 xjyj . Prove
that

|α|√xα ≤ (x �α)
/
|α| .

for all x ∈ [R+]n and α ∈ Nn (inequality of the weighted geometric and weighted arith-
metic means).

12 Verify that R is an Archimedean ordered field. See Exercise 9.4.

13 Let (K,≤) be an ordered extension field of (Q,≤) with the property that, for each
a ∈ K such that a > 0, there is some r ∈ Q such that 0 < r < a. Show that K is an
Archimedean ordered field. See Exercise 9.4.

14 Prove that an ordered field K is Archimedean if and only if {n · 1 ; n ∈ N } is not
bounded above in K. See Exercise 9.4.

15 Let K be the field of rational functions with coefficients in R (see Remark 9.3(c)).
Then for each f ∈ K there are unique polynomials p =

∑n
k=0 pkXk and q =

∑m
k=0 qkXk

such that qm = 1 and f = p/q is in lowest terms (that is, p and q have no nonconstant
factors in common). With this notation let

P := { f ∈ K ; pn ≥ 0 } .

Finally set
f ≺ g :⇐⇒ g − f ∈ P .

Show that (K,≺) is an ordered field, but not an Archimedean ordered field.
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16 For each n ∈ N, let In be a nonempty closed interval in R. The family { In ; n ∈ N }
is called a nest of intervals if the following conditions hold:

(i) In+1 ⊆ In for all n ∈ N.

(ii) For each ε > 0, there is some n ∈ N such that |In| < ε.

(a) Show that, for each nest of intervals { In ; n ∈ N }, there is a unique x ∈ R such
that x ∈

⋂
n In.

(b) For each x ∈ R, show that there is a nest of intervals { In ; n ∈ N } with rational

endpoints such that {x} =
⋂

n In.
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11 The Complex Numbers

In Section 9 we saw that, in an ordered field K, all squares are nonnegative, that
is, x2 ≥ 0 for x ∈ K. As a consequence, the equation x2 = −1 is not solvable in
the field of real numbers or in any other ordered field. In this section we construct
an extension field of R, the field of complex numbers C, in which all quadratic
equations (indeed, as we later see, all algebraic equations) have at least one solu-
tion. Surprisingly, in contrast to the extension of Q to R using Dedekind cuts, the
extension of R to C is simple.

Constructing the Complex Numbers

Following the pattern established for the extensions of N to Z and Z to Q, we
suppose first that there is an extension field K of R and some i ∈ K such that
i2 = −1. Of course, i /∈ R. From this supposition we derive properties of K which
lead to an explicit construction of K.

Since K is a field, if x, y ∈ R, then z := x + iy is an element of K. Moreover,
the representation z = x + iy in K is unique, that is, if in addition, z = a + ib
for some a, b ∈ R, then x = a and y = b. To prove this, suppose that y �= b and
x + iy = a + ib. Then it follows that i = (x − a)/(b − y) ∈ R, which is not possible.

Motivated by these observations we set C := {x + iy ∈ K ; x, y ∈ R }. For
z = x + iy and w = a + ib in C we have (in K)

z + w = x + a + i(y + b) ∈ C ,

−z = −x + i(−y) ∈ C ,

zw = xa + ixb + iya + i2yb = xa − yb + i(xb + ya) ∈ C ,

(11.1)

where we used i2 = −1. Finally, if z = x + iy �= 0, thus x ∈ R× or y ∈ R×. Then
we have (in K)

1
z

=
1

x + iy
=

x − iy

(x + iy)(x − iy)
=

x

x2 + y2
+ i

−y

x2 + y2
∈ C . (11.2)

Consequently, C is a subfield of K and an extension field of R.

This discussion shows that C is the smallest extension field of R in which
the equation x2 = −1 is solvable, if such an extension field exists. The remaining
existence question we answer by a construction.

11.1 Theorem There is a smallest extension field C of R, the field of complex
numbers, in which the equation z2 = −1 is solvable. It is unique up to isomorphism.
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Proof As with the constructions of Z from N and Q from Z, the above discus-
sion suggests that we consider pairs of numbers (x, y) ∈ R2 and define operations
on R2 following (11.1) and (11.2). Specifically, we define addition and multiplica-
tion on R2 by

R2 × R2 → R2 ,
(
(x, y), (a, b)

)
�→ (x + a, y + b)

and
R2 × R2 → R2 ,

(
(x, y), (a, b)

)
�→ (xa − yb, xb + ya)

and set C := (R2,+, ·). One can easily check that C is a field with additive iden-
tity (0, 0), unity (1, 0), additive inverse −(x, y) = (−x,−y), and multiplicative in-
verse (x, y)−1 =

(
x/(x2 + y2),−y/(x2 + y2)

)
if (x, y) �= (0, 0).

It is easy to verify that

R → C , x �→ (x, 0) (11.3)

is an injective homomorphism. Consequently we can identify R with its image in C
and so consider R to be a subfield of C.

The equation (0, 1)2 = (0, 1)(0, 1) = (−1, 0) = −(1, 0) implies that (0, 1) ∈ C
is a solution of z2 = −1C.

The previous discussion shows that C is, up to isomorphism, the smallest
extension field of R in which the equation z2 = −1 is solvable. �

Elementary Properties

The elements of C are called the complex numbers. Since (0, 1)(y, 0) = (0, y) for
all y ∈ R, we have

(x, y) = (x, 0) + (0, 1)(y, 0) , (x, y) ∈ R2 .

Setting i := (0, 1) ∈ C and using the identification (11.3), each z = (x, y) ∈ C has
a unique representation in the form

z = x + iy , x, y ∈ R , (11.4)

where, of course, i2 = −1. Then x =: Re z is the real part and y =: Im z is the
imaginary part of z. The complex conjugate of z is defined by

z := x − iy = Re z − i Im z .

Any z ∈ C× with Re z = 0 is called (pure) imaginary.
For arbitrary x, y ∈ C we have, of course, z = x + iy ∈ C. When we want to

make clear that the expression z = x + iy is the decomposition of z into its real
and imaginary parts, that is, x = Re z and y = Im z, we write

z = x + iy ∈ R + iR .
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11.2 Remarks (a) If z = x + iy ∈ R + iR and w = a + ib ∈ R + iR, then z + w,
−z and zw are given by the formulas in (11.1), and if z �= 0, then z−1 = 1/z is
given by (11.2).

(b) The functions C → R, z �→ Re z and C → R, z �→ Im z are well defined,
surjective, and z = Re z + i Im z.

(c) Let X be a set and f : X → C a ‘complex valued function’. Then

Re f : X → R , x �→ Re
(
f(x)

)
and

Im f : X → R , x �→ Im
(
f(x)

)
define two ‘real valued functions’, the real part and the imaginary part of f . Clearly

f = Re f + i Im f .

(d) By construction (C,+) is the additive group (R2,+) (see Example 7.2(d)).
Thus we can identify C with (R2,+) so long as we consider only the additive
structure of C. This means that we can represent complex numbers as vectors in
the coordinate plane.1 The addition of complex numbers is then the same as vector
addition and can be done geometrically using the ‘parallelogram rule’. As usual,
we identify a vector z with the tip of its arrow and so consider z to be a ‘point’ of
the set R2 whenever we use this graphic representation.

�

���

� ���

� � �

�

�� �

�

imaginary axis (iR)

real axis (R)

In Section III.6 we will see that multiplication in C also has a simple inter-
pretation in the coordinate plane.

(e) Because (−i)2 = (−1)2i2 = −1, the equation z2 = −1 has the two solutions
z = ±i. By Corollary 8.18, there are no other solutions.

1We refer the reader again to [Gab96] for an axiomatic treatment of these concepts (see also
Section 12).
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(f ) For d ∈ R+ we have

X2 − d =
(
X +

√
d
)(

X −
√

d
)

and X2 + d =
(
X + i

√
d
)(

X − i
√

d
)

.

By ‘completing the square’ we can write aX2 + bX + c ∈ R[X] with a �= 0 in the
form

aX2 + bX + c = a
[(

X +
b

2a

)2

− D

4a2

]
in C[X] where

D := b2 − 4ac

is the discriminant. This implies that the quadratic equation az2 + bz + c = 0 has
the solutions

z1, z2 =

⎧⎪⎪⎨⎪⎪⎩
−b ±

√
D

2a
∈ R , D ≥ 0 ,

−b ± i
√
−D

2a
∈ C\R , D < 0 .

Moreover
z1 + z2 = −b/a , z1z2 = c/a

(see Exercise 8.7(g)). If D < 0, then z2 = z1.

(g) Because i2 = −1 < 0, the field C cannot be ordered. �

Computation with Complex Numbers

In this section we present several important rules for calculating with complex
numbers. The proofs are elementary and are left to the reader. It is instructive to
interpret these rules geometrically in the coordinate plane.

11.3 Proposition For all z, w ∈ C,

(i) Re(z) = (z + z)/2, Im(z) = (z − z)/(2i)
(ii) z ∈ R ⇐⇒ z = z

(iii) z = z

(iv) z + w = z + w, zw = z w

(v) zz = x2 + y2 where x := Re z, y := Im z.

As we have already noted, C cannot be ordered. Nonetheless, the absolute
value function on R which is induced from its order can be extended to a nonneg-
ative function |·| on C, also called the absolute value function,2 by defining

|·| : C → R+ , z �→ |z| :=
√

z z .

2This fact justifies the use of the same symbol |·| for both absolute values. When distinct
symbols are needed, we write |·|C for the absolute value in C and |·|R for the absolute value in R

(see, for example, Proposition 11.4(ii)).
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Hence, for z = x + iy ∈ R + iR, we have |z| =
√

x2 + y2, and so |z| is the length
of the vector z in the coordinate plane.

�

�

��

��

�

We collect in the next proposition some rules for the absolute value function.

11.4 Proposition Let z, w ∈ C.

(i) |zw| = |z| |w|.
(ii) |z|C = |z|R for all z ∈ R.
(iii) |Re(z)| ≤ |z|, | Im(z)| ≤ |z|, |z| = |z|.
(iv) |z| = 0 ⇐⇒ z = 0.
(v) |z + w| ≤ |z| + |w| (triangle inequality).
(vi) z−1 = 1/z = z/|z|2 for all z ∈ C×.

Proof Let z, w ∈ C with z = x + iy ∈ R + iR.
(i) From Proposition 11.3(iv) and Remark 9.9(a), we have

|zw| =
√

zw · zw =
√

zz · ww =
√

zz ·
√

ww = |z| |w| .

(ii) For z ∈ R, we have z = z, and so, from Remark 9.9(b),

|z|C =
√

zz =
√

z2 = |z|R .

(iii) From Remark 10.10(c) we have |Re(z)| = |x| =
√

x2 ≤
√

x2 + y2 = |z|.
Similarly | Im(z)| ≤ |z|. From the equation z = z we get |z| =

√
zz =

√
z z = |z|.

(iv) From Proposition 8.10 we have

|z| = 0 ⇐⇒ |z|2 = |x|2 + |y|2 = 0 ⇐⇒ |x| = |y| = 0 ⇐⇒ x = y = 0 .

(v) We have

|z + w|2 = (z + w)(z + w) = (z + w)(z + w)

= zz + zw + wz + ww = |z|2 + zw + zw + |w|2

= |z|2 + 2Re(zw) + |w|2 ≤ |z|2 + 2 |zw| + |w|2

= |z|2 + 2 |z| |w| + |w|2 = (|z| + |w|)2 ,

where we have used (iii) and Proposition 11.3.
(vi) If z ∈ C×, then 1/z = z/(zz) = z/|z|2. �
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11.5 Corollary (reversed triangle inequality) For all z, w ∈ C,

|z − w| ≥
∣∣ |z| − |w|

∣∣ .

Proof This follows from the triangle inequality in C just as in Corollary 8.11. �

Experience shows that in analysis, in contrast to other areas of mathematics,
the only fields that matter are R and C. Moreover, many definitions and theorems
can be applied equally well to either of these fields. Thus we make the following
convention:

Convention K denotes either of fields R and C.

Balls in K

For a ∈ K and r > 0 we call

B(a, r) := BK(a, r) := {x ∈ K ; |x − a| < r }

the open ball in K with center a and radius r. If K = C, then BC(a, r) is the ‘open
disk’ in the coordinate plane with center a and radius r. If K is the field R, then
BR(a, r) is the open interval (a − r, a + r) of length 2r centered at a in R.

�

�

��

�

� �� �

�
� �� �

� �

The closed ball in K with center a and radius r is defined by

B̄(a, r) := B̄K(a, r) := {x ∈ K ; |x − a| ≤ r } .

Thus B̄R(a, r) is the closed interval [a − r, a + r]. Instead of BC(a, r) and B̄C(a, r),
we often write D(a, r) and D̄(a, r) respectively. The open and closed unit disks in C
are D := D(0, 1) and D̄ := D̄(0, 1).
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Exercises

1 (a) Show that for each z ∈ C\(−∞, 0] there is a unique w ∈ C such that w2 = z and
Re(w) > 0. The element w is called the principal square root of z and is written

√
z.

(b) Show that, for all z ∈ C\(−∞, 0],

√
z =

√
(|z| + Re z)/2 + i sign(Im z)

√
(|z| − Re z)/2 .

(c) Calculate
√

i.

What are the other solutions of the equation w2 = i?

2 Calculate z, |z|, Re z, Im z, Re(1/z) and Im(1/z) for z ∈
{

12 + 5i

2 + 3i
,
√

i

}
.

3 Sketch the following sets in the coordinate plane:

A := { z ∈ C ; |z − 1| ≤ |z + 1| }
B := { z ∈ C ; |z + 1| ≤ |z − i| ≤ |z − 1| }
C := { z ∈ C ; 3zz − 6z − 6z + 9 = 0 }

4 Determine all solutions of the equations z4 = 1 and z3 = 1 in C.

5 Give a proof of Proposition 11.3.

6 Let m ∈ N× and Uj ⊆ C for 0 ≤ j ≤ m. Suppose that a ∈ C has the property that,
for each j, there is some rj > 0 such that B(a, rj) ⊆ Uj . Show that B(a, r) ⊆ ⋂m

j=0 Uj for
some r > 0.

7 For a ∈ K and r > 0, describe the set B̄K(a, r)\BK(a, r).

8 Show that the identity function and z �→ z are the only field automorphisms of C
which leave the elements of R fixed. (Hint: For an automorphism ϕ, consider ϕ(i).)

9 Show that S1 := { z ∈ C ; |z| = 1 } is a subgroup of the multiplicative group (C×, ·),
the circle group.

10 Let R2×2 be the noncommutative ring of real 2 × 2 matrices. Show that the set C of
matrices of the form [

a −b

b a

]
is a subfield of R2×2, and that the function

R + iR → R2×2 , a + ib �→
[

a −b

b a

]

is an isomorphism from C to C. (The necessary properties of matrices can be found in
any book on linear algebra.)

11 For p = Xn + an−1X
n−1 + · · · + a1X + a0 ∈ C[X], define R := 1 +

∑n−1
k=0 |ak|. Show

that |p(z)| > R for all z ∈ C such that |z| > R.
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12 Prove the Parallelogram Identity in C:

|z + w|2 + |z − w|2 = 2(|z|2 + |w|2) , z, w ∈ C .

13 Describe the function C× → C×, z �→ 1/z geometrically.

14 Determine all zeros of the polynomial X4 − 2X3 − X2 + 2X + 1 ∈ C[X].
(Hint: Multiply the polynomial by 1/X2 and substitute Y = X − 1/X.)

15 Cubic Equations Let k be a cubic polynomial in C with leading coefficient 1, that is,

k = X3 + aX2 + bX + c .

To find the zeros of k, we first substitute Y = X + a/3 to get

Y 3 + pY + q ∈ C[X] .

Determine the coefficients p and q in terms of a, b and c. Suppose that there exist3

d, u, v ∈ C such that

d2 =
( q

2

)2

+
(p

3

)3

, u3 = − q

2
+ d , v3 = − q

2
− d . (11.5)

Show that −3uv/p is a third root of unity, that is, (−3uv/p)3 = 1, and so we can choose
u and v such that 3uv = −p. Now let ξ 
= 1 satisfy ξ3 = 1 (see Exercise 4). Show that

y1 := u + v , y2 := ξu + ξ2v , y3 := ξ2u + ξv

are the solutions of the equation y3 + py + q = 0.

3In Section III.6 we prove that these complex numbers exist.
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12 Vector Spaces, Affine Spaces and Algebras

Linear algebra is without doubt one of the most fertile of all mathematical research
areas and serves as a foundation for many far-reaching theories in all parts of
mathematics. In particular, linear algebra is one of the main tools of analysis,
and so, in this section, we introduce the basic concepts and illustrate these with
examples. Once again, the goal is to be able to recognize simple algebraic structures
which appear frequently, in different forms, in the following chapters. For a deeper
investigation, we direct the reader to the extensive literature of linear algebra, for
example, [Art91], [Gab96], [Koe83], [Wal82] and [Wal85].

In the following, K is an arbitrary field.

Vector Spaces

A vector space over the field K (or simply, a K-vector space) is a triple (V, +, ·)
consisting of a nonempty set V , an ‘inner’ operation + on V called addition, and
an ‘outer’ operation

K × V → V , (λ, v) �→ λ · v ,

called scalar multiplication which satisfy the following axioms:
(VS1) (V, +) is an Abelian group.
(VS2) The distributive law holds:

λ·(v+w) = λ·v+λ·w , (λ+µ)·v = λ·v+µ·v , λ, µ ∈ K , v, w ∈ V .

(VS3) λ · (µv) = (λµ) · v , 1 · v = v , λ, µ ∈ K , v ∈ V .

A vector space is called real if K = R and complex if K = C. We write V instead
of (V, +, ·) when the operations are clear from context.

12.1 Remarks (a) The elements of V are called vectors and the elements of K
are called scalars. The word ‘vector’ is simply an abbreviation for ‘element of a
vector space’. Possible geometrical interpretations we leave until later.

Just as for rings, we make the convention that multiplication takes precedence
over addition, and we write simply λv for λ · v.

(b) The identity element of (V, +) is called the zero vector and is denoted by 0,
as is also the zero of K. For the additive inverse of v ∈ V we write −v and
v − w := v + (−w). This, as well as the use of the same symbols ‘ + ’ and ‘ · ’ for
the operations in K and in V do not lead to misunderstanding, since, in addition
to (VS1) and (VS3), we have

0v = 0 , (−λ)v = λ(−v) = −(λv) =: −λv , λ ∈ K , v ∈ V ,

and also the rule
λv = 0 =⇒ (λ = 0 or v = 0) .
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In this implication, the first and last zeros denote zero vectors and the remaining
zero stands for the zero of K.
Proof From the distributive law and the rules of arithmetic in K it follows that

0 · v = (0 + 0) · v = 0 · v + 0 · v .

Since the zero vector is the identity element of (V, +), we also have 0 · v = 0 · v + 0, and so

Remark 7.1(c) implies 0 · v = 0. The proofs of the remaining claims are left as exercises. �

(c) Axiom (VS3) says that the multiplicative group K× acts on V (from the left)
(see Exercise 7.6). Indeed (VS2) and (VS3) can be used to define the concept of a
field acting on an Abelian group. It is sometimes convenient to think of K acting
on V from the right by defining vλ := λv for (λ, v) ∈ K × V . �

Linear Functions

Let V and W be vector spaces over K. Then a function T : V → W is (K-)linear
if

T (λv + µw) = λT (v) + µT (w) , λ, µ ∈ K , v,w ∈ V .

Thus a linear function is simply a function which is compatible with the vector
space operations, in other words, it is a (vector space) homomorphism. The set
of all linear functions from V to W is denoted by Hom(V,W ) or HomK(V,W ),
and End(V ) := Hom(V, V ) is the set of all (vector space) endomorphisms. A bijec-
tive homomorphism T ∈ Hom(V,W ) is a (vector space) isomorphism. A bijective
endomorphism T ∈ End(V ) is a (vector space) automorphism. If there is an iso-
morphism from V to W , then V and W are isomorphic, and we write V ∼= W .
Clearly ∼= is an equivalence relation on any set of K-vector spaces.

Convention The statement ‘V and W are vector spaces and T : V → W is
a linear function’ always implies that V and W are vector spaces over the
same field.

12.2 Remarks (a) For a linear function T : V → W , it is usual to write Tv instead
of T (v) when v ∈ V , so long as this does not lead to misunderstanding.

(b) A vector space homomorphism T : V → W is, in particular, a group homo-
morphism T : (V, +) → (W, +). Thus we have T0 = 0 and T (−v) = −Tv for all
v ∈ V . The kernel (or null space) of T is the kernel of this group homomorphism:

ker(T ) = { v ∈ V ; Tv = 0 } = T−10 .

Thus T is injective if and only if its kernel is trivial, that is, if ker(T ) = {0} (see
Remarks 7.6(a) and (d)).

(c) Let U , V and W be vector spaces over K. Then T ◦ S ∈ Hom(U,W ) for all
S ∈ Hom(U, V ) and T ∈ Hom(V,W ).
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(d) The set Aut(V ) of automorphisms of V , that is, the set of bijective linear
functions from V to itself, is a subgroup of the permutation group of V . It is
called the automorphism group of V . �

12.3 Examples Let V and W be vector spaces over K.

(a) A zero or trivial (vector) space consists of a single vector 0, and is often
denoted simply by 0. Any other vector space is nontrivial.

(b) A nonempty subset U of V is called a subspace if the following holds:

(SS1) U is a subgroup of (V, +).

(SS2) U is closed under scalar multiplication: K · U ⊆ U .

One can easily verify that U is a subspace of V if and only if U is closed under
both operations of V , that is, if

U + U ⊆ U , K · U ⊆ U .

(c) The kernel and image of a linear function T : V → W are subspaces of V
and W respectively. If T is injective then T−1 ∈ Hom

(
im(T ), V

)
.

(d) K is a vector space over itself when the field operations are interpreted as
vector space operations.

(e) Let X be a set. Then V X is a K-vector space with the operations (see Exam-
ple 4.12)

(f+g)(x) := f(x)+g(x) , (λf)(x) := λf(x) , x ∈ X , λ ∈ K , f, g ∈ V X .

In particular, for m ∈ N×, Km is a K-vector space with the operations

x + y = (x1 + y1, . . . , xm + ym) , λx = (λx1, . . . , λxm)

for λ ∈ K, and x = (x1, . . . , xm) and y = (y1, . . . , ym) in Km. Clearly, K1 and K
are identical (as K-vector spaces).

(f ) The above construction suggests the following generalization. Let V1, . . . , Vm

be vector spaces over K. Then V := V1 × · · · × Vm is a vector space, the product
vector space of V1, . . . , Vm with operations defined by

v + w := (v1 + w1, . . . , vm + wm) , λv := (λv1, . . . , λvm)

for v = (v1, . . . , vm) ∈ V , w = (w1, . . . , wm) ∈ V and λ ∈ K.

(g) On the ring of formal power series K[[X1, . . . , Xm]] in m ∈ N× indeterminates
over K, we define a function

K × K[[X1, . . . , Xm]] → K[[X1, . . . , Xm]] , (λ, p) �→ λp
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by
λ
(∑

α

pαXα
)

:=
∑
α

(λpα)Xα .

With this operation as scalar multiplication and the already defined addition,
K[[X1, . . . , Xm]] is a K-vector space, the vector space of formal power series in
m indeterminates. Clearly, K[X1, . . . , Xm] is a subspace of K[[X1, . . . , Xm]], the
vector space of polynomials in m indeterminates.

If K is infinite, the identification of polynomials in K[X1, . . . , Xm] with poly-
nomial functions in K(Km) (see Remark 8.20(c)) means that K[X1, . . . , Xm] is also
a subspace of K(Km).

(h) Hom(V,W ) is a subspace of WV .

(i) Let U be a subspace of V . Then, by Proposition 7.4 and Remark 7.5(b),
(V, +)/U is an Abelian group. It is easy to check that

K × (V, +)/U → (V, +)/U , (λ, x + U) �→ λx + U

is a well defined function which satisfies axioms (VS2) and (VS3). Thus (V, +)/U
is a K-vector space, which we denote by V/U and call the quotient space of V
modulo U . Finally, the quotient homomorphism

π : V → V/U , x �→ [x] := x + U

is a linear function.

(j) For T ∈ Hom(V,W ) there is a unique linear function T̂ : V/ ker(T ) → W such
that the diagram below is commutative.

�
���

��

�

V/ ker(T )

V W
T

T̂π

Moreover, T̂ is injective and im(T̂ ) = im(T ).

Proof This follows directly from (c), (i) and Example 4.2(c). �

(k) Let {Uα ; α ∈ A } be a set of subspaces of V . Then
⋂

α∈A Uα is a subspace
of V . If M is a subset of V , then

span(M) :=
⋂

{U ; U is a subspace of V and U ⊇ M }

is the smallest subspace of V which contains M and is called the span of M .

(l) If U1 and U2 are subspaces of V , then the image of U1 × U2 under addition
in V is a subspace of V called the sum, U1 + U2, of U1 and U2. The sum is direct
if U1 ∩ U2 = {0}, and, in this case, it is written U1 ⊕ U2.
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(m) If U is a subspace of V and T ∈ Hom(V,W ), then T |U is a linear function
from U to W . In the case that V = W , U is said to be invariant under T if
T (U) ⊆ U . So long as no confusion arises, we write T for T |U . �

Vector Space Bases

Let V be a nontrivial K-vector space. An expression of the form
∑m

j=1 λjvj with
λ1, . . . , λm ∈ K and v1, . . . , vm ∈ V is called a (finite) linear combination of the
vectors v1, . . . , vm (over K). The vectors v1, . . . , vm are linearly dependent if there
are λ1, . . . , λm ∈ K, not all zero, such that λ1v1 + · · · + λmvm = 0. If no such
scalars exist, that is, if

λ1v1 + · · · + λmvm = 0 =⇒ λ1 = · · · = λm = 0 ,

then the vectors v1, . . . , vm are linearly independent. A subset A of V is linearly
independent if each finite subset of A is linearly independent. The empty set
is, by convention, linearly independent. A linearly independent subset B of V
such that span(B) = V is called a basis of V . A fundamental result from linear
algebra is that, if V has a finite basis with m vectors, then every basis of V has
exactly m vectors. In this circumstance, m is called the dimension, dim(V ), of
the vector space V and we say that V is m dimensional. If V has no finite basis,
then V is infinite dimensional, dim(V ) = ∞. Finally, we define dim(0) = 0. A very
natural and useful fact about the dimension is that if W is a subspace of V , then
dim(W ) ≤ dim(V ). For the proof of these claims about vector space dimension,
the reader is referred to the linear algebra literature.

12.4 Examples (a) Let m ∈ N×. For j = 1, . . . , m, define

ej := (0, . . . , 0, 1, 0, . . . , 0) ∈ Km

(j)
,

that is, ej is the vector in Km whose jth component is 1 and whose other com-
ponents are 0. Then {e1, . . . , em} is a basis of Km called the standard basis.
Hence Km is an m dimensional vector space called the standard m dimensional
vector space over K.

(b) Let X be a finite set. For x ∈ X, define ex ∈ KX by

ex(y) :=
{

1 , y = x ,

0 , y �= x .
(12.1)

Then the set { ex ; x ∈ X} is a basis (the standard basis) of KX , and hence
dim(KX) = Num(X).
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(c) For n ∈ N and m ∈ N×, set

Kn[X1, . . . , Xm] :=
{

p ∈ K[X1, . . . , Xm] ; deg(p) ≤ n
}

.

Then Kn[X1, . . . , Xm] is a subspace of K[X1, . . . , Xm] and the set of monomials
{Xα ; |α| ≤ n } form a basis. Consequently

dim
(
Kn[X1, . . . , Xm]

)
=
(m + n

n

)
,

and K[X1, . . . , Xm] is an infinite dimensional space.

Proof Since the elements of Kn[X1, . . . , Xm] are functions into K from a finite subset of

Nm, it follows from (b) that the monomials {Xα ; |α| ≤ n } are a basis. Exercise 8.8(d)

shows that number of such monomials is
(

m+n
n

)
. If k := dim(K[X1, . . . , Xm]) is finite,

then any subspace would have dimension less than or equal to k. But this is contradicted

by the subspaces Kn[X1, . . . , Xm] which can have arbitrarily large dimension. �

(d) For m,n ∈ N×,

Kn,hom[X1, . . . , Xm] :=
{∑

|α|=naαXα ; aα ∈ K, α ∈ Nm, |α| = n
}

is a subspace of Kn[X1, . . . , Xm] called the vector space of homogeneous polyno-
mials of degree n in m indeterminates. It has the dimension

(
m+n−1

n

)
.

Proof As in the preceding proof, the set of monomials of degree n form a basis. The

claim then follows from Exercise 8.8(c). �

12.5 Remark Let V be an m dimensional K-vector space for some m ∈ N×

and {b1, . . . , bm} a basis of V . Then, for each v ∈ V , there is a unique m-tuple
(x1, . . . , xm) ∈ Km such that

v =
m∑

j=1

xjbj . (12.2)

Conversely, such an m-tuple defines by (12.2) a unique vector v in V . Consequently,
the function

Km → V , (x1, . . . , xm) �→
∑m

j=1 xjbj

is bijective. Since the function is clearly linear, it is an isomorphism from Km to V .
Therefore we have shown that every m dimensional K-vector space is isomorphic
to the standard m dimensional space Km. This explains, of course, the name
‘standard space’. �
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Affine Spaces

The abstract concept of a vector space, which plays such a fundamental role in
current mathematics, and, in particular, in modern analysis, developed from the
intuitive ‘vector calculus’ of directed arrows in our familiar three dimensional uni-
verse. A geometrical interpretation of vector space concepts is still very useful,
even in abstract situations, as we have already seen in the identification of C with
the coordinate plane. In such an interpretation we often consider vectors to be
‘points’, and certain sets of vectors to be ‘lines’ and ‘planes’, etc. To give these
concepts a solid foundation and to avoid confusion, we provide a short introduction
to affine spaces. This will allow us to use, without further comment, the language
which is most convenient for the given situation.

Let V be a K-vector space and E a nonempty set whose elements we call
points. Then E is called an affine space over V if there is a function

V × E → E , (v, P ) �→ P + v

with following properties:

(AS1) P + 0 = P , P ∈ E.

(AS2) P + (v + w) = (P + v) + w, P ∈ E, v, w ∈ V .

(AS3) For each P,Q ∈ E there is a unique v ∈ V such that Q = P + v.

The unique vector v provided by (AS3) is denoted
−−→
PQ. It satisfies

Q = P +
−−→
PQ .

From (AS1) we have
−−→
PP = 0, and from (AS2) it follows that the function

E × E → V , (P,Q) �→ −−→
PQ

satisfies the equation

−−→
PQ +

−−→
QR =

−→
PR , P,Q,R ∈ E .

Since
−−→
PP = 0, this implies, in particular, that

−−→
PQ = −−−→

QP , P, Q ∈ E .

Moreover, by (AS3), for each P ∈ E and v ∈ V there is a unique Q ∈ E such that−−→
PQ = v, namely Q := P + v. Hence V is also called direction space of the affine
space E.
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12.6 Remarks (a) The axioms (AS1) and (AS2) say that the additive group (V, +)
acts (from the right) on the set E (see Exercise 7.6). From Axiom (AS3) it follows
that this action has only one orbit, that is, the group acts transitively on E.

(b) For each v ∈ V ,
τv : E → E , P �→ P + v

is the translation of E by the vector v. It follows from (AS1) and (AS2) that the
set of translations is a subgroup of the permutation group of E. �

Let E be an affine space over V . Choose a fixed point O of E, the origin.
Then the function V → E, v �→ O + v is bijective with inverse E → V , P �→ −−→

OP .
The vector

−−→
OP is called the position vector of P (with respect to O).

If {b1, . . . , bm} is a basis of V , there is
a unique m-tuple (x1, . . . , xm) ∈ Km such
that

−−→
OP =

m∑
j=1

xjbj .

In this situation the numbers x1, . . . , xm

are called the (affine) coordinates of the
point P with respect to the (affine) coordi-
nate system (O; b1, . . . , bm). The bijective
function

E → Km , P �→ (x1, . . . , xm) , (12.3)

��

��

�
��

��

��

��

�

�

which takes each point P ∈ E to its coordinates, is called the coordinate function
of E with respect to (O; b1, . . . , bm).

The dimension of an affine space is, by definition, the dimension of its direc-
tion space. A zero dimensional space contains only one point, a one dimensional
space is an (affine) line, and a two dimensional affine space is an (affine) plane.
An affine subspace of E is a set of the form P + W = {P + w ; w ∈ W } where
P ∈ E and W is a subspace of the direction space V .

12.7 Example Any K-vector space V can be considered to be an affine space
over itself. The operation of (V, +) on V is simply addition in V . In this case,−→vw = w − v for v, w ∈ V . (Here v is interpreted as a point, and the w on the left
and right of the equal sign are interpreted as a point and a vector respectively!)
We choose, of course, the zero vector to be the origin.

If dim(V ) = m ∈ N× and {b1, . . . , bm} is a basis of V , then we can identify V ,
using the coordinate function (12.3), with the standard space Km. Via (12.3),
the basis (b1, . . . , bm) is mapped to the standard basis e1, . . . , em of Km. The
operations in Km lead then (at least in the case m = 2 and K = R) to the familiar
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‘vector calculus’ in which, for example, vector addition can be done using the
‘parallelogram rule’:

�

�� � � ��

�

���

���
��

�

��

��

�
�

�� �

�

In the geometrical viewpoint, a vector is an arrow with head and tail at some
points, P and Q, say, of E. That is, an arrow is an ordered pair (P,Q) of points.
Two such arrows, (P,Q) and (P ′, Q′), are equal if

−−→
PQ =

−−−→
P ′Q′, that is, if there

is some v ∈ V such that P = Q + v and P ′ = Q′ + v, or, more geometrically, if
(P ′, Q′) can be obtained from (P,Q) by some translation.

Convention Unless otherwise stated, we consider any K-vector space V to be
an affine space over itself with the zero vector as origin. Moreover we consider
K to be a vector space over itself whenever appropriate.

Because of this convention, the elements of a vector space can be called both
‘vectors’ or ‘points’ as appropriate, and the geometrical concepts ‘line’, ‘plane’
and ‘affine subspace’ make sense in any vector space.

Affine Functions

Let V and W be vector spaces over K. A function α : V → W is called affine if
there is a linear function A : V → W such that

α(v1) − α(v2) = A(v1 − v2) , v1, v2 ∈ V . (12.4)

When such an A exists, it is uniquely determined by α. Indeed, setting v1 := v
and v2 := 0 we get A(v) = α(v) − α(0) for all v ∈ V . Conversely, α is uniquely
determined by A ∈ Hom(V,W ) once α(v0) is known for some v0 ∈ V . Indeed, for
v1 := v and v2 := v0, it follows from (12.4) that

α(v) = α(v0) + A(v − v0) = α(v0) − Av0 + Av , v ∈ V . (12.5)

Therefore we have proved the following proposition.
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12.8 Proposition Let V and W be vector spaces over K. Then α : V → W is
affine if and only if it has the form

α(v) = w + Av , v ∈ V , (12.6)

with w ∈ W and A ∈ Hom(V,W ). Moreover, A is uniquely determined by α, and
α is uniquely determined by A and α(0).

The interpretation of vector spaces as affine spaces makes it possible to give
geometric meaning to certain abstract objects. For the moment, this is not much
more than a language that we have transferred from our intuitions about the
three dimensional universe. In later chapters, the geometric viewpoint will become
increasingly important, even for infinite dimensional vector spaces, since it suggests
useful interpretations and possible methods of proof. Infinite dimensional vector
spaces will frequently occur in the form of function spaces, that is, as subspaces
of KX . A deep study of these spaces, indispensable for a thorough understanding
of analysis, is not within the scope of this book. This is the goal of ‘higher’ analysis,
in particular, of functional analysis.

The interpretation of finite dimensional vector spaces as affine spaces has
also an extremely important computational aspect. The introduction of coordinate
systems leads to concrete descriptions of geometric objects in terms of equations
and inequalities for the coordinates. A coordinate system is determined by the
choice of an origin and basis, and it is essential to make these choices so that the
calculations are as simple as possible. The right choice of the coordinate system
can be decisive for a successful solution of a given problem.

Polynomial Interpolation

To illustrate the above ideas, we show how interpolation questions for polynomials can

be solved easily using a clever choice of basis in Km[X]. The polynomial interpolation

problem is the following:

Given m ∈ N×, distinct x0, . . . , xm in K and a function f : {x0, . . . , xm} → K, find
a polynomial p ∈ Km[X] such that

p(xj) = f(xj) , 0 ≤ j ≤ m . (12.7)

The following proposition shows that this problem has a unique solution.

12.9 Proposition There is a unique solution p := pm[f ; x0, . . . , xm] ∈ Km[X] of the poly-
nomial interpolation problem.

Proof The Lagrange polynomials �j [x0, . . . , xm] ∈ Km[X] are defined by

�j [x0, . . . , xm] :=
m∏

k=0
k �=j

X − xk

xj − xk
, 0 ≤ j ≤ m .
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Clearly
�j [x0, . . . , xm](xk) = δjk , 0 ≤ j, k ≤ m ,

where

δjk :=

{
1 , j = k ,

0 , j 
= k ,
j, k ∈ Z ,

is the Kronecker symbol. Then the Lagrange interpolation polynomial

Lm[f ; x0, . . . , xm] :=

m∑
j=0

f(xj)�j [x0, . . . , xm] ∈ Km[X] (12.8)

is a solution of the problem. If p ∈ Km[X] is a second polynomial which satisfies (12.7),
then the polynomial

p − Lm[f ; x0, . . . , xm] ∈ Km[X]

has the m + 1 distinct zeros, x0, . . . , xm, and so, by Corollary 8.18, p = Lm[f ; x0, . . . , xm].
This proves the uniqueness claim. �

12.10 Remarks (a) The above easy and explicit solution of the polynomial interpolation
problem is due to our choice of the Lagrange polynomials of degree m as a basis of Km[X].
If we had chosen the ‘canonical’ basis {Xj ; 0 ≤ j ≤ m }, then we would have to solve
the system

m∑
k=0

pkxk
j = f(xj) , 0 ≤ j ≤ m , (12.9)

of m + 1 linear equations in m + 1 unknowns p0, . . . , pm, the coefficients of the desired
polynomial. From linear algebra we know that the system (12.9) is solvable, for any choice
of the right hand side, if and only if the determinant of the coefficient matrix⎡⎢⎢⎢⎣

1 x0 x2
0 · · · xm

0

1 x1 x2
1 · · · xm

1

...
...

...
...

...
1 xm x2

m · · · xm
m

⎤⎥⎥⎥⎦ (12.10)

is nonzero. (12.10) is a Vandermonde matrix whose determinant has the value∏
0≤j<k≤m

(xk − xj)

(see, for example, [Gab96]). Since this determinant is not zero, we get the existence
and uniqueness claims of Proposition 12.9. While the proof of Proposition 12.9 gives
an explicit form for p := pm[f ; x0, . . . , xm], solving (12.9) using standard methods of
linear algebra (for example, Gauss-Jordan elimination) yields, in general, no such simple
expression for p.

(b) If one increases the number of points and function values by one, then all of the
Lagrange polynomials must be recalculated. For this reason it is often more practical to
write pm[f ; x0, . . . , xm] in the form

pm[f ; x0, . . . , xm] =
m∑

j=0

ajωj [x0, . . . , xj−1]
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using ω0 := 1 and the Newton polynomials,

ωj [x0, . . . , xj−1] = (X − x0)(X − x1) · · · (X − xj−1) ∈ Kj [X] , 1 ≤ j ≤ m .

Then (12.7) leads to a triangular system of linear equations,

a0 = f(x0)

a0 + a1ω1[x0](x1) = f(x1)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
a0 + a1ω1[x0](xm) + · · · + amωm[x0, . . . , xm−1](xm) = f(xm) ,

which is easy to solve using ‘back substitution’ (successive substitution starting from the

top). In this form, pm[f ; x0, . . . , xm] is known as the Newton interpolation polynomial.

Thus in this case too, choosing the basis
{

ωj [x0, . . . , xj−1] ; 0 ≤ j ≤ m
}

of Km[X] leads

to a simple solution. �

Algebras

Let X be a nonempty set. Then KX , the set of all functions from X to K, has, by
Example 8.2(b), a ring structure and, by Example 12.3(e), a vector space structure.
Moreover, ring multiplication and scalar multiplication are compatible in the sense
that

(λf) · (µg) = (λµ)fg , λ, µ ∈ K , f, g ∈ KX .

This situation occurs frequently enough that it has its own name.

A K-vector space A together with an operation

A × A → A , (a, b) �→ a � b

is called an algebra over K if the following hold:

(A1) (A,+,�) is a ring.

(A2) The distributive law holds:

(λa + µb) � c = λ(a � c) + µ(b � c)
a � (λb + µc) = λ(a � b) + µ(a � c)

for all a, b, c ∈ A and λ, µ ∈ K.

For the ring multiplication � in A, we again write ab instead of a � b. This leads
to no misunderstanding since it is always clear from context which multiplication
is intended. This notation is also justified by the distributive laws which hold in A.

In general, the algebra (that is, the ring (A,�)) is neither commutative nor
contains a unity element.
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12.11 Examples (a) Let X be a nonempty set. Then KX is a commutative
K-algebra with unity with respect to the operations of Example 8.2(b) and Ex-
ample 12.3(e).

(b) For m ∈ N×, K[[X1, . . . , Xm]] is a commutative K-algebra with unity and
K[X1, . . . , Xm] is a subalgebra with unity.

(c) Let V be a K-vector space. Then End(V ), with composition as ring multipli-
cation, is a K-algebra. Thus

ABx = A(Bx) , x ∈ V , A,B ∈ End(V ) ,

and I := idV is the unity element of End(V ). In general, End(V ), the endomor-
phism algebra of V is not commutative. �

12.12 Remark Let V be a K-vector space. Define a function

K[X] × End(V ) → End(V ) , (p,A) �→ p(A)

by
p(A) :=

∑
k

pkAk , p =
∑

k

pkXk . (12.11)

One can easily show that, for A ∈ End(V ), the function

K[X] → End(V ) , p �→ p(A)

is an algebra homomorphism, that is, it is compatible with all algebra operations. �

Difference Operators and Summation Formulas

We close this section with some applications illustrating the algebraic concepts introduced

above.

Let E be a vector space over K. On EN define the difference operator � by

�fn := fn+1 − fn , n ∈ N , f := (n �→ fn) ∈ EN .

Obviously � ∈ End(EN). If I denotes the unity element of End(V ), then

(I + �)fn = fn+1 , n ∈ N , f ∈ EN ,

that is, I + � is the left shift operator. If we write f as a ‘sequence’, f = (f0, f1, f2, . . .),
then we have (I + �)f = (f1, f2, f3, . . .) and, by induction,

(I + �)kfn = fn+k , n ∈ N , f ∈ EN , (12.12)

hence (I + �)kf = (fk, fk+1, fk+2, . . .).
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Applying the binomial theorem (Proposition 8.4) to the ring End(EN) we get

�k =
(
−I + (I + �)

)k
=

k∑
j=0

(−1)k−j
(k

j

)
(I + �)j , k ∈ N ,

and so, by (12.12),

�kfn =
k∑

j=0

(−1)k−j
(k

j

)
fn+j , k, n ∈ N , f ∈ EN .

The binomial theorem also implies

(I + �)k =

k∑
j=0

(k

j

)
�j ,

and so

fn+k =
k∑

j=0

(k

j

)
�jfn , n ∈ N , f ∈ EN . (12.13)

From the last formula we get finally

m∑
k=0

fk =

m∑
k=0

k∑
j=0

(k

j

)
�jf0 =

m∑
j=0

m∑
k=j

(k

j

)
�jf0 =

m∑
j=0

(m + 1

j + 1

)
�jf0

for m ∈ N. Here we have changed the order of summation as in the proof of Proposi-
tion 8.12, and, in the last step, used Exercise 5.5. Changing the indexing slightly yields
the general summation formula

m−1∑
k=0

fk =
m∑

j=1

(m

j

)
�j−1f0 , m ∈ N× , f ∈ EN . (12.14)

Newton Interpolation Polynomials

Let h ∈ K× and x0 ∈ K. For each m ∈ N× and f ∈ KK there is, by Proposition 12.9, a
unique interpolation polynomial p := Nm[f ; x0; h] of degree ≤ m which satisfies

p(x0 + jh) = f(x0 + jh) , j = 0, . . . , m ,

that is, f and p have equal values at the equally spaced points x0, x0 + h, . . . , x0 + mh.
Thus

Nm[f ; x0; h] = Nm[f ; x0, x0 + h, . . . , x0 + mh] .

By Remark 12.10(b), we can write Nm[f ; x0; h] in the Newton form1

Nm[f ; x0; h] =
m∑

j=0

aj

j−1∏
k=0

(X − xk) .

1We make the convention that the ‘empty product’
∏−1

k=0 has the value 1.
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The following proposition shows that, in this case, the coefficients aj can be expressed
easily using the difference operators �j . To do so we define the divided difference oper-
ator �h of length h by

�hf(x) :=
f(x + h) − f(x)

h
, x ∈ K , f ∈ KK .

Obviously, �h ∈ End(KK). We set �j
h := (�h)j for j ∈ N.

12.13 Proposition The Newton interpolation polynomial for a function f and equally
spaced points xj := x0 + jh, 0 ≤ j ≤ m has the form

Nm[f ; x0; h] =
m∑

j=0

�j
hf(x0)

j!

j−1∏
k=0

(X − xk) . (12.15)

Proof Using the notation of Remark 12.10, we need to show that j! aj = �j
hf(x0) for

j = 0, . . . , m. Since

ωj [x0, . . . , xj−1](xk) =

j−1∏
�=0

(xk − x�) = k(k − 1) · · · (k − j + 1)hj = j!
(k

j

)
hj

for 0 ≤ j < k ≤ m, the system of equations from Remark 12.10(b) has the form

a0 = f(x0)

a0 + ha1 = f(x1)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

a0 + 1!
(m

1

)
ha1 + · · · + m!

(m

m

)
hmam = f(xm) .

(12.16)

Now we prove the claim by induction. For m = 0 the claim is clear. Suppose that
aj = �j

hf(x0)/j! for 0 ≤ j ≤ n. For m = n + 1 it follows from (12.16) that

f(xn+1) =
n∑

j=0

j!
(n + 1

j

)
hj �j

hf(x0)

j!
+ (n + 1)! hn+1an+1

=
n∑

j=0

(n + 1

j

)
�jf0 + (n + 1)! hn+1an+1 ,

(12.17)

where, for n ∈ N, we define f0 ∈ KN by f0(n) := f(x0 + nh). By (12.13) we have

n∑
j=0

(n + 1

j

)
�jf0 =

n+1∑
j=0

(n + 1

j

)
�jf0 − �n+1f0 = fn+1 − �n+1f0 .

Since f(xn+1) = fn+1, we get from (12.17) that

�n+1f0 = (n + 1)! hn+1an+1 ,

and hence (n + 1)! an+1 = �n+1
h f(x0). Thus the claim is true for each m ∈ N. �
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12.14 Remarks (a) For f ∈ KK, let

rm[f ; x0; h] := f − Nm[f ; x0; h]

be the ‘error function’. By construction, f : K → K is ‘approximated’ by the interpolation
polynomial Nm[f ; x0; h] so that the error is zero at the points x0 + jh, 0 ≤ j ≤ m. In
Section IV.3 we will see how the error can be controlled for certain large classes of
functions. In addition, we will show in Section V.4 that quite general functions can be
approximated ‘arbitrarily closely’ (in a suitable sense) by polynomials.

(b) Obviously (12.15) also makes sense for arbitrary f ∈ EK, and

Nm[f ; x0; h](xj) = f(xj) , 0 ≤ j ≤ m .

(c) A function f ∈ EN is called an arithmetic sequence of order k ∈ N× if �kf is constant,
that is, if �k+1f = 0. From (12.15) and Remark 8.19(c), it follows that, for each poly-
nomial p ∈ Kk[X], each h ∈ K× and each x0 ∈ K, the function N → K, n �→ p(x0 + hn)
is an arithmetic sequence of order k. In particular, for each k ∈ N, the ‘power sequence’
N → N, n �→ nk is an arithmetic sequence of order k.

For arithmetic sequences of order k, the summation formula (12.14) has a simple
form:

n∑
j=0

fj =
k∑

i=0

(n + 1

i + 1

)
�if0 , n ∈ N .

In particular, for the ‘power summations’ we have

n∑
j=0

j =
(n + 1

2

)
=

n(n + 1)

2
,

n∑
j=0

j2 =
(n + 1

2

)
+ 2

(n + 1

3

)
=

n(n + 1)(2n + 1)

6
,

n∑
j=0

j3 =
(n + 1

2

)
+ 6

(n + 1

3

)
+ 6

(n + 1

4

)
=

n2(n + 1)2

4
=
( n∑

j=0

j
)2

,

which the reader can easily confirm. �

Exercises

In the following K is a field and E, Ej , F , Fj , 1 ≤ j ≤ m are vector spaces over K.

1 (a) Determine all subspaces of K.

(b) What is the dimension of C over R?

2 (a) Show that the projections prk : E1 × · · · × Em → Ek and the canonical injections

ik : Ek → E1 × · · · × Em , x �→(0, . . . , 0, x, 0, . . . , 0)
(k)

are linear and determine the corresponding kernels and images.

(b) Show that Ek
∼= im(ik), 1 ≤ k ≤ m.
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3 Show that T : R2 → R2, (x, y) �→ (x − y, y − x) is linear. Determine the subspaces
ker(T ) and im(T ).

4 Suppose that the diagram below is commutative.

E F

E1 F1

P Q

T

S

�

�
� �

If T , P and Q are linear and P is surjective, is S also linear?

5 Let X be a nonempty set and x0 ∈ X. Show that the function δx0 : EX → E defined
by

δx0(f) := f(x0) , f ∈ EX ,

is linear.

6 Let E and F be finite dimensional. Show that dim(E × F ) = dim(E) dim(F ).

7 For T ∈ Hom(E, F ), prove that E/ ker(T ) ∼= im(T ).

8 Let x0, . . . , xm ∈ K be distinct. Show that the following Cauchy equations hold for the
Lagrange polynomials �j := �j [x0, . . . , xm] ∈ Km[X]:

(a)
∑m

j=0 �j = 1 (= X0).

(b) (X − y)k =
∑m

j=0(xj − y)k�j , y ∈ K, 1 ≤ k ≤ m.

9 Show that, for distinct x0, . . . , xm ∈ K, the Lagrange polynomials �j , 0 ≤ j ≤ m, and
the Newton polynomials ωj , 0 ≤ j ≤ m, form bases of Km[X].

10 Let x0, . . . , xm ∈ K be distinct and f ∈ KK. Prove the following:

(a) The coefficients aj of the Newton polynomials in Remark 12.10(b) are given by

an =

n∑
j=0

f(xj)∏n
k=0
k �=j

(xj − xk)
=: f [x0, . . . , xn] , 0 ≤ n ≤ m .

(b) The coefficients f [x0, . . . , xn] are symmetric in their arguments. That is, if 0 ≤ n ≤ m
and σ is a permutation of {0, 1, . . . , n}, then f [x0, . . . , xn] = f [xσ(0), . . . , xσ(n)].

(c) f [x0, . . . , xn] =
f [x0, . . . , xn−1] − f [x1, . . . , xn]

x0 − xn
, 1 ≤ n ≤ m.

Remark Because of (c), the numbers f [x0, . . . , xn] are easy to calculate recursively.

(Hint: (a) pn[f, x0, . . . , xn] = Ln[f, x0, . . . , xn], 0 ≤ n ≤ m.
(c) pn[f, x0, . . . , xn] = b0 + b1(X − xn) + · · · + bn(X − xn)(X − xn−1) · · · (X − x1) with
an = bn for 1 ≤ n ≤ m. From this one can show that bn = f [xn, xn−1, . . . , x1] and
(xn − x0)an + an−1 − bn−1 = 0.)

11 For f ∈ EN, show that fn =
k∑

j=0

(−1)j
(k

j

)
�jfn+k−j , n ∈ N.

(Hint: I = (I + �) − �.)



128 I Foundations

12 For h ∈ K× and k, m ∈ N, show that �k
h ∈ Hom

(
Km[X], Km−k[X]

)
where we set

Kj [X] := 0 if j is negative.

What are the leading coefficients of �k
hXm?

13 Verify the identity
∑n

j=0 j4 = n(n + 1)(2n + 1)(3n2 + 3n − 1)/30 for n ∈ N.

14 Show that Q
(√

2
)

:=
{

a + b
√

2 ; a, b ∈ Q
}

(see Exercise 10.2) is a vector space
over Q. What is its dimension?

15 R can be considered as a vector space over the field Q
(√

2
)
. Are 1 and

√
3 linearly

independent over Q
(√

2
)
?

16 For m ∈ N and an m + 1 element subset {x0, . . . , xm} of K consider the function

e : Km[X] → Km+1 , p �→
(
p(x0), . . . , p(xm)

)
.

Show that e is an isomorphism from Km[X] to Km+1. What is e−1?

17 Let T : K → E be linear. Prove that there is a unique m ∈ E such that T (x) = xm

for all x ∈ K.



Chapter II

Convergence

With this chapter we enter at last the realm of analysis. This branch of mathemat-
ics is largely build upon the concept of convergence which allows us, in a certain
sense, to add together infinite sets of numbers (or vectors). This ability to consider
infinite operations is the essential difference between analysis and algebra.

The attempt to axiomatize naive ideas about the convergence of sequences of
numbers leads naturally to the concepts of distance, the neighborhood of a point,
and metric spaces — the subject of Section 1. In the special case of a sequence of
numbers we can exploit the vector space structure of K. An analysis of the proofs
in this situation shows that most can be applied to sequences of vectors in a vector
space, so long as some analog of absolute value is available. Thus we are naturally
led to define normed vector spaces, a particularly important class of metric spaces.

Among normed vector spaces, inner product spaces are distinguished by the
richness of their structure, as well as by the fact that their geometry is much like
the familiar Euclidean geometry of the plane. Indeed, for elementary analysis, the
most important classes of inner product spaces are the m-dimensional Euclidean
spaces Rm and Cm.

In Sections 4 and 5 we return to the simplest situation, namely convergence
in R. Using the order structure, and in particular, the order completeness of R, we
derive our first concrete convergence criteria. These allow us to calculate the limits
of a number of important sequences. In addition, from the order completeness of R,
we derive a fundamental existence principle, the Bolzano-Weierstrass theorem.

Section 6 is devoted to the concept of completeness in metric spaces. Special-
ization to normed vector spaces leads to the definition of a Banach space. The basic
example of such a space is Km, but we also show that sets of bounded functions
are Banach spaces.

Banach spaces are ubiquitous in analysis and so play a central role in our
presentation. Even so, their structure is simple enough that a beginner can go
with little difficulty from understanding real numbers to understanding Banach
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spaces. Moreover, the early introduction of these spaces makes possible short and
elegant proofs in later chapters.

For completeness and for the general (mathematical) education of the reader,
we present in Section 6 Cantor’s proof of the existence of an order complete ordered
field using a ‘completion’ of Q.

In the remaining sections of this chapter, we discuss the convergence of series.
In Section 7 we learn the basic properties of series and discuss the most important
examples. We are then able to investigate the decimal and other representations of
real numbers, which enables us to prove that the real numbers form an uncountable
set.

Among convergent series, those which converge absolutely play a particularly
important role. Absolute convergence is often easy to recognize and such series
are relatively easy to manipulate. Moreover, many series which are important in
practice converge absolutely. This is particularly true about power series which
we introduce and study in the last section of this chapter. The most important of
these is the exponential series, whose significance will become clear in following
chapters.
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1 Convergence of Sequences

In this section we consider functions which are defined on the natural numbers and
hence take on only a countable number of values. For such a function ϕ : N → X,
we are particularly interested in the behavior of the values ϕ(n) ‘as n goes to
infinity’. Because we can evaluate ϕ only finitely many times, that is, we can never
‘reach infinity’, we must develop methods which allow us to prove statements about
infinitely many function values ‘near infinity’. Such methods form the theory of
convergent sequences, which we present in this section.

Sequences

Let X be a set. A sequence (in X) is simply a function from N to X. If ϕ : N → X
is a sequence, we write also

(xn), (xn)n∈N or (x0, x1, x2, . . .)

for ϕ, where xn := ϕ(n) is the nth term of the sequence ϕ = (x0, x1, x2, . . .).

Sequences in K are called number sequences, and the K-vector space KN

of all number sequences is denoted by s or s(K) (see Example I.12.3(e)). More
precisely, one says (xn) is a real (or complex) sequence if K = R (or K = C).

1.1 Remarks (a) It is vital to distinguish a sequence (xn) from its image
{xn ; n ∈ N }. For example, if xn = x ∈ X for all n, that is, (xn) is a constant
sequence, then (xn) = (x, x, x, . . .) ∈ XN whereas {xn ; n ∈ N } is the one element
set {x}.

(b) Let (xn) be a sequence in X and E a property. Then we say that E holds
for almost all terms of (xn) if there is some m ∈ N such that E(xn) is true for all
n ≥ m, that is, if E holds for all but finitely many of the xn. Of course, E(xn)
could also be true for several (or all) n < m. If there is a subset N ⊆ N with
Num(N) = ∞ and E(xn) is true for each n ∈ N then E is true for infinitely many
terms. For example, the real sequence(

−5, 4,−3, 2,−1, 0,−1
2
,
1
3
,−1

4
,
1
5
, . . . ,− 1

2n
,

1
2n + 1

, . . .
)

has infinitely many positive terms, infinitely many negative terms, and has absolute
value less than 1 for almost all terms.

(c) For m ∈ N×, a function ψ : m + N → X is also called a sequence in X. That
is, (xj)j≥m = (xm, xm+1, xm+2, . . .) is a sequence in X even though the indexing
does not start with 0. This convention is justified, since after ‘re-indexing’ using the
function N → m + N, n �→ m + n, the ‘shifted sequence’ (xj)j≥m can be identified
with the (usual) sequence (xm+k)k∈N ∈ XN. �
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If one graphs the first few terms
of the complex sequence (zn)n≥1 defined
by zn := (1 − 1/n)(1 + i), one observes
that, as n increases, the points zn get
‘arbitrarily close’ to z := 1 + i. In other
words, the distance from zn to z becomes
‘arbitrarily small’ with increasing n. The
goal of this section is to axiomatize our
intuitive and geometrical ideas about the
convergence of such number sequences so
that they can be applied to sequences in
vector spaces and in other more abstract
sets.

��

�
��

��

��

��

�

First we recognize that the concept of distance is of central importance.
In K we can, with the help of the absolute value function, determine the distance
between two points. To investigate the convergence of sequences in an arbitrary
set X, we first need to endow X with a structure which permits the ‘distance’
between two elements in X to be determined.

Metric Spaces

Let X be a set. A function d : X × X → R+ is called a metric on X if the following
hold:

(M1) d(x, y) = 0 ⇐⇒ x = y.

(M2) d(x, y) = d(y, x), x, y ∈ X (symmetry).

(M3) d(x, y) ≤ d(x, z) + d(z, y), x, y, z ∈ X (triangle inequality).

If d is a metric on X, then (X, d) is called a metric space. When the metric is clear
from context, we write simply X for (X, d). Finally we call d(x, y) the distance
between the points x and y in the metric space X.

The axioms (M1)–(M3) are clearly quite natural properties for a distance
function. For example, (M3) can be seen as an axiomatic formulation of the rule
that ‘the direct path from x to y is shorter than the path which goes from x to z
and then to y’.

In the metric space (X, d), for a ∈ X and r > 0, the set

B(a, r) := BX(a, r) :=
{

x ∈ X ; d(a, x) < r
}

is called the open ball with center at a and radius r, while

B̄(a, r) := B̄X(a, r) :=
{

x ∈ X ; d(a, x) ≤ r
}

is called the closed ball with center at a and radius r.
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1.2 Examples (a) K is a metric space with the natural metric

K × K → R+ , (x, y) �→ |x − y| .

Unless otherwise stated, we consider K to be a metric space with the natural
metric.1

Proof The validity of (M1)–(M3) follows directly from Proposition I.11.4. �

(b) Let (X, d) be a metric space and Y a nonempty subset of X. Then the restric-
tion of d to Y × Y , dY := d |Y × Y , is a metric on Y , the induced metric, and
(Y, dY ) is a metric space, a metric subspace of X. When no misunderstanding is
possible, we write d instead of dY .

(c) Any nonempty subset of C is a metric space with the metric induced from the
natural metric on C. The metric on R induced in this way is the natural metric as
defined in (a).

(d) Let X be a nonempty set. Then the function d(x, y) := 1 for x �= y and
d(x, x) := 0 is a metric, called the discrete metric, on X.

(e) Let (Xj , dj), 1 ≤ j ≤ m, be metric spaces and X := X1 × · · · × Xm. Then the
function

d(x, y) := max
1≤j≤m

dj(xj , yj)

for x := (x1, . . . , xm) ∈ X and y := (y1, . . . , ym) ∈ X is a metric on X called the
product metric. The metric space X := (X, d) is called the product of the metric
spaces (Xj , dj). One can check that

BX(a, r) =
m∏

j=1

BXj
(aj , r) , B̄X(a, r) =

m∏
j=1

B̄Xj
(aj , r)

for all a := (a1, . . . , am) ∈ X and r > 0. �

An important consequence of the metric space axioms is the reversed triangle
inequality (see Corollary I.11.5).

1.3 Proposition Let (X, d) be a metric space. Then for all x, y, z ∈ X we have

d(x, y) ≥ |d(x, z) − d(z, y)| .

Proof From (M3) we get the inequality d(x, y) ≥ d(x, z) − d(y, z). Interchanging
x and y yields

d(x, y) = d(y, x) ≥ d(y, z) − d(x, z) = −
(
d(x, z) − d(y, z)

)
,

from which the claim follows. �
1Note that, with this convention, the definitions of open and closed balls given above (as

applied to K) coincide with those of Section I.11.
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A subset U of a metric space X is called a neighborhood of a ∈ X if there is
some r > 0 such that B(a, r) ⊆ U . The set of all neighborhoods of the point a is
denoted by U(a), that is,

U(a) := UX(a) := {U ⊆ X ; U is a neighborhood of a } ⊆ P(X) .

� ��� ��
��

1.4 Examples Let X be a metric space and a ∈ X.

(a) For each ε > 0, B(a, ε) and B̄(a, ε) are neighborhoods of a called the open
and the closed ε-neighborhoods of a.

(b) Obviously X is in U(a). If U1, U2 ∈ U(a), then U1 ∩ U2 and U1 ∪ U2 are also
in U(a). Any U ⊆ X which contains a neighborhood of a ∈ X is also in U(a).

Proof By supposition there are rj > 0 with B(a, rj) ⊆ Uj for j = 1, 2. Define r > 0 by

r := min{r1, r2}, then B(a, r) ⊆ U1 ∩ U2 ⊆ U1 ∪ U2. The other claims are clear. �

(c) For X := [0, 1] with metric induced from R, [1/2, 1] is a neighborhood of 1,
but not of 1/2. �

For the remainder of this section, X := (X, d) is a metric space and (xn) is
a sequence in X.

Cluster Points

We call a ∈ X a cluster point of (xn) if every neighborhood of a contains infinitely
many terms of the sequence.

Before we consider some examples, it is useful to have the following charac-
terization of cluster points:

1.5 Proposition The following are equivalent:
(i) a is a cluster point of (xn).
(ii) For each U ∈ U(a) and m ∈ N, there is some n ≥ m such that xn ∈ U .

(iii) For each ε > 0 and m ∈ N, there is some n ≥ m such that xn ∈ B(a, ε).

Proof This follows directly from the definitions. �
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1.6 Examples (a) The real sequence
(
(−1)n

)
n∈N

has two cluster points, namely,
1 and −1.

(b) The complex sequence (in)n∈N has four cluster points, namely, ±1 and ±i.

(c) The constant sequence (x, x, x, . . .) has the unique cluster point x.

(d) The sequence of the natural numbers (n)n∈N has no cluster points.

(e) Let ϕ be a bijection from N to Q (such functions exist by Proposition I.9.4).
Define a sequence (xn) by xn := ϕ(n) for all n ∈ N. Then all real numbers are
cluster points of (xn).
Proof Suppose that there is some a ∈ R which is not a cluster point of (xn). Then, by
Proposition 1.5, there are ε > 0 and m ∈ N such that

xn /∈ B(a, ε) = (a − ε, a + ε) , n ≥ m .

That is, the interval (a − ε, a + ε) contains only finitely many rational numbers. But this

is not possible because of Proposition I.10.8. �

Convergence

A sequence (xn) converges (or is convergent) with limit a if each neighborhood
of a contains almost all terms of the sequence. In this case we write2

lim
n→∞xn = a or xn → a (n → ∞) ,

and we say that (xn) converges to a as n goes to ∞. A sequence (xn) which is not
convergent is called divergent and we say that (xn) diverges.

The essential part of the definition is the requirement that each neighbor-
hood of the limit contains almost all terms of the sequence. This requirement
corresponds, in the case that X = K, to the geometric intuition that the distance
from xn to a ‘becomes arbitrarily small’. If a is a cluster point of (xn) and U is
a neighborhood of a, then, of course, U contains infinitely many terms of the se-
quence, but it is also possible that infinitely many terms of the sequence are not
in U .

The next proposition is again simply a reformulation of the corresponding
definitions.

1.7 Proposition The following statements are equivalent:
(i) limxn = a.

(ii) For each U ∈ U(a), there is some3 N := N(U) such that xn ∈ U for all n ≥ N .

(iii) For each ε > 0, there is some3 N := N(ε) such that xn ∈ B(a, ε) for all n ≥ N .

2When no misunderstanding is possible, we write also limn xn = a, lim xn = a or xn → a.
3We use this notation to indicate that the number N , in general, depends on U (or ε).
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The following examples are rather simple. For more complicated examples
we need the methods to be developed starting in Section 4.

1.8 Examples (a) For the real sequence (1/n)n∈N× , we have lim(1/n) = 0.

Proof Let ε > 0. By Corollary I.10.7, there is some N ∈ N× such that 1/N < ε. Then

1/n ≤ 1/N < ε for all n ≥ N , that is, 1/n ∈ (0, ε) ⊆ B(0, ε) for all n ≥ N . �

(b) For the complex sequence (zn) defined by

zn :=
n + 2
n + 1

+ i
2n

n + 2
,

we have lim zn = 1 + 2i .

Proof Let ε > 0. By Corollary I.10.7, there is some N ∈ N such that 1/N < ε/8. Then,
for all n ≥ N , we have

n + 2

n + 1
− 1 =

1

n + 1
<

1

N
<

ε

8
<

ε

2

and

2 − 2n

n + 2
=

4

n + 2
<

4

N
<

ε

2
.

Consequently

|zn − (1 + 2i)|2 =
∣∣∣n + 2

n + 1
− 1

∣∣∣2 +
∣∣∣ 2n

n + 2
− 2

∣∣∣2 <
ε2

4
+

ε2

4
< ε2 , n ≥ N .

This shows that zn ∈ BC

(
(1 + 2i), ε

)
for all n ≥ N . �

(c) The constant sequence (a, a, a, . . .) converges to a.

(d) The real sequence
(
(−1)n

)
n∈N

is divergent.

(e) Let X be the product of the metric spaces (Xj , dj), 1 ≤ j ≤ m. Then the
sequence4 (xn) =

(
(x1

n, . . . , xm
n )

)
n∈N

converges in X to the point a := (a1, . . . , am)
if and only if, for each j ∈ {1, . . . , m}, the sequence (xj

n)n∈N converges in Xj to
aj ∈ Xj .

Proof For each given ε > 0, almost all xn are in BX(a, ε) =
∏m

j=1 BXj (a
j , ε) if and only

if for each j = 1, . . . , m, almost all xj
n are in BXj (a

j , ε) (see Example 1.2(e)). �

4In the following we often write xj := prj(x) for x ∈ X and 1 ≤ j ≤ m. Even in the case

Xj = K it will be clear from context whether xj is the component of a point in a product space
or a power of x.
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Bounded Sets

A subset Y ⊆ X is called d-bounded or bounded in X (with respect to the metric d)
if there is some M > 0 such that d(x, y) ≤ M for all x, y ∈ Y . In this circumstance
the diameter of Y , defined by

diam(Y ) := sup
x,y∈Y

d(x, y) ,

is finite. A sequence (xn) is bounded if its image {xn ; n ∈ N } is bounded.

1.9 Examples (a) For all a ∈ X and r > 0, B(a, r) and B̄(a, r) are bounded in X.

(b) Each subset of a bounded set is bounded. Finite unions of bounded sets are
bounded.

(c) A subset Y of X is bounded in X if and only if there are some x0 ∈ X and r > 0
such that Y ⊆ BX(x0, r). If Y �= ∅ then there is some x0 ∈ Y with this property.

(d) Bounded intervals are bounded.

(e) A subset Y of K is bounded if and only if there is some M > 0 such that
|y| ≤ M for all y ∈ Y . �

1.10 Proposition Any convergent sequence is bounded.

Proof Suppose that xn → a. Then there is some N such that xn ∈ B(a, 1) for all
n ≥ N . It follows from the triangle inequality that

d(xn, xm) ≤ d(xn, a) + d(a, xm) ≤ 2 , m, n ≥ N .

Since there is also some M ≥ 0 such that d(xj , xk) ≤ M for all j, k ≤ N , we have
d(xn, xm) ≤ M + 2 for all m,n ∈ N. �

Uniqueness of the Limit

1.11 Proposition Let (xn) be convergent with limit a. Then a is the unique cluster
point of (xn).

Proof It is clear that a is a cluster point of (xn). To show uniqueness, suppose
that b �= a is some point of X. Then, by (M1), ε := d(b, a)/2 is positive. Since
a = limxn, there is some N such that d(a, xn) < ε for all n ≥ N . Proposition 1.3
then implies that

d(b, xn) ≥ |d(b, a) − d(a, xn)| ≥ d(b, a) − d(a, xn) > 2ε − ε = ε , n ≥ N .

That is, almost all terms of (xn) are outside of B(b, ε). Thus b is not a cluster point
of (xn). �
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1.12 Remark The converse of Proposition 1.11 is false, that is, there are divergent
sequences with exactly one cluster point, for example,

(
1
2 , 2, 1

3 , 3, 1
4 , 4, . . .

)
. �

As a direct consequence of Proposition 1.11 we have the following:

1.13 Corollary The limit of a convergent sequence is unique.

Subsequences

Let ϕ = (xn) be a sequence in X and ψ : N → N a strictly increasing function.
Then ϕ ◦ ψ ∈ XN is called a subsequence of ϕ. Extending the notation (xn)n∈N

introduced above for the sequence ϕ, we write (xnk
)k∈N for the subsequence ϕ ◦ ψ

where nk := ψ(k). Since ψ is strictly increasing we have n0 < n1 < n2 < · · ·.

1.14 Example The sequence
(
(−1)n

)
n∈N

has the two constant subsequences,(
(−1)2k

)
k∈N

= (1, 1, 1, . . .) and
(
(−1)2k+1

)
k∈N

= (−1,−1,−1, . . .). �

1.15 Proposition If (xn) is a convergent sequence with limit a, then each subse-
quence (xnk

)k∈N of (xn) is convergent with limk→∞ xnk
= a.

Proof Let (xnk
)k∈N be a subsequence of (xn) and U a neighborhood of a. Because

a = limxn, there is some N such that xn ∈ U for all n ≥ N . From the definition of
a subsequence, nk ≥ k for all k ∈ N, and so, in particular, nk ≥ N for all k ≥ N .
Thus xnk

∈ U for all k ≥ N . This means that (xnk
) converges to a. �

1.16 Example For m ≥ 2,

1
km

→ 0 (k → ∞) and
1

mk
→ 0 (k → ∞) .

Proof Set ψ1(k) := km and ψ2(k) := mk for all k ∈ N×. Since ψi : N× → N×, i = 1, 2,

are strictly increasing, (k−m)k∈N× and (m−k)k∈N× are subsequences of (1/n)n∈N× . The

claim then follows from Proposition 1.15 and Example 1.8(a). �

The next proposition provides a further characterization of the cluster points
of a sequence.

1.17 Proposition A point a is a cluster point of a sequence (xn) if and only if
there is some subsequence (xnk

)k∈N of (xn) which converges to a.

Proof Let a be a cluster point of (xn). We define recursively a sequence of natural
numbers (nk)k∈N by

n0 := 0 , nk := min
{

m ∈ N ; m > nk−1, xm ∈ B(a, 1/k)
}

, k ∈ N× .
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Since a is a cluster point of (xn), the sets{
m ∈ N ; m > nk−1, xm ∈ B(a, 1/k)

}
, k ∈ N× ,

are nonempty. By the well ordering principle, nk is well defined for each k ∈ N×.
Thus ψ : N → N, k �→ nk is well defined and strictly increasing.

We next show that the subsequence (xnk
)k∈N converges to a. Let ε > 0. By

Corollary I.10.7 there is some K := K(ε) ∈ N× such that 1/k < ε for all k ≥ K.
By the construction of nk we have

xnk
∈ B(a, 1/k) ⊆ B(a, ε) , k ≥ K .

Thus a = limk→∞ xnk
.

Conversely, let (xnk
)k∈N be a subsequence of (xn) such that a = limk→∞ xnk

.
Then, by Proposition 1.11, a is a cluster point of (xnk

)k∈N and hence also of (xn). �

Exercises

1 Let d be the discrete metric on K and X := (K, d).

(a) Give explicit descriptions of BX(a, r) and B̄X(a, r) for a ∈ X and r > 0.

(b) Describe the cluster points of an arbitrary sequence in X.

(c) For a ∈ X, describe all sequences (xn) in X such that xn → a.

2 Prove the claims of Example 1.2(e).

3 Prove that the sequence (zn)n≥1 where zn := (1 − 1/n)(1 + i) converges to 1 + i
(as suggested by the graph following Remarks 1.1).

4 Prove the claims of Examples 1.9.

5 Determine all cluster points of the complex sequence (zn) in the following cases:

(a) zn :=
(
(1 + i)

/√
2
)n

.

(b) zn :=
(
1 + (−1)n

)
(n + 1)n−1 + (−1)n.

(c) zn := (−1)nn/(n + 1).

6 For n ∈ N, define

an := n +
1

k
− k2 + k − 2

2
,

where k ∈ N× satisfies
k2 + k − 2 ≤ 2n ≤ k2 + 3k − 2 .

Show that (an) is well defined and determine all cluster points of (an). (Hint: Calculate
the first few terms of the sequence explicitly to understand the complete sequence.)

7 For m, n ∈ N×, define

d(m, n) :=

{
(m + n)/mn , m 
= n ,

0 , m = n .

Show that (N×, d) is a metric space and describe An := B̄(n, 1 + 1/n) for n ∈ N×.
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8 Let X := { z ∈ C ; |z| ≤ 3 } with the natural metric. Describe B̄X(0, 3) and B̄X(2, 4).
Show that B̄X(2, 4) ⊂ B̄X(0, 3).

9 Two metrics d1 and d2 on a set X are called equivalent if, for each x ∈ X and ε > 0,
there are positive numbers r1 and r2 such that

B1(x, r1) ⊆ B2(x, ε) , B2(x, r2) ⊆ B1(x, ε) .

Here Bj denotes the ball in (X, dj), j = 1, 2. Now let (X, d) be a metric space and

δ(x, y) :=
d(x, y)

1 + d(x, y)
, x, y ∈ X .

Prove that d and δ are equivalent metrics on X. (Hint: The function t �→ t/(1 + t) is
increasing.)

10 For X := (0, 1), prove the following:

(a) d(x, y) := |(1/x) − (1/y)| is a metric on X.

(b) The natural metric and d are equivalent.

(c) There is no metric on R which is equivalent to the natural metric and which induces
the metric d on X.

11 Let (Xj , dj), j = 1, . . . , n, be metric spaces, X := X1 × · · · × Xn and d the product
metric on X. Show that

δ(x, y) :=

n∑
j=1

dj(xj , yj) , x := (x1, . . . , xn) ∈ X , y := (y1, . . . , yn) ∈ X ,

is a metric on X which is equivalent to d.

12 For z, w ∈ C, set

δ(z, w) :=

{
|z − w| , if z = λw for some λ > 0 ,

|z| + |w| otherwise .

Show that δ defines a metric on C, the SNCF-metric.5

13 Let (xn) be a sequence in C with Re xn = 0 for all n ∈ N. Show that, if (xn) converges

to x, then Re x = 0.

5Users of the French railway system (the SNCF) will have noticed that the fastest connection
between two cities (for example, Bordeaux and Lyon) often goes through Paris.
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2 Real and Complex Sequences

In this section we derive the most important rules for calculating with convergent
sequences of numbers. If we interpret these sequences as vectors in the vector space
s = s(K) = KN, these rules show that the convergent sequences form a subspace
of s. In the case of real sequences, we use the order structure of R to derive the
comparison test which is the main tool for investigating convergence in s(R).

Null Sequences

A sequence (xn) in K is called a null sequence if it converges to zero, that is, if,
for each ε > 0, there is some N ∈ N such that |xn| < ε for all n ≥ N . The set of
all null sequences in K we denote by c0, that is,

c0 := c0(K) :=
{

(xn) ∈ s ; (xn) converges with lim xn = 0
}

.

2.1 Remarks Let (xn) be a sequence in K and a ∈ K.

(a) (xn) is a null sequence if and only if (|xn|), the sequence of absolute values, is
a null sequence in R.

Proof This comes directly from the definition. �

(b) (xn) converges to a if and only if the ‘shifted sequence’ (xn − a) is a null
sequence.

Proof From Proposition 1.7 we know that (xn) converges to a if and only if, for each

ε > 0, there is some N such that |xn − a| < ε for all n ≥ N . Hence the claim follows

from (a). �

(c) If there is a real null sequence (rn) such that |xn| ≤ rn for almost all n ∈ N
then (xn) is a null sequence.

Proof Let ε > 0. By assumption there are M, N ∈ N such that |xn| ≤ rn for all n ≥ M

and rn < ε for all n ≥ N . Consequently |xn| < ε for all n ≥ max{M, N}. �

Elementary Rules

2.2 Proposition Let (xn) and (yn) be convergent sequences in K with limxn = a
and lim yn = b. Let α ∈ K.

(i) The sequence (xn + yn) converges with lim(xn + yn) = a + b.

(ii) The sequence (αxn) converges with lim(αxn) = αa.

Proof Let ε > 0.

(i) Because xn → a and yn → b, there are M,N ∈ N such that |xn − a| < ε/2
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for all n ≥ M , and |yn − b| < ε/2 for all n ≥ N . Hence

|xn + yn − (a + b)| ≤ |xn − a| + |yn − b| <
ε

2
+

ε

2
= ε , n ≥ max{M,N} .

This shows that (xn + yn) converges to a + b.
(ii) Since the case α = 0 is obvious, we suppose that α �= 0. By assump-

tion (xn) converges with limit a. Thus there is some N such that |xn − a| < ε/|α|
for all n ≥ N . It follows that

|αxn − αa| = |α| |xn − a| ≤ |α| ε

|α| = ε , n ≥ N ,

which proves the claim. �

2.3 Remark Denote the set of all convergent sequences in K by

c := c(K) :=
{

(xn) ∈ s ; (xn) converges
}

.

Then Proposition 2.2 has the following interpretation:

c is a subspace of s, and the function

lim : c → K , (xn) �→ limxn

is linear.

Clearly ker(lim) = c0, and so, by Example I.12.3(c), c0 is a subspace of c. �

The next proposition shows, in particular, that convergent sequences can be
multiplied ‘termwise’.

2.4 Proposition Let (xn) and (yn) be sequences in K.

(i) If (xn) is a null sequence and (yn) is a bounded sequence, then (xnyn) is a
null sequence.

(ii) If limxn = a and lim yn = b, then lim(xnyn) = ab.

Proof (i) Since (yn) is bounded, there is some M > 0 such that |yn| ≤ M for all
n ∈ N. Since (xn) is a null sequence, for each ε > 0, there is some N ∈ N such that
|xn| < ε/M for all n ≥ N . It now follows that

|xnyn| = |xn| |yn| <
ε

M
M = ε , n ≥ N .

Thus (xnyn) is a null sequence.
(ii) Since xn → a, (xn − a) is a null sequence. By Proposition 1.10, (yn) is

bounded. From (i),
(
(xn − a)yn

)
n∈N

is a null sequence. Since
(
a(yn − b)

)
n∈N

is
also a null sequence, Proposition 2.2 implies that

xnyn − ab = (xn − a)yn + a(yn − b) → 0 (n → ∞) .

Therefore the sequence (xnyn) converges to ab. �
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2.5 Remarks (a) The hypothesis in Proposition 2.4(i), that the sequence (yn) is
bounded, cannot be removed.

Proof Let xn := 1/n and yn := n2 for all n ∈ N×. Then (xn) is a null sequence but the

sequence (xnyn) = (n)n∈N is divergent. �

(b) From Example I.12.11(a) we know that s = s(K) = KN is an algebra (over K).
So, with Remark 2.3, Proposition 2.4(ii) can be reformulated as follows:

c is a subalgebra of s and the function

lim : c → K is an algebra homomorphism .

Finally, it follows from Proposition 1.10 and Proposition 2.4(i) that c0 is also an
ideal of c. �

The next proposition and Remark 2.5(b) show that the limit of a sequence of
quotients is the limit of the numerators divided by the limit of the denominators,
if these limits exist.

2.6 Proposition Let (xn) be a convergent sequence in K with limit a ∈ K×. Then
almost all terms of (xn) are nonzero and 1/xn → 1/a (n → ∞).

Proof Since |a| > 0, there is some N ∈ N such that |xn − a| < |a|/2 for all n ≥ N .
Hence, by the reversed triangle inequality,

|a| − |xn| ≤ |xn − a| ≤ |a|
2

, n ≥ N ,

that is, |xn| ≥ |a|/2 > 0 for almost all n. This proves the first claim. It also follows
from |xn| ≥ |a|/2 that∣∣∣ 1

xn
− 1

a

∣∣∣ =
|xn − a|
|xn| |a|

≤ 2
|a|2 |xn − a| , n ≥ N . (2.1)

By hypothesis and Remark 2.1(b), (|xn − a|) is a null sequence, and so, by Proposi-
tion 2.2,

(
2 |xn − a|

/
|a|2

)
is also a null sequence. The claim then follows from (2.1)

and Remarks 2.1(b) and (c). �

The Comparison Test

We investigate next the relationship between convergent real sequences and the
order structure of R. In particular, in Proposition 2.9 we derive the comparison
test, a simple, but very useful, method of determining the limits of real sequences.

2.7 Proposition Let (xn) and (yn) be convergent sequences in R such that xn ≤ yn

for infinitely many n ∈ N. Then

limxn ≤ lim yn .



144 II Convergence

Proof Set a := limxn and b := lim yn and suppose, contrary to our claim, that
a > b. Then ε := a − b is positive and so there is some n ∈ N such that

a − ε/4 < xn ≤ yn < b + ε/4 ,

that is, ε = a − b < ε/2, which is not possible. �

2.8 Remark Proposition 2.7 does not hold for strict inequalities, that is, xn < yn

for infinitely many n ∈ N does not imply that limxn < lim yn.

Proof Let xn := −1/n and yn := 1/n for all n ∈ N×. Then xn < yn for all n ∈ N×,

but lim xn = lim yn = 0. �

2.9 Proposition Suppose that (xn), (yn) and (zn) are real sequences with the
property that xn ≤ yn ≤ zn for almost all n ∈ N. If limxn = lim zn =: a, then (yn)
also converges to a.

Proof Let m0 be such that xn ≤ yn ≤ zn for all n ≥ m0. Given ε > 0, let m1

and m2 be such that

xn > a − ε , n ≥ m1 and zn < a + ε , n ≥ m2 .

Set N := max{m0,m1,m2}. Then

a − ε < xn ≤ yn ≤ zn < a + ε , n ≥ N ,

that is, almost all terms of (yn) are in the ε-neighborhood B(a, ε) of a. �

Complex Sequences

If (xn) is a convergent sequence in R with limxn = a, then lim |xn| = |a|. Indeed,
if (xn) is a null sequence, then this is Example 2.1(a). If a > 0, then almost all terms
of (xn) are positive (see Exercise 3), and so lim |xn| = limxn = a = |a|. Finally, if
a < 0, then almost all terms of the sequence (xn) are negative, and we have

lim |xn| = lim(−xn) = − limxn = −a = |a| .

The next proposition shows that the same is true of complex sequences.

2.10 Proposition Let (xn) be a convergent sequence in K such that limxn = a.
Then (|xn|) converges and lim |xn| = |a|.

Proof Let ε > 0. Then there is some N such that |xn − a| < ε for all n ≥ N .
From the reversed triangle inequality we have∣∣|xn| − |a|

∣∣ ≤ |xn − a| < ε , n ≥ N .

Thus |xn| ∈ BR(|a|, ε) for all n ≥ N . This implies that (|xn|) converges to |a|. �
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Convergent sequences in C can be characterized by the convergence of the
corresponding real and imaginary parts.

2.11 Proposition For a sequence (xn) in C the following are equivalent:

(i) (xn) converges.

(ii)
(
Re(xn)

)
and

(
Im(xn)

)
converge.

In this circumstance,

limxn = lim Re(xn) + i lim Im(xn) .

Proof ‘(i)=⇒(ii)’ Suppose that (xn) converges with x = limxn. Then, by Re-
mark 2.1(b), (|xn − x|) is a null sequence. From Proposition I.11.4 we have

|Re(xn) − Re(x)| ≤ |xn − x| .

By Remark 2.1(c),
(
Re(xn) − Re(x)

)
is also a null sequence, that is,

(
Re(xn)

)
converges to Re(x). Similarly

(
Im(xn)

)
converges to Im(x).

‘(ii)=⇒(i)’ Suppose that
(
Re(xn)

)
and

(
Im(xn)

)
converge with a := lim Re(xn)

and b := lim Im(xn). Set x := a + ib. Then

|xn − x| =
√

|Re(xn) − a|2 + | Im(xn) − b|2 ≤ |Re(xn) − a| + | Im(xn) − b| .

It follows easily from this inequality that (xn) converges to x in C. �

We close this section with some examples which illustrate the above propo-
sitions.

2.12 Examples (a) lim
n→∞

n + 1
n + 2

= 1.

Proof Write (n + 1)
/
(n + 2) in the form (1 + 1/n)

/
(1 + 2/n). Since

lim(1 + 1/n) = lim(1 + 2/n) = 1

(why?), the claim follows from Propositions 2.4 and 2.6. �

(b) lim
n→∞

(
3n

(2n + 1)2
+ i

2n2

n2 + 1

)
= 2i.

Proof Let

xn :=
3n

(2n + 1)2
+ i

2n2

n2 + 1
, n ∈ N .

Write the real part of xn in the form

3/n

(2 + 1/n)2
.
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Since lim(2 + 1/n) = 2, it follows from Proposition 2.4 that lim(2 + 1/n)2 = 4. Since
(3/n) is a null sequence, we have from Propositions 2.4 and 2.6 that

Re(xn) =
3n

(2n + 1)2
→ 0 (n → ∞) .

By Example 1.8(a) and Proposition 2.6, the sequence of the imaginary parts of xn satisfies

2n2

n2 + 1
=

2

1 + 1/n2
→ 2 (n → ∞) .

The claim now follows from Proposition 2.11. �

(c)

(
in

1 + in

)
is a null sequence in C.

Proof We write
in

1 + in
=

1

n

in

i + 1/n
, n ∈ N× .

Then, by Proposition 2.4, it suffices to show that the sequence
(
in
/
(i + 1/n)

)
n∈N× is

bounded. Since ∣∣∣i +
1

n

∣∣∣ =

√
1 +

1

n2
≥ 1 , n ∈ N× ,

we get the inequality∣∣∣ in

i + 1/n

∣∣∣ =
|in|

|i + 1/n| =
1

|i + 1/n| ≤ 1 , n ∈ N× ,

which shows the claimed boundedness. �

Exercises

1 Determine whether the following sequences (xn) in R converge. Calculate the limit in
the case of convergence.

(a) xn :=
√

n + 1 − √
n.

(b) xn := (−1)n√n
(√

n + 1 − √
n
)
.

(c) xn :=
1 + 2 + 3 + · · · + n

n + 2
− n

2
.

(d) xn :=
(2 − 1/

√
n)10 − (1 + 1/n2)10

1 − 1/n2 − 1/
√

n
.

(e) xn := (100 + 1/n)2.

2 Using the binomial expansion of (1 + 1)n, prove that
(
n3/2n

)
is a null sequence.

3 Let (xn) be a convergent real sequence with positive limit. Show that almost all terms
of the sequence are positive.
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4 Let (xj) be a convergent sequence in K with limit a. Prove that

lim
n→∞

1

n

n∑
j=1

xj = a .

5 For m ∈ N×, consider Km to be a metric space with the product metric (see Exam-
ple 1.2(e)). Let

s(Km) := Funct(N, Km) = (Km)N

and
c(Km) :=

{
(xn) ∈ s(Km) ; (xn) converges

}
.

Show the following:

(a) c(Km) is a subspace of s(Km).

(b) The function
lim : c(Km) → Km , (xn) �→ lim

n→∞
(xn)

is linear.

(c) Let (λn) ∈ c(K) and (xn) ∈ c(Km) be such that λn → α and xn → a. Then λnxn → αa
in Km (Hint: Example 1.8(e)).

6 Let (xn) be a convergent sequence in K with limit a. Let p, q ∈ K[X] be such that
q(a) 
= 0. Prove that, for the rational function r := p/q, we have

r(xn) → r(a) (n → ∞) .

In particular, for each polynomial p, the sequence
(
p(xn)

)
n∈N

converges to p(a).

7 Let (xn) be a convergent sequence in (0,∞) with limit x ∈ (0,∞). For r ∈ Q prove that

(xn)r → xr (n → ∞) .

(Hint: For r = 1/q, let yn := (xn)r and y := xr. Then

xn − x = (yn − y)

q−1∑
k=0

yk
nyq−1−k

by Exercise I.8.1.)

8 Let (xn) be a sequence in (0,∞). Show that (1/xn) is a null sequence if and only if,
for each K > 0, there is some N such that xn > K for all n ≥ N .

9 Let (an) be a sequence in (0,∞) and

xn :=

n∑
k=0

(ak + 1/ak) , n ∈ N .

Show that (1/xn) is a null sequence. (Hint: For a > 0, show that a + 1/a ≥ 2 (see Exer-

cise I.8.10). Now use Exercise 8.)
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3 Normed Vector Spaces

In this section we consider metrics on vector spaces. We want, of course, that
such metrics be compatible with the vector space structure, and so we begin by
investigating the vector space R2 for which we already have a concept of distance.
Specifically, if we denote the length of a vector x in R2 by ‖x‖, then the distance
between two points x, y ∈ R2 is ‖x−y‖. We will see later that this defines a metric
on R2 (see Remark 3.1(a)). As well as this relationship to the metric, the function
x �→ ‖x‖ has certain properties with respect to the vector space structure:

First we note that the length of a vector in R2 is nonnegative, that is, ‖x‖ ≥ 0
for all x ∈ R2, and that the only vector of zero length is the zero vector.

For x ∈ R2 and α > 0, we can view αx as the vector x stretched (or shrunk)
by the factor α. If α < 0, then αx is x stretched (or shrunk) by the factor −α and
then reversed in direction.

���
5x/2 x 0 −2x

In either case, the length of the vector αx is ‖αx‖ = |α| ‖x‖.
Finally, for all vectors x and y in R2, we have

the triangle inequality, ‖x + y‖ ≤ ‖x‖ + ‖y‖.
These three properties suffice for ‖x − y‖ to

be a metric on R2. Since they also generalize easily
to arbitrary vector spaces, we are led naturally to
the following definition of a normed vector space. �

�
�
�
�
��
�����������

�������������

x + y

x

y

Norms

Let E be a vector space over K. A function ‖·‖ : E → R+ is called a norm if the
following hold:
(N1) ‖x‖ = 0 ⇐⇒ x = 0.
(N2) ‖λx‖ = |λ| ‖x‖, x ∈ E, λ ∈ K (positive homogeneity).
(N3) ‖x + y‖ ≤ ‖x‖ + ‖y‖, x, y ∈ E (triangle inequality).
A pair (E, ‖·‖) consisting of a vector space E and a norm ‖·‖ is called a normed
vector space.1 If the norm is clear from context, we write E instead of (E, ‖·‖).

3.1 Remarks Let E := (E, ‖·‖) be a normed vector space.

(a) The function

d : E × E → R+ , (x, y) �→ ‖x − y‖
is a metric on E, the metric induced from the norm. Hence any normed vector
space is also a metric space.

1Unless otherwise stated, a vector space is henceforth assumed to be a K-vector space.
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Proof The axioms (M1) and (M2) follow immediately from (N1) and (N2). The axiom
(M3) follows from (N3) since

d(x, y) = ‖x − y‖ = ‖(x − z) + (z − y)‖ ≤ ‖x − z‖ + ‖z − y‖ = d(x, z) + d(z, y)

for all x, y, z ∈ E. �

(b) The reversed triangle inequality holds for the norm:

‖x − y‖ ≥
∣∣‖x‖ − ‖y‖

∣∣ , x, y ∈ E .

Proof Proposition 1.3 implies the reversed triangle inequality for the induced metric.
Hence

‖x − y‖ = d(x, y) ≥ |d(x, 0) − d(0, y)| =
∣∣‖x‖ − ‖y‖

∣∣
for all x, y ∈ E. �

(c) Because of (a), all statements from Section 1 about metric spaces hold also
for E. In particular, the concepts ‘neighborhood’, ‘cluster point’ and ‘convergence’
are well defined in E.

For example, the convergence of a sequence (xn) in E with limit x has the
meaning

xn → x in E ⇐⇒ ∀ ε > 0 ∃N ∈ N : ‖xn − x‖ < ε ∀n ≥ N .

Further, a review of Section 2 shows that any statement whose proof does not use
the field structure or order structure of K, holds also for sequences in E.

In particular, Remarks 2.1 and Propositions 2.2 and 2.10 hold in any normed
vector space. �

Balls

For a ∈ E and r > 0, we define the open and closed balls with center at a and
radius r by

BE(a, r) := B(a, r) := {x ∈ E ; ‖x − a‖ < r }
and

B̄E(a, r) := B̄(a, r) := {x ∈ E ; ‖x − a‖ ≤ r } .

Note that these definitions agree with those for the metric space (E, d) when d is
induced from the norm. We write also

B := B(0, 1) = {x ∈ E ; ‖x‖ < 1 } and B̄ := B̄(0, 1) = {x ∈ E ; ‖x‖ ≤ 1 }

for the open and closed unit balls in E. Using the notation of (I.4.1) we have

rB = B(0, r) , rB̄ = B̄(0, r) , a + rB = B(a, r) , a + rB̄ = B̄(a, r) .
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Bounded Sets

A subset X of E is called bounded in E (or norm bounded) if it is bounded in the
induced metric space.

3.2 Remarks Let E := (E, ‖·‖) be a normed vector space.

(a) X ⊆ E is bounded if and only if there is some r > 0 such that X ⊆ rB, that
is, ‖x‖ < r for all x ∈ X.

(b) If X and Y are nonempty bounded subsets of E, then so are X ∪ Y , X + Y ,
and λX with λ ∈ K.

(c) Example 1.2(d) shows that, on each vector space V , there is a metric with
respect to which V is bounded. But, if V is nonzero, then (N2) implies that there
is no norm on V with this property. �

Examples

We now define suitable norms for the vector spaces introduced in Section I.12.

3.3 Examples (a) The absolute value |·| is a norm on the vector space K.

Convention Unless otherwise stated, we will henceforth consider K to be a
normed vector space with norm as above.

(b) Let F be a subspace of a normed vector space E := (E, ‖·‖). Then the restric-
tion ‖·‖F := ‖·‖

∣∣F of ‖·‖ to F is a norm on F . Thus F := (F, ‖·‖F ) is a normed
vector space with this induced norm. When no confusion is possible, we use the
symbol ‖·‖ for the induced norm on F .

(c) Let (Ej , ‖·‖j), 1 ≤ j ≤ m, be normed vector spaces over K. Then

‖x‖∞ := max
1≤j≤m

‖xj‖j , x = (x1, . . . , xm) ∈ E := E1 × · · · × Em , (3.1)

defines a norm, called the product norm, on the product vector space E. The
metric on E induced from this norm coincides with the product metric from Ex-
ample 1.2(e) when dj is the metric induced on Ej from ‖·‖j .

Proof It is clear that (N1) is satisfied. From the positive homogeneity of ‖·‖j for each
λ ∈ K and x ∈ E we get

‖λx‖∞ = max
1≤j≤m

‖λxj‖j = max
1≤j≤m

|λ| ‖xj‖j = |λ| max
1≤j≤m

‖xj‖j = |λ| ‖x‖∞ ,

and hence (N2) holds. Finally, it follows from x + y = (x1 + y1, . . . , xm + ym) and the
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triangle inequality for the norms ‖·‖j that

‖x + y‖∞ = max
1≤j≤m

‖xj + yj‖j ≤ max
1≤j≤m

(‖xj‖j + ‖yj‖j) ≤ ‖x‖∞ + ‖y‖∞

for all x, y ∈ E, that is, (N3) holds. Consequently (3.1) defines a norm on the product

vector space E. The last claim is clear. �

(d) For m ∈ N×, Km is a normed vector space with the maximum norm

|x|∞ := max
1≤j≤m

|xj | , x = (x1, . . . , xm) ∈ Km .

In the case m = 1, (K1, |·|∞) = (K, |·|) = K.

Proof This is a special case of (c). �

The Space of Bounded Functions

Let X be a nonempty set and (E, ‖·‖) a normed vector space. A function u ∈ EX

is called bounded if the image of u in E is bounded. For u ∈ EX , define

‖u‖∞ := ‖u‖∞,X := sup
x∈X

‖u(x)‖ ∈ R+ ∪ {∞} . (3.2)

3.4 Remarks (a) For u ∈ EX , the following are equivalent:
(i) u is bounded.
(ii) u(X) is bounded in E.
(iii) There is some r > 0 such that ‖u(x)‖ ≤ r for all x ∈ X.
(iv) ‖u‖∞ < ∞.

(b) Clearly id ∈ KK is not bounded, that is, ‖id‖∞ = ∞. �

Remark 3.4(b) shows that ‖·‖∞ may not be a norm on the vector space EX

when E is not trivial. We therefore set

B(X,E) :=
{

u ∈ EX ; u is bounded
}

,

and call B(X,E) the space of bounded functions from X to E.

3.5 Proposition B(X,E) is a subspace of EX and ‖·‖∞ is a norm, called the
supremum norm, on B(X,E).

Proof The first statement follows from Remark 3.2(b). By Remark 3.4(a), the
function ‖·‖∞ : B(X,E) → R+ is well defined. Axiom (N1) for ‖·‖∞ follows from

‖u‖∞ = 0 ⇐⇒
(
‖u(x)‖ = 0 , x ∈ X

)
⇐⇒

(
u(x) = 0 , x ∈ X

)
⇐⇒

(
u = 0 in EX

)
.
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Here we have, of course, used the fact that ‖·‖ is a norm on E. For u ∈ B(X,E)
and α ∈ K, we have

‖αu‖∞ = sup
{
‖αu(x)‖ ; x ∈ X

}
= sup

{
|α| ‖u(x)‖ ; x ∈ X

}
= |α| ‖u‖∞ .

Thus ‖·‖∞ satisfies also (N2).

Finally, for all u, v ∈ B(X,E) and x ∈ X, we have ‖u(x)‖ ≤ ‖u‖∞ and also
‖v(x)‖ ≤ ‖v‖∞. Thus

‖u + v‖∞ = sup
{
‖u(x) + v(x)‖ ; x ∈ X

}
≤ sup

{
‖u(x)‖ + ‖v(x)‖ ; x ∈ X

}
≤ ‖u‖∞ + ‖v‖∞ ,

and so ‖·‖∞ satisfies the axiom (N3). �

Convention Henceforth, B(X,E) denotes the space of bounded functions
from X to E together with the supremum norm ‖·‖∞, that is,

B(X,E) :=
(
B(X,E), ‖·‖∞

)
. (3.3)

3.6 Remarks (a) If X := N, then B(X,E) is the normed vector space of bounded
sequences in E. In the special case E := K, B(N, K) is denoted by �∞, that is,

�∞ := �∞(K) := B(N, K)

is the normed vector space of bounded sequences with the supremum norm

‖(xn)‖∞ = sup
n∈N

|xn| , (xn) ∈ �∞ .

(b) Since, by Proposition 1.10, any convergent sequence is bounded, it follows
from Remark 2.3 that c0 and c are subspaces of �∞. Thus c0 and c are normed
vector spaces with respect to the supremum norm and c0 ⊆ c ⊆ �∞ as subspaces.

(c) If X = {1, . . . , m} for some m ∈ N×, then

B(X,E) = (Em, ‖·‖∞) ,

where ‖·‖∞ is the product norm of Example 3.3(c) (with the obvious identifica-
tions). Thus the notation here and in Example 3.3(c) are consistent. �
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Inner Product Spaces

We consider now the normed vector space E := (R2, |·|∞). In view of the above
notation, the unit ball of E is

BE = {x ∈ R2 ; |x|∞ ≤ 1 } =
{

(x1, x2) ∈ R2 ; −1 ≤ x1, x2 ≤ 1
}

.

Thus BE is a square in the plane with sides
of length 2 and center 0. In any normed vector
space (F, ‖·‖), the set {x ∈ F ; ‖x‖ = 1 }, that is,
the ‘boundary’ of the unit ball, is called the unit
sphere in (F, ‖·‖). For our space E, this is the
boundary of the square in the diagram. Every point
on this unit sphere is 1 unit from the origin. This
distance is, of course, measured in the induced met-
ric |·|∞ and so the geometric appearance of the
‘ball’ and ‘sphere’ may be contrary to our previous

�

�

�

��

��

�

experience. In school we learn that we get ‘round’ circles if the distance between a
point and the origin is defined, following Pythagoras, to be the square root of the
sum of the squares of its components (see also Section I.11 for BC). We want to
extend this idea of distance to Km by defining a new norm on Km, the Euclidean
norm, which is important for both historical and practical reasons. To do so, we
need a certain amount of preparation.

Let E be a vector space over the field K. A function

(· | ·) : E × E → K , (x, y) �→ (x |y) (3.4)

is called a scalar product or inner product on E if the following hold:2

(SP1) (x |y) = (y |x), x, y ∈ E.
(SP2) (λx + µy |z) = λ(x |z) + µ(y |z), x, y, z ∈ E, λ, µ ∈ K.
(SP3) (x |x) ≥ 0, x ∈ E, and (x |x) = 0 ⇐⇒ x = 0.
A vector space E with a scalar product (· | ·) is called an inner product space
and is written

(
E, (· | ·)

)
. Once again, when no confusion is possible, we write E

for
(
E, (· | ·)

)
.

3.7 Remarks (a) In the real case K = R, (SP1) can be written as

(x |y) = (y |x) , x, y ∈ E .

In other words, the function (3.4) is symmetric when E is a real vector space. In
the case K = C, the function (3.4) is said to be Hermitian when (SP1) holds.

2If K = R, then α := α and Re α := α for all α ∈ R by Proposition I.11.3. Thus we can ignore
the complex conjugation symbol and the symbol Re in the following definition.
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(b) From (SP1) and (SP2) it follows that

(x |λy + µz) = λ(x |y) + µ(x |z) , x, y, z ∈ E , λ, µ ∈ K , (3.5)

that is, for each fixed x ∈ E, the function (x | ·) : E → K is conjugate linear. Since
(SP1) means that (· |x) : E → K is linear for each fixed x ∈ E, one says that (3.4) is
a sesquilinear form. In the real case K = R, (3.5) means simply that (x | ·) : E → R
is linear for x ∈ E. In this case, (3.4) is called a bilinear form on E.

Finally, (SP3) means that the form (3.4) is positive (definite). With these
definitions we can say: A scalar product is a positive Hermitian sesquilinear form
on E when E is a complex vector space, or a positive symmetric bilinear form
when E is a real vector space.

(c) For all x, y ∈ E, (x ± y |x ± y) = (x |x) ± 2Re(x |y) + (y |y).3

(d) (x |0) = 0 for all x ∈ E. �

Let m ∈ N×. For x = (x1, . . . , xm) and y = (y1, . . . , ym) in Km, define

(x |y) :=
m∑

j=1

xjyj .

It is easy to check that this defines a scalar product on Km. This is called the
Euclidean inner product on Km.

The Cauchy-Schwarz Inequality

After these preliminaries, we can now prove one of the most useful theorems about
inner product spaces.

3.8 Theorem (Cauchy-Schwarz inequality) Let
(
E, (· | ·)

)
be an inner product

space. Then

|(x |y)|2 ≤ (x |x)(y |y) , x, y ∈ E , (3.6)

and equality occurs in (3.6) if and only if x and y are linearly dependent.

Proof (a) For y = 0, the claim follows from Remark 3.7(d). Suppose then that
y �= 0. For any α ∈ K, we have

0 ≤ (x − αy |x − αy) = (x |x) − 2Re(x |αy) + (αy |αy)

= (x |x) − 2Re
(
α(x |y)

)
+ |α|2 (y |y) .

(3.7)

3As already mentioned, using the symbols ± and ∓ one can write two equations as if they
were one. For one of these equations, the upper symbol (+ or −) is used throughout, and for the
other, the lower symbol is used throughout.
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Setting α := (x |y)/(y |y) yields

0 ≤ (x |x) − 2Re
( (x |y)

(y |y)
(x |y)

)
+

|(x |y)|2
(y |y)2

(y |y) = (x |x) − |(x |y)|2
(y |y)

,

and so (3.6) holds. If x �= αy, then, from (3.7), we see that (3.6) is a strict inequality.

(b) Finally, let x and y be linear dependent vectors in E. Then there is some
(α, β) ∈ K2

∖{
(0, 0)

}
such that αx + βy = 0. If α �= 0, then x = −(β/α)y and we

have

|(x |y)|2 =
∣∣∣β
α

∣∣∣2 |(y |y)|2 =
(
−β

α
y
∣∣∣ − β

α
y
)
(y |y) = (x |x)(y |y) .

If β �= 0, then y = −(α/β)x and a similar calculation gives |(x |y)|2 = (x |x)(y |y). �

3.9 Corollary (classical Cauchy-Schwarz inequality) Let ξ1, . . . , ξm and η1, . . . , ηm

be elements of K. Then∣∣∣ m∑
j=1

ξjηj

∣∣∣2 ≤
( m∑

j=1

|ξj |2
)( m∑

j=1

|ηj |2
)

(3.8)

with equality if and only if there are numbers α, β ∈ K such that (α, β) �= (0, 0)
and αξj + βηj = 0 for all j = 1, . . . , m.

Proof This follows by applying Theorem 3.8 to Km with the Euclidean inner
product. �

Let
(
E, (· | ·)

)
be an arbitrary inner product space. Then it follows from

(x |x) ≥ 0 that ‖x‖ :=
√

(x |x) ≥ 0 is well defined for all x ∈ E and

‖x‖ = 0 ⇐⇒ ‖x‖2 = 0 ⇐⇒ (x |x) = 0 ⇐⇒ x = 0 .

Thus ‖·‖ satisfies the norm axiom (N1). The proof of (N2) for ‖·‖ is also easy
since, for α ∈ K and x ∈ E,

‖αx‖ =
√

(αx |αx) =
√

|α|2 (x |x) = |α| ‖x‖ .

The next proposition shows that (N3), the triangle inequality, follows from the
Cauchy-Schwarz inequality and hence that ‖·‖ : E → R+ is a norm on E.

3.10 Theorem Let
(
E, (· | ·)

)
be an inner product space and

‖x‖ :=
√

(x |x) , x ∈ E .

Then ‖·‖ is a norm on E, the norm induced from the scalar product (· | ·).
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Proof In view of the above discussion, it suffices to prove the triangle inequality
for ‖·‖. From the Cauchy-Schwarz inequality we have

|(x |y)| ≤
√

(x |x)(y |y) =
√

‖x‖2 ‖y‖2 = ‖x‖ ‖y‖ .

Hence

‖x + y‖2 = (x + y |x + y) = (x |x) + 2Re(x |y) + (y |y)

≤ ‖x‖2 + 2 |(x |y)| + ‖y‖2 ≤ ‖x‖2 + 2 ‖x‖ ‖y‖ + ‖y‖2

= (‖x‖ + ‖y‖)2 ,

that is, we have shown that ‖x + y‖ ≤ ‖x‖ + ‖y‖. �

Because of Theorem 3.10 we make the following convention:

Convention Any inner product space
(
E, (· | ·)

)
is considered to be a normed

vector space with the norm induced from (· | ·) as above.

A norm which is induced from a scalar product is also called a Hilbert norm.

Using the norm we can reformulate the Cauchy-Schwarz inequality of Theo-
rem 3.8 as follows:

3.11 Corollary Let
(
E, (· | ·)

)
be an inner product space. Then

|(x |y)| ≤ ‖x‖ ‖y‖ , x, y ∈ E .

Euclidean Spaces

A particularly important example is the Euclidean inner product on Km. Since we
so frequently work with this inner product, it is convenient to make the following
convention:

Convention Unless otherwise stated, we consider Km to be endowed with the
Euclidean inner product (· | ·) and the induced norm4

|x| :=
√

(x |x) =
√∑m

j=1 |xj |2 , x = (x1, . . . , xm) ∈ Km ,

the Euclidean norm. In the real case, we write also x � y for (x |y).

4In the case m = 1, this notation is consistent with the notation |·| for the absolute value
in K because (x |y) = xy for all x, y ∈ K1 = K. It is not consistent with the notation |α| for the
length of a multi-index α ∈ Nm. It should be clear from context which meaning is intended.



II.3 Normed Vector Spaces 157

We now have two norms on the vector space Km, namely the maximum norm

|x|∞ = max
1≤j≤m

|xj | , x = (x1, . . . , xm) ∈ Km ,

and the Euclidean norm |·|. We define a further norm by

|x|1 :=
m∑

j=1

|xj | , x = (x1, . . . , xm) ∈ Km .

Checking that this is, in fact, a norm is easy and left to the reader. The next
proposition shows, using a further application of the Cauchy-Schwarz inequality,
that the Euclidean norm is ‘comparable’ with the norms |·|1 and |·|∞.

3.12 Proposition Let m ∈ N×. Then

|x|∞ ≤ |x| ≤
√

m |x|∞ ,
1√
m

|x|1 ≤ |x| ≤ |x|1 , x ∈ Km .

Proof From the inequality |xk|2 ≤
∑m

j=1 |xj |2 for k = 1, . . . , m it follows imme-
diately that |x|∞ ≤ |x|. The inequalities

m∑
j=1

|xj |2 ≤
( m∑

j=1

|xj |
)2

and
m∑

j=1

|xj |2 ≤ m max
1≤j≤m

|xj |2 = m
(

max
1≤j≤m

|xj |
)2

are trivially true, and so have we shown that |x| ≤ |x|1 and |x| ≤ √
m |x|∞. From

Corollary 3.9 it follows that

|x|1 =
m∑

j=1

1 · |xj | ≤
( m∑

j=1

12
)1/2( m∑

j=1

|xj |2
)1/2 =

√
m |x| ,

which finishes the proof. �

Equivalent Norms

Let E be a vector space. Two norms ‖·‖1 and ‖·‖2 on E are equivalent if there is
some K ≥ 1 such that

1
K

‖x‖1 ≤ ‖x‖2 ≤ K ‖x‖1 , x ∈ E . (3.9)

In this case we write ‖·‖1 ∼ ‖·‖2.
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3.13 Remarks (a) It is not difficult to prove that ∼ is an equivalence relation
on the set of all norms of a fixed vector space.

(b) The qualitative claim of Proposition 3.12 can now be expressed in the form

|·|1 ∼ |·| ∼ |·|∞ on Km .

(c) To make the quantitative claim of Proposition 3.12 clearer, we write Bm for
the real open Euclidean unit ball, that is,

Bm := BRm ,

and Bm
1 and Bm

∞ for the unit balls in (Rm, |·|1) and in (Rm, |·|∞) respectively.
Then Proposition 3.12 says

Bm ⊆ Bm
∞ ⊆

√
mBm , Bm

1 ⊆ Bm ⊆
√

mBm
1 .

In the case m = 2, these inclusions are shown in the following diagram:

�
�

�
�

Note that
Bm
∞ = B1

∞ × · · · × B1
∞︸ ︷︷ ︸

m

= (−1, 1)m , (3.10)

but, for Bm and Bm
1 , there is no analogous representation.

(d) Let E = (E, ‖·‖) be a normed vector space and ‖·‖1 a norm on E which is
equivalent to ‖·‖. Set E1 := (E, ‖·‖1). Then

UE(a) = UE1(a) , a ∈ E ,

that is, the set of neighborhoods of a depends only on the equivalence class of the
norm. Equivalent norms produce the same set of neighborhoods.
Proof (i) By Remark 3.1(a), the sets UE(a) and UE1(a) are well defined for each a ∈ E.

(ii) From (3.9) it follows that K−1BE1 ⊆ BE ⊆ KBE1 , and so, for a ∈ E and r > 0,
we have

BE1(a, K−1r) ⊆ BE(a, r) ⊆ BE1(a, Kr) . (3.11)

(iii) For each U ∈ UE(a), there exists a r > 0 such that BE(a, r) ⊆ U . From (3.11)
we get BE1(a, K−1r) ⊆ U , that is, U ∈ UE1(a). This shows UE(a) ⊆ UE1(a).
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Conversely, if U ∈ UE1(a), then there is some δ > 0 such that BE1(a, δ) ⊆ U . Set

r := δ/K > 0. Then, from (3.11), we have BE(a, r) ⊆ U , and hence U ∈ UE(a). Thus we

have shown that UE1(a) ⊆ UE(a). �

(e) Using the bijection

C � z = x + iy ←→ (x, y) ∈ R2 ,

the complex numbers C := R + iR can be identified with the set R2 (or even
with the Abelian group (R2,+), as Remark I.11.2(c) shows). More generally, for
m ∈ N×, the sets Cm and R2m can be identified using the bijection5

Cm � (z1, . . . , zm) = (x1 + iy1, . . . , xm + iym) ←→ (x1, y1, . . . , xm, ym) ∈ R2m .

With respect to this canonical identification,

BCm = B2m = BR2m

and hence

UCm = UR2m .

Thus for topological questions, that is, statements about neighborhoods of points,
the sets Cm and R2m can be identified.

(f ) The notions ‘cluster point’ and ‘convergence’ are topological concepts, that is,
they are defined in terms of neighborhoods. Thus they are invariant under changes
to equivalent norms. �

Convergence in Product Spaces

As a consequence of the above and earlier discussions we now have a simple, but
very useful, description of convergent sequences in Km.

3.14 Proposition Let m ∈ N× and xn = (x1
n, . . . , xm

n ) ∈ Km for n ∈ N. Then the
following are equivalent:

(i) The sequence (xn)n∈N converges to x = (x1, . . . , xm) in Km.

(ii) For each k ∈ {1, . . . , m}, the sequence (xk
n)n∈N converges to xk in K.

Proof This follows directly from Example 1.8(e) and Remarks 3.13(c) and (d). �

5We emphasize that the complex vector space Cm cannot be identified with the real vector
space R2m (Why not?)!
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Claim (ii) of Proposition 3.14 is often called componentwise convergence of
the sequence (xn), so Proposition 3.14 can be formulated, somewhat imprecisely,
as: A sequence in Km converges if and only if it converges componentwise. Thus it
suffices, in principle, to study the convergence of sequences in K — indeed, because
of Remark 3.13(e), it suffices to study convergence in R. For many reasons, which
the reader will find for him/herself in further study, there is little to be gained by
making such a ‘simplification’ in our presentation.

Exercises

1 Let ‖·‖ be a norm on a K-vector space E. Show that, for each T ∈ Aut(E), the
function ‖x‖T := ‖Tx‖, x ∈ E, defines a norm ‖·‖T on E. In particular, for each α ∈ K×,
the function E → R+, x �→ ‖αx‖ is a norm on E.

2 Suppose that a sequence (xn) in a normed vector space E = (E, ‖·‖) converges to x.
Prove that the sequence (‖xn‖) in [0,∞) converges to ‖x‖.

3 Verify the claims of Remark 3.4(a).

4 Prove that the parallelogram identity,

2(‖x‖2 + ‖y‖2) = ‖x + y‖2 + ‖x − y‖2 , x, y ∈ E ,

holds in any inner product space
(
E, (· | ·)

)
.

5 For which λ := (λ1, . . . , λm) ∈ Km is

(· | ·)λ : Km × Km → K , (x, y) �→
m∑

k=1

λkxkyk

a scalar product on Km?

6 Let
(
E, (· | ·)

)
be a real inner product space. Prove the inequality

(‖x‖ + ‖y‖) (x |y)

‖x‖ ‖y‖ ≤ ‖x + y‖ ≤ ‖x‖ + ‖y‖ , x, y ∈ E\{0} .

When do we get equality? (Hint: Square the first inequality.)

7 Let X be a metric space. A subset Y of X is called closed if every sequence (yn) in Y
which converges in X, converges in Y , that is, lim yn ∈ Y .

Show that c0 is a closed subspace of �∞.

8 Let ‖·‖1 and ‖·‖2 be equivalent norms on a vector space E. Define

dj(x, y) := ‖x − y‖j , x, y ∈ E , j = 1, 2 .

Show that d1 and d2 are equivalent metrics on E.
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9 Let (Xj , dj), 1 ≤ j ≤ n, be metric spaces. Show that the function defined by

(x, y) �→
( n∑

j=1

dj(xj , yj)
2
)1/2

for all x = (x1, . . . , xn), y = (y1, . . . , yn) and x, y ∈ X := X1 × · · · × Xn is a metric which
is equivalent to the product metric on X.

10 Let
(
E, (· | ·)

)
be an inner product space. Two elements x, y ∈ E are called orthogonal

if (x |y) = 0. In this case we write x ⊥ y. A subset M ⊆ E is called an orthogonal system
if x ⊥ y for all x, y ∈ M with x 
= y. Finally M is called an orthonormal system if M is
an orthogonal system such that ‖x‖ = 1 for all x ∈ M .

Let {x0, . . . , xm} ⊆ E be an orthogonal system with xj 
= 0 for 0 ≤ j ≤ m. Show
the following:

(a) {x0, . . . , xm} is linearly independent.

(b)
∥∥∑m

k=0 xk

∥∥2
=
∑m

k=0 ‖xk‖2 (Pythagoras’ theorem).

11 Let F be a subspace of an inner product space E. Prove that the orthogonal com-
plement of F , that is,

F⊥ :=
{

x ∈ E ; x ⊥ y = 0, y ∈ F
}

,

is a closed subspace of E (see Exercise 7).

12 Let B = {u0, . . . , um} be an orthonormal system in an inner product space
(
E, (· | ·)

)
and F := span(B). Define

pF : E → F , x �→
m∑

k=0

(x |uk)uk .

Prove the following:

(a) x − pF (x) ∈ F⊥, x ∈ E.

(b) ‖x − pF (x)‖ = infy∈F ‖x − y‖, x ∈ E.

(c) ‖x − pF (x)‖2 = ‖x‖2 −∑m
k=0 |(x |uk)|2, x ∈ E.

(d) pF ∈ Hom(E, F ) with p2
F = pF .

(e) im(pF ) = F , ker(pF ) = F⊥ and E = F ⊕ F⊥.

(Hint: (b) For y ∈ F , we have ‖x − y‖2 = ‖x − pF (x)‖2 + ‖pF (x) − y‖2 which follows
from Exercise 10 and (a).)

13 With B and F as in Exercise 12, prove the following:

(a) For all x ∈ E,
∑m

k=0 |(x |uk)|2 ≤ ‖x‖2.

(b) For all x ∈ F ,

x =
m∑

k=0

(x |uk)uk and ‖x‖2 =
m∑

k=0

|(x |uk)|2 .

(Hint: To prove (a), use the Cauchy-Schwarz inequality.)
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14 For m, n ∈ N×, let Km×n be the set of all m × n matrices with entries in K. We
can consider Km×n to be the set of all functions from {1, . . . , m} × {1, . . . , n} to K, and
so, by Example I.12.3(e), Km×n is a vector space. Here αA and A + B for α ∈ K and
A, B ∈ Km×n are the usual scalar multiplication and matrix addition. Show the following:

(a) The function on Km×n defined by

|A| :=
( m∑

j=1

n∑
k=1

|ajk|2
)1/2

, A = [ajk] ∈ Km×n ,

is a norm.

(b) The following functions define equivalent norms:

(α) [ajk] �→ ∑m
j=1

∑n
k=1 |ajk|

(β) [ajk] �→ max1≤j≤m

∑n
k=1 |ajk|

(γ) [ajk] �→ max1≤k≤n

∑m
j=1 |ajk|

(δ) [ajk] �→ max 1≤j≤m
1≤k≤n

|ajk|

15 Let E and F be normed vector spaces. Show that B(E, F ) ∩ Hom(E, F ) = {0}.
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4 Monotone Sequences

Any sequence in R, that is, any element of s(R) = RN, is a function between ordered
sets. In this section we again consider the relationship between this order and the
convergence of sequences. Specifically, we investigate the convergence of monotone
sequences as defined preceding Example I.4.7. Thus a sequence (xn) is increasing1

if xn ≤ xn+1 for all n ∈ N, and (xn) is decreasing if xn ≥ xn+1 for all n ∈ N.

Bounded Monotone Sequences

It follows from the completeness property of R that every bounded monotone
sequence converges.

4.1 Theorem Every increasing (or decreasing) bounded sequence (xn) in R con-
verges, and

xn ↑ sup{xn ; n ∈ N }
(
or xn ↓ inf{xn ; n ∈ N }

)
.

Proof (i) Let (xn) be an increasing bounded sequence. Then X := {xn ; n ∈ N }
is bounded and nonempty. Since R is order complete, x := sup(X) is well defined.

(ii) Let ε > 0. By Proposition I.10.5 there is some N such that xN > x − ε.
Since (xn) is increasing, we have xn ≥ xN > x − ε for all n ≥ N . Together with
xn ≤ x, this implies that

xn ∈ (x − ε, x + ε) = BR(x, ε) , n ≥ N .

Thus xn converges to x in R.

(iii) If (xn) is a decreasing bounded sequence, we set x := inf{xn ; n ∈ N }.
Then (yn) := (−xn) is increasing and bounded, and −x = sup{ yn ; n ∈ N }. It
follows from (ii) that −xn = yn → −x (n → ∞), and so, by Proposition 2.2,
xn = −yn → x. �

In Proposition 1.10 we saw that boundedness is a necessary condition for the
convergence of a sequence. Theorem 4.1 shows that boundedness suffices for the
convergence of a monotone sequence. Of course, a convergent sequence does not
have to be monotone, as the null sequence (−1)n/n shows.

1For an increasing (or decreasing) sequence (xn) we often use the symbol (xn) ↑ (or (xn) ↓ ).
If, in addition, (xn) converges with limit x, we write xn ↑ x (or xn ↓ x) instead of xn → x.
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Some Important Limits

4.2 Examples (a) Let a ∈ C. Then

an → 0 , if |a| < 1 ,

an → 1 , if a = 1 ,

(an)n∈N diverges , if |a| ≥ 1 , a �= 1 .

Proof (i) Suppose first that the sequence (an)n∈N converges. From Proposition 2.2 we
have

lim
n→∞

an = lim
n→∞

an+1 = a lim
n→∞

an ,

and so either limn→∞ an = 0 or a = 1.

(ii) Consider the case |a| < 1. Then the sequence
(
|a|n

)
=
(
|an|

)
is decreasing and

bounded. By Theorem 4.1 and (i),
(
|an|

)
is a null sequence, that is, an → 0 (n → ∞).

(iii) If a = 1, then an = 1 for n ∈ N, and, of course, an → 1.

(iv) Now let |a| ≥ 1 and a 
= 1. If (an) converges, then, by (i),
(
|an|

)
n∈N

is a null

sequence. But this is not possible because |an| = |a|n ≥ 1 for all n. �

(b) Let k ∈ N and a ∈ C be such that |a| > 1. Then

lim
n→∞

nk

an
= 0 ,

that is, for |a| > 1 the function n �→ an increases faster than any power func-
tion n �→ nk.
Proof For α := 1/|a| ∈ (0, 1) and xn := nkαn, we have

xn+1

xn
=
(n + 1

n

)k

α =
(
1 +

1

n

)k

α , n ∈ N× ,

and so xn+1/xn ↓ α as n → ∞. Fix some β ∈ (α, 1). Then there is some N such that
xn+1/xn < β for all n ≥ N . Consequently,

xN+1 < βxN , xN+2 < βxN+1 < β2xN , . . .

A simple induction argument yields xn < βn−NxN for all n ≥ N and so∣∣∣nk

an

∣∣∣ = xn < βn−NxN =
xN

βN
βn , n ≥ N .

The claim then follows from Remark 2.1(c) since, by (a), (βn)n∈N is a null sequence. �

(c) For all a ∈ C,

lim
n→∞

an

n!
= 0 .

The factorial function n �→ n! increases faster than the function2 n �→ an.
2In Section 8 we provide a very short proof of this fact.
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Proof For n > N > |a| we have∣∣∣an

n!

∣∣∣ =
|a|N
N !

n∏
k=N+1

|a|
k

≤ |a|N
N !

( |a|
N + 1

)n−N

<
NN

N !

( |a|
N

)n

.

The claim then follows from (a) and Remark 2.1(c). �

(d) limn→∞ n
√

n = 1.
Proof Let ε > 0. Then, by (b), the sequence

(
n(1 + ε)−n

)
is a null sequence. Thus there

is some N such that
n

(1 + ε)n
< 1 , n ≥ N ,

that is,
1 ≤ n ≤ (1 + ε)n , n ≥ N .

By Remark I.10.10(c), the nth root function is increasing, and so

1 ≤ n
√

n ≤ 1 + ε , n ≥ N .

This proves the claim. �

(e) For all a > 0, limn→∞ n
√

a = 1.
Proof By the Archimedean property of R, there is some N such that 1/n < a < n for
all n ≥ N . Thus

1
n
√

n
=

n

√
1

n
≤ n

√
a ≤ n

√
n , n ≥ N .

Set xn := 1
/

n
√

n and yn := n
√

n for all n ∈ N×. Then, from (d) and Proposition 2.6, we

have lim xn = lim yn = 1. The claim now follows from Theorem 2.9. �

(f ) The sequence
(
(1 + 1/n)n

)
converges and its limit,

e := lim
n→∞

(
1 +

1
n

)n

,

the Euler number, satisfies 2 < e ≤ 3.
Proof For all n ∈ N×, set en := (1 + 1/n)n.

(i) In the first step we prove that the sequence (en) is increasing. Consider

en+1

en
=
(n + 2

n + 1

)n+1

·
( n

n + 1

)n

=
( n2 + 2n

(n + 1)2

)n+1

· n + 1

n
=
(
1 − 1

(n + 1)2

)n+1

· n + 1

n
.

(4.1)

The first factor after the last equal sign in (4.1) can be approximated using the Bernoulli
inequality (see Exercise I.10.6):(

1 − 1

(n + 1)2

)n+1

≥ 1 − 1

n + 1
=

n

n + 1
.

Thus (4.1) implies en ≤ en+1 as claimed.
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(ii) We show that 2 < en < 3. From the binomial theorem we have

en =
(
1 +

1

n

)n

=
n∑

k=0

(n

k

) 1

nk
= 1 +

n∑
k=1

(n

k

) 1

nk
. (4.2)

Further, for 1 ≤ k ≤ n, we have(n

k

) 1

nk
=

1

k!

n · (n − 1) · · · · · (n − k + 1)

n · n · · · · · n ≤ 1

k!
≤ 1

2k−1
.

It then follows from (4.2) (see Exercise I.8.1) that

en ≤ 1 +

n∑
k=1

(1

2

)k−1

= 1 +
1 − ( 1

2
)n

1 − 1
2

< 1 +
1
1
2

= 3 .

Finally 2 = e1 < en for n ≥ 2. The claim now follows from (i), (ii) and Theorem 4.1. �

The number e plays an important role in analysis. Its value can theoretically
be determined from the sequence (en). Unfortunately, the sequence (en) does not
converge very quickly. The numerical value of e is approximately3

2.71828 18284 59045 23536 . . .

Comparing this value with several terms of (en),

e1 = 2 , e10 = 2.59374 . . . , e100 = 2.70481 . . . , e1000 = 2.71692 . . . ,

we see that, even for n = 1000, the error e − en is 0.0014 . . . (see also the next
example).

(g) We can represent e as the limit of a sequence which converges much faster:

e = lim
n→∞

n∑
k=0

1
k!

.

Proof (i) Set xn :=
∑n

k=0 1/k!. Obviously, the sequence (xn) is increasing. The proof
of (f) shows that en ≤ xn < 3 for all n ∈ N× and so, by Theorem 4.1, the sequence (xn)
converges and its limit e′ satisfies e ≤ e′ ≤ 3.

(ii) To complete the proof we need to show e′ ≤ e. Fix some m ∈ N×. Then for all
n ≥ m, we have

en =
(
1 +

1

n

)n

=
n∑

k=0

(n

k

) 1

nk
≥

m∑
k=0

(n

k

) 1

nk

= 1 +

m∑
k=1

1

k!

n · (n − 1) · · · · · (n − k + 1)

n · n · · · · · n

= 1 +
m∑

k=1

1

k!
1 ·

(
1 − 1

n

)
· · · · ·

(
1 − k − 1

n

)
.

3We are somewhat premature in using such ‘decimal representations’. A complete discussion
of this way of representing numbers is in Section 7.
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If we set

x′
m,n := 1 +

m∑
k=1

1

k!

(
1 − 1

n

)
· · · · ·

(
1 − k − 1

n

)
, n ≥ m ,

then x′
m,n ↑ xm as n → ∞ and x′

m,n ≤ en for all n ≥ m. Because en ↑ e, it follows from

Proposition 2.7 that xm ≤ e. Since this holds for any m ∈ N×, e is an upper bound for

X := {xm ; m ∈ N }. Since e′ = lim xn = sup X, Theorem 4.1 implies that e′ ≤ e. �

As we have already mentioned, the sequence (xn) converges much faster to e
than the sequence (en). In fact, one can prove the following error estimate (see Ex-
ercise 7):

0 < e − xn ≤ 1
nn!

, n ∈ N× .

For n = 6 we have 1/(6! 6) = 0.00023 . . . which is already a smaller error than in
Example 4.2(f) for n = 1000.

Exercises

1 Let a1, . . . , ak ∈ R+. Prove that

lim
n→∞

n
√

an
1 + · · · + an

k = max{a1, . . . , ak} .

2 Prove that
(1 − 1/n)n → 1/e (n → ∞) .

(Hint: Consider lim
(
1 − 1/n2

)n
= 1 and Proposition 2.6.)

3 Show that, for all r ∈ Q,

(1 + r/n)n → er (n → ∞) .

(Hint: Consider the cases r > 0 and r < 0 separately. Use Exercises 2 and 2.7.)

4 For a ∈ (0,∞), define a real sequence (xn) recursively by x0 ≥ a and

xn+1 := (xn + a/xn)/2 , n ∈ N .

Prove that (xn) is decreasing and converges to
√

a.4

5 Let a, x0 ∈ (0,∞) and

xn+1 := a/(1 + xn) , n ∈ N .

Show that the sequence (xn) converges and determine its limit.

4This procedure to determine
√

a is called the Babylonian algorithm or Heron’s method. The
sequence (xn) converges very quickly to

√
a. For example, if x0 = a = 4, then

x1 = 2.5 , x2 = 2.05 , x3 = 2.006 09 . . . , x4 = 2.000 000 093 . . .

Note also that all the xn are rational if a and the ‘initial value’ x0 are rational. In Section IV.4
we give a geometric interpretation of Heron’s method and estimate the rate of convergence.
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6 Prove the convergence of the sequence

x0 > 0 , x1 > 0 , xn+2 :=
√

xn+1xn , n ∈ N .

7 (a) For n ∈ N×, prove the following error estimate:

0 < e −
n∑

k=0

1

k!
<

1

nn!
.

(b) Use the inequality in (a) to show that e is irrational.

(Hint: (a) For n ∈ N×, let ym :=
∑n+m

k=n+1 1/k!. Show that ym → e −
∑n

k=0 1/k! and

(m + n)! ym <
∑m

k=1(n + 1)1−k . (b) Prove by contradiction.)

8 Let (xn) be defined recursively by

x0 := 1 , xn+1 := 1 + 1/xn , n ∈ N .

Show that the sequence (xn) converges and determine its limit.

9 The Fibonacci numbers fn are defined recursively by

f0 := 0 , f1 := 1 , fn+1 := fn + fn−1 , n ∈ N× .

Prove that lim(fn+1/fn) = g, where g is the limit of Exercise 8.

10 Let

x0 := 5 , x1 := 1 , xn+1 :=
2

3
xn +

1

3
xn−1 , n ∈ N× .

Verify that (xn) converges and determine lim xn.

(Hint: Derive an expression for xn − xn+1.)
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5 Infinite Limits

Certain sequences in R can usefully considered to converge to +∞ or −∞ in the
extended number line R̄. For this extension of the limit concept, it suffices to define
appropriate neighborhoods of the elements ±∞ in R̄.

Convergence to ±∞

Because there is no suitable metric1 on R̄, we extend the set of all neighborhoods
in R using the following ad hoc definition: A subset U ⊆ R̄ is called a neighborhood
of ∞ (or of −∞) if there is some K > 0 such that (K,∞) ⊆ U (or such that
(−∞,−K) ⊆ U). The set of neighborhoods of ±∞ is denoted by U(±∞), that is,

U(±∞) := {U ⊆ R̄ ; U is neighborhood of ± ∞} .

Now let (xn) be a sequence in R. Then ±∞ is called a cluster point (or limit)
of (xn), if each neighborhood U of ±∞ contains infinitely many (or almost all)
terms of (xn). If ±∞ is the limit of (xn), we usually write

lim
n→∞xn = ±∞ or xn → ±∞ (n → ∞) .

The sequence (xn) converges in R̄ if there is some x ∈ R̄ such that limn→∞ xn = x.
The sequence (xn) diverges in R̄, if it does not converge in R̄. With this definition,
any sequence which converges in R, also converges in R̄, and any sequence which
diverges in R̄, also diverges in R. On the other hand there are divergent sequences
in R which converge in R̄ (to ±∞). In this case the sequence is said to converge
improperly. This distinction is significant because our understanding about con-
vergence in metric spaces does not apply to improper convergence, and hence such
convergence needs a separate study.

5.1 Examples (a) Let (xn) be a sequence in R. Then xn → ∞ if and only if, for
each K > 0, there is some NK ∈ N such that xn > K for all n ≥ NK .

(b) limn→∞(n2 − n) = ∞ and limn→∞(−2n) = −∞.

(c) The sequence
(
(−n)n

)
n∈N

has the cluster points ∞ and −∞, and so diverges
in R̄. �

5.2 Proposition Let (xn) be a sequence in R×.

(i) 1/xn → 0, if xn → ∞ or xn → −∞.
(ii) 1/xn → ∞, if xn → 0 and xn > 0 for almost all n ∈ N.
(iii) 1/xn → −∞, if xn → 0 and xn < 0 for almost all n ∈ N.

1Of course, various metrics could be defined on R̄, but none of the metrics we have defined so
far are suitable for our purposes (see Exercise 5).



170 II Convergence

Proof (i) Let ε > 0. Then there is some N such that |xn| > 1/ε for all n ≥ N ,
and we have the inequality

|1/xn| = 1
/
|xn| < ε , n ≥ N .

Hence (1/xn) converges to 0.
(ii) Let K > 0. Then there is some N such that 0 < xn < 1/K for all n ≥ N .

Hence
1/xn > K , n ≥ N ,

and so the claim follows from Example 5.1(a).
Claim (iii) can be proved similarly. �

5.3 Proposition Every monotone sequence (xn) in R converges in R̄, and

limxn =

{
sup{xn ; n ∈ N } , if (xn) is increasing ,

inf{xn ; n ∈ N } , if (xn) is decreasing .

Proof We consider an increasing sequence (xn). If {xn ; n ∈ N } is bounded
above, then, by Theorem 4.1, (xn) converges in R to sup{xn ; n ∈ N }. Otherwise,
if {xn ; n ∈ N } is not bounded above, then for each K > 0 there is some m such
that xm > K. Since (xn) is increasing we have also xn > K for all n ≥ m, that is,
(xn) converges to ∞. The case of a decreasing sequence is proved similarly. �

The Limit Superior and Limit Inferior

5.4 Definition Let (xn) be a sequence in R. We can define two new sequences
(yn) and (zn) by

yn := sup
k≥n

xk := sup{xk ; k ≥ n } ,

zn := inf
k≥n

xk := inf{xk ; k ≥ n } .

Clearly (yn) is a decreasing sequence and (zn) is an increasing sequence in R̄. By
Proposition 5.3, these sequences converge in R̄:

lim sup
n→∞

xn := lim
n→∞xn := lim

n→∞
(
sup
k≥n

xk

)
,

the limit superior, and

lim inf
n→∞ xn := lim

n→∞
xn := lim

n→∞
(
inf
k≥n

xk

)
,

the limit inferior of the sequence (xn). We also have

lim sup xn = inf
n∈N

(
sup
k≥n

xk

)
and lim inf xn = sup

n∈N

(
inf
k≥n

xk

)
,

which follow again from Proposition 5.3. �
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We see next that the limit superior and limit inferior of a sequence are, in
particular, cluster points.

5.5 Theorem Any sequence (xn) in R has a smallest cluster point x∗ and a
greatest cluster point x∗ in R̄ and these satisfy

lim inf xn = x∗ and lim sup xn = x∗ .

Proof Set x∗ := lim sup xn and yn := supk≥n xk for n ∈ N. Then (yn) is a de-
creasing sequence such that

x∗ = inf
n∈N

yn . (5.1)

We consider three cases:

(i) Suppose that x∗ = −∞. Then for each K > 0, there is some n such that

−K > yn = sup
k≥n

xk ,

since otherwise we would have x∗ ≥ −K0 for some K0 ≥ 0. Hence xk ∈ (−∞,−K)
for all k ≥ n, that is, x∗ = −∞ is the only cluster point of (xn).

(ii) Suppose that x∗ ∈ R. By Proposition I.10.5 and (5.1), we have for each
ξ > x∗ some n such that ξ > yn ≥ xk for all k ≥ n. Consequently, no cluster point
of (xn) is larger than x∗. It remains to show only that x∗ is itself a cluster point
of (xn). Let ε > 0. Since

sup
k≥n

xk = yn ≥ x∗ , n ∈ N ,

we have, once again from Proposition I.10.5, for each n, some k ≥ n such that
xk > x∗ − ε. Since we already know that no cluster point of (xn) is larger than x∗,
the interval (x∗ − ε, x∗ + ε) must contain infinitely many terms of the sequence
of (xn), that is, x∗ is a cluster point of (xn).

(iii) Finally we consider the case x∗ = ∞. Because of (5.1) we have yn = ∞
for all n ∈ N. Hence for each K > 0 and n, there is some k ≥ n such that xk > K.
This means that x∗ = ∞ is a cluster point of (xn), and clearly the largest such
point.

Showing that x∗ := lim inf xn is the smallest cluster point of (xn) is similar. �

5.6 Examples

(a) lim
(−1)nn

n + 1
= 1 and lim

(−1)nn

n + 1
= −1.

(b) limn(−1)n

= ∞ and limn(−1)n

= 0. �
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5.7 Theorem Let (xn) be a sequence in R. Then

(xn) converges in R̄ ⇐⇒ limxn ≤ limxn .

When the sequence converges, the limit x satisfies

x = limxn = limxn = limxn .

Proof ‘=⇒’ If (xn) converges to x in R̄, then x is the unique cluster point of (xn)
and so the claim follows from Theorem 5.5.

‘⇐=’ Suppose that limxn ≤ limxn. Then, from Theorem 5.5 again, the only
cluster point of (xn) is x := limxn = limxn. If x = −∞ (or x = ∞), then, for
each K > 0, there is some k such that xn < −K (or xn > K) for all n ≥ k. Thus
limxn = −∞ (or limxn = ∞).

If x is in R, then, from Theorem 5.5 and Proposition I.10.5, for a given ε > 0,
there are at most finitely many j ∈ N and finitely many k ∈ N such that xj < x − ε
and xk > x + ε. Thus each neighborhood U of x contains almost all terms of the
sequence (xn), that is, limxn = x. �

The Bolzano-Weierstrass Theorem

For a bounded sequence in R, Theorem 5.5 is called the Bolzano-Weierstrass the-
orem. We actually prove this theorem in somewhat more generality.

5.8 Theorem (Bolzano-Weierstrass) Every bounded sequence in Km has a con-
vergent subsequence, that is, a cluster point.

Proof We consider first the case K = R and prove the claim by induction on m.
The case m = 1 follows from Theorem 5.5 and Proposition 1.17. For the induction
step m → m + 1, suppose that (zn) is a bounded sequence in Rm+1. Then the
bound M := sup{ |zn| ; n ∈ N } exists in [0,∞). Since Rm+1 = Rm × R, we can
write each z ∈ Rm+1 in the form z = (x, y) with x ∈ Rm and y ∈ R. Thus, from
zn = (xn, yn), we get a sequence (xn) in Rm and a sequence (yn) in R. Since

max{|xn|, |yn|} ≤ |zn| =
√

|xn|2 + |yn|2 ≤ M , n ∈ N ,

(xn) and (yn) are bounded. We now use our induction hypothesis to find a subse-
quence (xnk

) of (xn) and some x ∈ Rm such that xnk
→ x as k → ∞. Since the sub-

sequence (ynk
) is also bounded, it follows from the induction hypothesis, that there

is a subsequence (ynkj
) of (ynk

) and some y ∈ R such that ynkj
→ y as j → ∞. Fi-

nally, by Propositions 1.15 and 3.14, the subsequence (xnkj
, ynkj

) of (zn) converges
to z := (x, y) ∈ Rm+1 as j → ∞. This completes the proof of the case K = R.

The case K = C follows from what we have just proved using the identification
of Cm with R2m. �
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Exercises

1 Let (xn) be a sequence in R, x∗ := lim xn and x∗ := lim xn. Suppose that x∗ and x∗

are in R. Prove that, for each ε > 0, there is some N such that

x∗ − ε < xn < x∗ + ε , n ≥ N .

How must the claim be modified in the cases x∗ = −∞ and x∗ = ∞?

2 Let (xn) and (yn) be sequences in R and

x∗ := lim xn , x∗ := lim xn , y∗ := lim yn , y∗ := lim yn .

Show the following:

(a) lim(−xn) = −x∗.

(b) If (x∗, y∗) and (x∗, y∗) are not equal to (∞,−∞) or (−∞,∞), then

lim(xn + yn) ≤ x∗ + y∗ and lim(xn + yn) ≥ x∗ + y∗ .

(c) If xn ≥ 0 and yn ≥ 0 for all n ∈ N, and (x∗, y∗) /∈
{
(0,∞), (∞, 0)

}
, (x∗, y∗) 
= (∞, 0)

and (x∗, y∗) 
= (0,∞), then

0 ≤ x∗y∗ ≤ lim(xnyn) ≤ x∗y
∗ ≤ lim(xnyn) ≤ x∗y∗ .

(d) If (yn) converges to y ∈ R, then

lim(xn + yn) = x∗ + y , lim(xn + yn) = x∗ + y ,

and
lim(xnyn) = yx∗ , y > 0 ,

lim(xnyn) = yx∗ , y < 0 .

(e) If xn ≤ yn for all n ∈ N, then lim xn ≤ lim yn and lim xn ≤ lim yn.

3 For n ∈ N, let xn := 2n
(
1 + (−1)n

)
+ 1. Determine the following:

lim xn, lim xn, lim(xn+1/xn), lim(xn+1/xn), lim n
√

xn, lim n
√

xn .

4 Let (xn) be a sequence in R such that xn > 0 for all n ∈ N. Prove

lim
xn+1

xn
≤ lim n

√
xn ≤ lim n

√
xn ≤ lim

xn+1

xn
.

(Hint: If q < lim(xn+1/xn), then xn+1/xn ≥ q for all n ≥ n(q).)

5 (a) Show that the function

ϕ : R̄ → [−1, 1] , ϕ(x) :=

⎧⎪⎨⎪⎩
−1 , x = −∞ ,

x/(1 + |x|) , x ∈ R ,

1 , x = ∞ ,

is strictly increasing and bijective.

(b) Show that the function

d : R̄ × R̄ → R+ , (x, y) �→ |ϕ(x) − ϕ(y)|

is a metric on R̄.
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6 For the sequences

(xn) := (0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, . . .) and (yn) := (2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, . . .)

determine the following:

lim xn + lim yn , lim(xn + yn) ,

lim xn + lim yn , lim(xn + yn) , lim xn + lim yn .
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6 Completeness

In Section 1 we defined convergence using the concept of neighborhoods. In this
definition, the limit of the sequence appears explicitly, and so, in principal, to
show that a sequence converges it is necessary to know what its limit is. In this
section we show that in certain ‘complete’ spaces it is possible to recognize the
convergence of a sequence without knowing the limit. Sequences in such metric
spaces are convergent if and only if they are Cauchy sequences. These sequences
are an important tool in the theoretical investigation of convergence. In addition,
they are used in Cantor’s construction the real numbers which we mentioned in
Section I.10 and carry out in this section.

Cauchy Sequences

In the following X = (X, d) is a metric space.

A sequence (xn) in X is called a Cauchy sequence if, for each ε > 0, there is some
N ∈ N such that d(xn, xm) < ε for all m,n ≥ N .

If (xn) is a sequence in a normed vector space E = (E, ‖·‖), then (xn)
is a Cauchy sequence if and only if for each ε > 0 there is some N such that
‖xn − xm‖ < ε for all m,n ≥ N . In particular, we notice that Cauchy sequences
in E are ‘translation invariant’, that is, if (xn) is a Cauchy sequence and a is an
arbitrary vector in E, then the ‘translated’ sequence (xn + a) is also a Cauchy se-
quence. This shows, in particular, that Cauchy sequences cannot be defined using
neighborhoods.

6.1 Proposition Every convergent sequence is a Cauchy sequence.

Proof Let (xn) be a convergent sequence in X with limit x. Then, for each
ε > 0, there is some N such that d(xn, x) < ε/2 for all n ≥ N . From the triangle
inequality it follows that

d(xn, xm) ≤ d(xn, x) + d(x, xm) <
ε

2
+

ε

2
= ε , m, n ≥ N .

Hence (xn) is a Cauchy sequence. �

The converse of Proposition 6.1 is not true, that is, there are metric spaces
in which not every Cauchy sequence converges.

6.2 Example Define (xn) recursively by x0 := 2 and xn+1 := 1
2 (xn + 2/xn) for all

n ∈ N. Then (xn) is a Cauchy sequence in Q which does not converge in Q.

Proof Clearly xn ∈ Q for all n ∈ N. Moreover, from Exercise 4.4, we know that (xn)

converges to
√

2 in R. Thus, by Proposition 6.1, (xn) is a Cauchy sequence in R, and

hence in Q too.
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On the other hand, (xn) cannot converge in Q. Indeed, if xn → a for some a ∈ Q,

then xn → a in R also. But then the uniqueness of the limit implies a =
√

2 ∈ R\Q,

a contradiction. �

6.3 Proposition Every Cauchy sequence is bounded.

Proof Let (xn) be a Cauchy sequence. Then there is some N ∈ N such that
d(xn, xm) < 1 for all m,n ≥ N . In particular, d(xn, xN ) ≤ 1 for all n ≥ N . Set
M = maxn<N{d(xn, xN )}. Then for all n we have d(xn, xN ) ≤ 1 + M , and so, by
Example 1.9(c), (xn) is bounded in X. �

6.4 Proposition If a Cauchy sequence has a convergent subsequence, then it is
itself convergent.

Proof Let (xn) be a Cauchy sequence and (xnk
)k∈N a convergent subsequence

with limit x. Suppose that ε > 0. Then there is some N such that d(xn, xm) < ε/2
for all m,n ≥ N . There is also some K such that d(xnk

, x) < ε/2 for all k ≥ K.
Set M := max{K,N}. Then

d(xn, x) ≤ d(xn, xnM
) + d(xnM

, x) <
ε

2
+

ε

2
= ε , n ≥ M ,

that is, (xn) converges to x. �

Banach Spaces

A metric space X is called complete if every Cauchy sequence in X converges. A
complete normed vector space is called a Banach space.

Using the Bolzano-Weierstrass theorem we can show that complete metric
spaces exist.

6.5 Theorem Km is a Banach space.

Proof We know already from Section 3 that Km is a normed vector space, so it
remains to show completeness. Let (xn) be a Cauchy sequence in Km. By Proposi-
tion 6.3, (xn) is bounded. The Bolzano-Weierstrass theorem implies the existence
of a convergent subsequence, and then Proposition 6.4 implies that (xn) itself
converges. �

6.6 Theorem Let X be a nonempty set and E = (E, ‖·‖) a Banach space.
Then B(X,E) is also a Banach space.

Proof Let (un) be a Cauchy sequence in the normed vector space B(X,E) (see
Proposition 3.5). Suppose that ε > 0. Then there is some N := N(ε) such that
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‖un − um‖∞ ≤ ε for all m,n ≥ N . In particular,

‖un(x) − um(x)‖E ≤ ‖un − um‖∞ ≤ ε , m, n ≥ N , x ∈ X . (6.1)

This shows that, for each x ∈ X, the sequence
(
un(x)

)
is a Cauchy sequence in E.

The completeness of E implies that, for each x ∈ X, there is some vector ax ∈ E
such that un(x) → ax as n → ∞. By Corollary 1.13, ax is unique and we define
u ∈ EX by u(x) := ax for x ∈ X.

We will prove that the Cauchy sequence (un) converges to u in B(X,E). We
show first that u ∈ EX is bounded. Indeed, taking the limit m → ∞ in (6.1) yields

‖un(x) − u(x)‖E ≤ ε , n ≥ N , x ∈ X (6.2)

(see Proposition 2.10 and Remark 3.1(c)), and so we have

‖u(x)‖E ≤ ε + ‖uN (x)‖E ≤ ε + ‖uN‖∞ , x ∈ X .

This shows that the function u : X → E is bounded, that is, it is in B(X,E).
Finally, taking the supremum over all x ∈ X in (6.2) we get ‖un − u‖∞ ≤ ε for all
n ≥ N , that is, (un) converges to u in B(X,E). �

As a direct consequence of the previous two theorems we have the following:
For every nonempty set X, B(X, R), B(X, C) and B(X, Km) are Banach spaces.

6.7 Remarks (a) The completeness of a normed vector space E is invariant under
changes to equivalent norms, that is, if ‖·‖1 and ‖·‖2 are equivalent norms on E,
then (E, ‖·‖1) is complete if and only if (E, ‖·‖2) is complete.

(b) The vector space Km with either of the norms |·|1 or |·|∞ is complete. (We
will prove in Section III.3 that all norms on Km are equivalent.)

(c) A complete inner product space (see Theorem 3.10) is called a Hilbert space.
In particular, Theorem 6.5 shows that Km is a Hilbert space. �

Cantor’s Construction of the Real Numbers

We close this section with a second construction of the real numbers R. Since we make

no further use of this construction in the following, this discussion can be omitted on a

first reading of this book.

First we note that all statements in this chapter about sequences remain true if
we replace ‘for each ε > 0’ by ‘for each ε = 1/N with N ∈ N×’ in Proposition 1.7(iii), in
the definitions of null sequences and Cauchy sequences, and in the corresponding proofs.
This is a consequence of Corollary I.10.7.

This puts us back in the situation where only the rational numbers have been
constructed. By Theorem I.9.5, Q = (Q,≤) is an ordered field, and so Proposition I.8.10
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implies that Q, with the metric induced from the absolute value |·|, is a metric space.
Because of the above discussion,

R := { r ∈ QN ; r is a Cauchy sequence }

and
c0 := { r ∈ QN ; r is a null sequence }

are well defined sets. From Proposition 6.1 we have c0 ⊆ R.

From Example I.8.2(b) we know that QN is a commutative ring with unity. We
denote by a the constant sequence (a, a, . . .) in QN. Then 1 is the unity element of the
ring QN. By Example I.4.4(c), QN is also a partially ordered set. Since this partial order
is not a total order, QN is not an ordered ring.

6.8 Lemma R is a subring of QN containing 1 and c0 is a nontrivial proper ideal of R.

Proof Let r = (rn) and s = (sn) be elements of R, and N ∈ N×. Since every Cauchy
sequence is bounded, there is some B ∈ N× such that

|rn| ≤ B , |sn| ≤ B , n ∈ N .

Set M := 2BN ∈ N×. Then there is some n0 ∈ N such that

|rn − rm| < 1/M , |sn − sm| < 1/M , m, n ≥ n0 .

Thus we have the inequalities

|rn + sn − (rm + sm)| ≤ |rn − rm| + |sn − sm| < 2/M ≤ 1/N

and
|rnsn − rmsm| ≤ |rn| |sn − sm| + |rn − rm| |sm| < 2B/M = 1/N

for all m, n ≥ n0. Consequently r + s and r · s are in R, that is, R is a subring of QN.
It is clear that R contains the unity element 1. From Propositions 2.2 and 2.4 (with K
replaced by Q) and from Proposition 6.3, it follows that c0 is an ideal of R. Since( 1

n + 1

)
n∈N

∈ c0\{0} , 1 ∈ R\c0 ,

c0 is a nontrivial proper ideal. �

From Exercise I.8.6, we know that R cannot be a field. Let R be the quotient ring
of R by the ideal c0, that is, R = R/c0 (see Exercise I.8.6). It is clear that the function

Q → R , a �→ [a] = a + c0 , (6.3)

which maps each rational number a to the coset [a] of the constant sequence a in R,
is an injective ring homomorphism. Thus we will consider Q to be a subring of R by
identifying Q with its image under the function (6.3).

We next define an order on R. We say r = (rn) ∈ R is strictly positive if there
is some N ∈ N× and n0 ∈ N such that rn > 1/N for all n ≥ n0. Let P be the set of
strictly positive Cauchy sequences, that is, P := { r ∈ R ; r is strictly positive }. Define
a relation ≤ on R by

[r] ≤ [s] :⇐⇒ s − r ∈ P ∪ c0 . (6.4)
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6.9 Lemma (R,≤) is an ordered ring which induces the natural order on Q.

Proof It is easy to see that (6.4) defines a relation on R, that is, the definition is
independent of the choice of representative. It is also clear that the relation ≤ is reflexive,
and one can readily show transitivity. To prove antisymmetry, let [r] ≤ [s] and [s] ≤ [r].
Then r − s must belong to c0, since otherwise both r − s and s − r would be strictly
positive, which is not possible. Hence [r] and [s] coincide, and we have shown that ≤ is
a partial order on R.

Let r, s ∈ R, and suppose that neither r − s nor s − r is strictly positive. Then
for each N ∈ N×, there is some n ≥ N such that |rn − sn| < 1/N . Hence r − s has a
subsequence which converges to 0 in Q. By Proposition 6.4, r − s is itself a null sequence,
that is, r − s ∈ c0. This implies that R is totally ordered by ≤ .

We leave to the reader the simple proof that ≤ is compatible with the ring structure
of R.

Finally, let p, q ∈ Q be such that [p] ≤ [q]. Then either p < q or q − p is a null
sequence, which implies p = q. Thus the order in R induces the natural order on Q. �

6.10 Proposition R is a field.

Proof Let [r] ∈ R×. We need to show that [r] is invertible. We can suppose (why?) that
r is in P. Hence there are n0 ∈ N and M ∈ N× such that rn ≥ 1/M for all n ≥ n0. Thus
s := (sn), defined by

sn :=

{
0 , n < n0 ,

1/rn , n ≥ n0 ,

is an element of QN. Since r is a Cauchy sequence, for N ∈ N×, there is some n1 ≥ n0

such that |rn − rm| < 1
/
(NM2) for all m, n ≥ n1. This implies

|sn − sm| =
∣∣∣ rn − rm

rnrm

∣∣∣ ≤ M2 |rn − rm| < 1/N , m, n ≥ n1 .

Thus s is in R. Since [r] [s] = [rs] = 1, [r] is invertible with [r]−1 = [s]. �

We now want to show that R is order complete. To do so, we need first the following
two lemmas:

6.11 Lemma Every increasing sequence in Q which is bounded above is a Cauchy
sequence. Similarly, every decreasing sequence in Q which is bounded below is a Cauchy
sequence.

Proof Let r = (rn) be an increasing sequence in Q with an upper bound M ∈ N×, that
is, rn < M for all n ∈ N. We can suppose that r0 = 0 (why?).

Let N ∈ N×. Then not all of the sets

Ik := {n ∈ N ; (k − 1)/N ≤ rn < k/N } , k = 1, . . . , MN ,

are empty. Hence

K := max
{

k ∈ {1, . . . , MN} ; Ik 
= ∅
}
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is well defined and the following hold:

rn < K/N , n ∈ N , ∃n0 ∈ N : rn0 ≥ (K − 1)/N .

From the monotonicity of the sequence (rn) we get the inequalities

0 ≤ rn − rm <
K

N
− K − 1

N
=

1

N
, n > m ≥ n0 ,

which proves that r is in R. The proof for decreasing sequences is similar. �

6.12 Lemma Every increasing sequence (ρk) in R which is bounded above has a supremum
sup{ ρk ; k ∈ N }. Similarly, every decreasing sequence (ρk) in R which is bounded below
has an infimum inf{ ρk ; k ∈ N }.

Proof It suffices to consider the case of increasing sequences. If there is some m ∈ N
such that ρk = ρm for all k ≥ m, then sup{ ρk ; k ∈ N } = ρm. Otherwise we can con-
struct recursively a subsequence (ρkj )j∈N of (ρk) such that ρkj < ρkj+1 for all j ∈ N.
Because of the monotonicity of the sequence (ρk), it suffices to prove the existence of
sup{ ρkj ; j ∈ N }. Thus we suppose that ρk < ρk+1 for all k ∈ N.

Each ρk has the form [rk] with rk = (rk
n)n∈N ∈ R. For k ∈ N we have ρk+1 − ρk ∈ P

and so there are nk ∈ N and Nk ∈ N× such that rk+1
n − rk

n ≥ 1/Nk for all n ≥ nk. With-
out loss of generality we can suppose that the sequence (nk)k∈N is increasing. Since rk

and rk+1 are Cauchy sequences, there are mk ≥ nk such that

rk
n − rk

mk
<

1

4Nk
, rk+1

mk
− rk+1

n <
1

4Nk
, n ≥ mk .

Hence for sk := rk
mk

+ 1/(2Nk), we have

rk+1
n − sk >

1

4Nk
, sk − rk

n >
1

4Nk
, n ≥ mk .

Consequently

ρk = [rk] < [sk] = sk

[
1
]

< [rk+1] = ρk+1 , k ∈ N . (6.5)

Set s := (sk). By construction, s is an increasing sequence in Q. Since the sequence (ρk)
is bounded above, by (6.5), so is s. It follows from Lemma 6.11 that s is in R, and then
(6.5) shows that ρk ≤ [s] for all k ∈ N.

Finally, let ρ ∈ R with ρk ≤ ρ < [s] for all k ∈ N. Then it follows from (6.5) that

sk

[
1
]

< ρk+1 ≤ ρ < [s] , k ∈ N ,

which is a contradiction. Therefore we have [s] = sup{ ρk ; k ∈ N }. �

To finish Cantor’s construction we can now easily prove that R is an order complete
ordered extension field of Q. Then the uniqueness statement of Theorem I.10.4 ensures
that we have once again constructed the real numbers.
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6.13 Theorem R is an order complete ordered extension field of Q.

Proof Because of Lemma 6.9 and Proposition 6.10, we need to show only the order
completeness of R.

Hence let A be a nonempty subset of R which is bounded above by γ ∈ R. We
construct recursively an increasing sequence (αj) and a decreasing sequence (βj) as fol-
lows: Choose some α0 ∈ A, then set β0 := γ and γ0 := (α0 + β0)/2. If there is some a ∈ A
such that a ≥ γ0, then set α1 := γ0 and β1 := β0, otherwise set α1 := α0 and β1 := γ0.
In the next step we repeat the above procedure, replacing α0 and β0 by α1 and β1 to
get α2 and β2. Iterating this process produces sequences (αj) and (βj) with the claimed
properties, as well as

0 < βj − αj ≤ (β0 − α0)
/
2j , j ∈ N . (6.6)

Since (αj) is bounded above by γ and (βj) is bounded below by α0, Lemma 6.12 im-
plies that α := sup{αj ; j ∈ N } and β := inf{βj ; j ∈ N } exist. Moreover, taking the
infimum of (6.6) yields

0 ≤ β − α ≤ inf
{

(β0 − α0)
/
2j ; j ∈ N

}
= 0 .

Hence α = β.

Finally, by construction, we have a ≤ βj for all a ∈ A and j ∈ N. Hence

a ≤ inf{βj ; j ∈ N } = β = α = sup{αj ; j ∈ N } ≤ γ , a ∈ A .

Since this holds for every upper bound γ of A, it follows that α = sup(A). �

Exercises

1 Let (α, β) ∈ R2. For k ∈ N, set

xk :=

{
(α, β) , k even ,

(β, α) , k odd ,

and sn :=
∑n

k=1 k−2xk for all n ∈ N×. Show that (sn) converges.

2 Let X := (X, d) be a complete metric space and (xn) a sequence in X. Suppose that

d(xn+1, xn) ≤ αd(xn, xn−1) , n ∈ N× ,

for some α ∈ (0, 1). Prove that (xn) converges.

3 Show that every sequence in R has a monotone subsequence.

4 Prove the following (see Exercise 3.7):

(a) Every closed subset of a complete metric space is a complete metric space (with the
induced metric).

(b) Every closed subspace of a Banach space is itself a Banach space (with the induced
norm).

(c) �∞, c and c0 are Banach spaces.

(d) Let M be a complete metric space and D ⊆ M a subset which is complete (with
respect to the induced metric). Then D is closed in M .
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5 Verify that the order ≤ on R = R/c0 is transitive and compatible with the ring
structure of R.

6 For all n ∈ N×, set xn :=
∑n

k=1 k−1. Prove the following:

(a) The sequence (xn) is not a Cauchy sequence in R.

(b) For each m ∈ N×, limn(xn+m − xn) = 0.

(Hint: (a) Show that (xn) is not bounded.)

7 Let xn :=
∑n

k=1 k−2 for all n ∈ N×. Prove or disprove that (xn) is a Cauchy sequence

in Q.
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7 Series

So far we have two ways to prove the convergence of a sequence (xn) in a Banach
space1 (E, |·|). Either we make some guess about the limit x and then show directly
that |x − xn| converges to zero, or we prove that (xn) is a Cauchy sequence and
then use the completeness of E.

We will use both of these techniques in the following two sections for the
investigation of special sequences called series. We will see that the simple recursive
structure of series leads to very convenient convergence criteria. In particular, we
will discuss the root and ratio tests in arbitrary Banach spaces, and the Leibniz
test for alternating real series.

Convergence of Series

Let (xk) be a sequence in E. Then we define a new sequence (sn) in E by

sn :=
n∑

k=0

xk , n ∈ N .

The sequence (sn) is called a series in E and it is written
∑

xk or
∑

k xk. The
element sn is called the nth partial sum and xk is called the kth summand of the
series

∑
xk. Thus a series is simply a sequence whose terms are defined recursively

by
s0 := x0 , sn+1 = sn + xn+1 , n ∈ N .

A series is the sequence of its partial sums.
The series

∑
xk converges (or is convergent) if the sequence (sn) of its partial

sums converges. Then the limit of (sn) is called the value of the series
∑

xk and
is written

∑∞
k=0 xk.2 Finally, the series

∑
xk diverges (or is divergent) if the

sequence (sn) of its partial sums diverges in E.

7.1 Examples (a) The series
∑

1/k! converges in R. By Example 4.2(g), it has
the value e, that is, e =

∑∞
k=0 1/k!.

(b) The series
∑

1/k2 converges in R.
Proof Clearly the sequence (sn) of partial sums is increasing. Since for each n ∈ N×,

sn =
n∑

k=1

1

k2
≤ 1 +

n∑
k=2

1

k(k − 1)
= 1 +

n∑
k=2

( 1

(k − 1)
− 1

k

)
= 1 + 1 − 1

n
< 2 ,

the sequence (sn) is bounded. Thus the claim follows from Theorem 4.1. �

1In the following, we often denote the norm of a Banach space E by |·| instead of ‖·‖. The
attentive reader should have no trouble avoiding confusion with the Euclidean norm.

2It is occasionally useful to delete the first m terms of the series
∑

k xk. This new series is
written

∑
k≥m xk or (sn)n≥m. It often happens that x0 is not defined (for example, if xk = 1/k).

In this case,
∑

xk means
∑

k≥1 xk.



184 II Convergence

It is intuitively clear that a series can converge only if the summands form a
null sequence. We prove this necessary criterion in the following proposition.

7.2 Proposition If the series
∑

xk converges, then (xk) is a null sequence.

Proof Let
∑

xk be a convergent series. By Proposition 6.1, the sequence (sn) of
partial sums is a Cauchy sequence. Thus, for each ε > 0, there is some N ∈ N such
that |sn − sm| < ε for all m,n ≥ N . In particular,

|sn+1 − sn| =
∣∣∣n+1∑
k=0

xk −
n∑

k=0

xk

∣∣∣ = |xn+1| < ε , n ≥ N ,

that is, (xn) is a null sequence. �

Harmonic and Geometric Series

The following example shows that the converse of Proposition 7.2 is false.

7.3 Example The harmonic series
∑

1/k diverges in R.

Proof From the inequality

|s2n − sn| =
2n∑

k=n+1

1

k
≥ n

2n
=

1

2
, n ∈ N× ,

it follows that (sn) is not a Cauchy sequence. Thus, by Proposition 6.1, the sequence (sn)

diverges, meaning that the harmonic series diverges. �

As a simple application of Proposition 7.2 we provide a complete description
of the convergence behavior of the geometric series

∑
ak, a ∈ K.

7.4 Example Let a ∈ K. Then

∞∑
k=0

ak =
1

1 − a
, |a| < 1 .

For |a| ≥ 1, the geometric series diverges.

Proof From Exercise I.8.1 we have

sn =
n∑

k=0

ak =
1 − an+1

1 − a
, n ∈ N .

If |a| < 1, then it follows from Example 4.2(a) that (sn) converges to 1/(1 − a) as n → ∞.

Otherwise, if |a| ≥ 1, then |ak| = |a|k ≥ 1, and the series
∑

k ak diverges by Propo-

sition 7.2. �
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Calculating with Series

Series are special sequences and so all the rules that we have derived for convergent
sequences apply also to series. In particular, the linearity of the limit function holds
for series (see Section 2 and Remark 3.1(c)).

7.5 Proposition Let
∑

ak and
∑

bk be convergent series in a normed vector
space E and α ∈ K.

(i) The series
∑

(ak + bk) converges and

∞∑
k=0

(ak + bk) =
∞∑

k=0

ak +
∞∑

k=0

bk .

(ii) The series
∑

(αak) converges and

∞∑
k=0

(αak) = α

∞∑
k=0

ak .

Proof Set sn :=
∑n

k=0 ak and tn :=
∑n

k=0 bk for n ∈ N. By assumption, there is
some s, t ∈ E such that sn → s and tn → t. In view of the identities

sn + tn =
n∑

k=0

(ak + bk) , αsn =
n∑

k=0

(αak) ,

both claims follow from Proposition 2.2 and Remark 3.1(c). �

Convergence Tests

The fact that a sequence in a Banach space converges if and only if it is a Cauchy
sequence takes the following form for series.

7.6 Theorem (Cauchy criterion) For a series
∑

xk in a Banach space (E, |·|),
the following are equivalent:

(i)
∑

xk converges.

(ii) For each ε > 0 there is some N ∈ N such that∣∣∣ m∑
k=n+1

xk

∣∣∣ < ε , m > n ≥ N .

Proof Clearly sm − sn =
∑m

k=n+1 xk for all m > n. Thus (sn) is a Cauchy se-
quence in E if and only if (ii) is true. The claim then follows from the completeness
of E. �
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For real series with nonnegative summands we have the following simple conver-
gence test:

7.7 Theorem Let
∑

xk be a series in R such that xk ≥ 0 for all k ∈ N. Then∑
xk converges if and only if (sn) is bounded. In this case, the series has the

value supn∈N sn.

Proof Since the summands are nonnegative, the sequence (sn) of partial sums is
increasing. By Theorem 4.1, (sn) converges if and only if (sn) is bounded. The
final claim comes from the same theorem. �

If
∑

xk is a series in R with nonnegative summands, we write
∑

xk < ∞
if the sequence of partial sums is bounded. With this notation, the first claim of
Theorem 7.7 can be expressed as∑

xk < ∞ ⇐⇒
∑

xk converges .

Alternating Series

A series
∑

yk in R is called alternating if yk and yk+1 have opposite signs for all k.
An alternating series can always be written in the form ±∑

(−1)kxk with xk ≥ 0.

7.8 Theorem (Leibniz criterion) Let (xk) be a decreasing null sequence with
nonnegative terms. Then the alternating series

∑
(−1)kxk converges in R.

Proof Because of the inequality

s2n+2 − s2n = −x2n+1 + x2n+2 ≤ 0 , n ∈ N ,

the sequence of partial sums with even indices (s2n)n∈N is decreasing. Similarly,

s2n+3 − s2n+1 = x2n+2 − x2n+3 ≥ 0 , n ∈ N ,

and so (s2n+1)n∈N is increasing. Moreover, s2n+1 ≤ s2n, and so

s2n+1 ≤ s0 and s2n ≥ 0 , n ∈ N .

By Theorem 4.1, there are real numbers s and t such that s2n → s and s2n+1 → t
as n → ∞. Our goal is to show that the sequence (sn) of partial sums converges.
We note first that

t − s = lim
n→∞(s2n+1 − s2n) = lim

n→∞x2n+1 = 0 .

Hence, for each ε > 0, there are N1, N2 ∈ N such that

|s2n − s| < ε , 2n ≥ N1 , and |s2n+1 − s| < ε , 2n + 1 ≥ N2 .

Thus |sn − s| < ε for all n ≥ max{N1, N2}, which proves the claim. �
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7.9 Corollary With the notation of Theorem 7.8 we have |s − sn| ≤ xn+1, n ∈ N.

Proof In the proof of Theorem 7.8 we showed that

inf
n∈N

s2n = s = sup
n∈N

s2n+1 .

This implies the inequalities

0 ≤ s2n − s ≤ s2n − s2n+1 = x2n+1 , n ∈ N , (7.1)

and
0 ≤ s − s2n−1 ≤ s2n − s2n−1 = x2n , n ∈ N . (7.2)

Combining (7.1) and (7.2) yields |s − sn| ≤ xn+1. �

Corollary 7.9 shows that the error made when the value of an alternating
series is replaced by its nth partial sum, is at most the absolute value of the ‘first
omitted summand’. Moreover, (7.1) and (7.2) show that the nth partial sum is
alternately less than and greater than the value of the series.

7.10 Examples By the Leibniz criterion, the alternating series

(a)
∞∑

k=1

(−1)k+1

k
= 1 − 1

2
+

1
3
− 1

4
+ − · · · (alternating harmonic series)

(b)

∞∑
k=0

(−1)k

2k + 1
= 1 − 1

3
+

1
5
− 1

7
+ − · · ·

converge. Their values are log 2 and π/4 respectively (see Application IV.3.9(d)
and Exercise V.3.11). �

Decimal, Binary and Other Representations of Real Numbers

What we have proved about series can be used to justify the representation of real
numbers by decimal expansions. For example, the rational number

24 +
1

101
+

3
102

+
0

103
+

7
104

+
1

105

has a unique decimal representation:

24.13071 := 2 · 101 + 4 · 100 +
1

101
+

3
102

+
0

103
+

7
104

+
1

105
.

We also want to make sense of ‘infinite decimal expansions’ such as

7.52341043 . . .
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when an algorithm is specified which determines all further digits of the expansion.
The following example shows that such representations need to be viewed with
caution:

3.999 . . . = 3 +
∞∑

k=1

9
10k

= 3 +
9
10

∞∑
k=0

10−k = 3 +
9
10

· 1
1 − 1

10

= 4 .

The choice of the number 10 as the ‘basis’ of the above representation may have
some historical, cultural or practical justification, but it does not follow from any
mathematical consideration. We can also consider, for example, binary represen-
tations, such as

101.10010 . . . = 1 ·22 +0 ·21 +1 ·20 +1 ·2−1 +0 ·2−2 +0 ·2−3 +1 ·2−4 +0 ·2−5 + · · ·

In the following we make this preliminary discussion more precise. For a real
number x ∈ R, let  x! := max{ k ∈ Z ; k ≤ x } denote the largest integer less than
or equal to x. It is a simple consequence of the well ordering principle I.5.5 that
the floor function,

 ·! : R → Z , x �→  x! ,

is well defined.
Fix some g ∈ N with g ≥ 2. We call the g elements of the set {0, 1, . . . , g − 1},

the base g digits. Thus {0, 1} is the set of binary (base 2) digits, {0, 1, 2} is the set of
ternary (base 3) digits, and {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is the set of decimal (base 10)
digits. For any sequence (xk)k∈N× of base g digits, that is, for xk ∈ {0, 1, . . . , g − 1},
k ∈ N×, we have the inequality

0 ≤
n∑

k=1

xkg−k ≤ (g − 1)
∞∑

k=1

g−k = 1 , n ∈ N× .

By Theorem 7.7, the series
∑

xkg−k converges and its value x satisfies 0 ≤ x ≤ 1.
This series is called the base g expansion of the real number x ∈ [0, 1]. In the
special cases g = 2, g = 3 and g = 10, this series is called the binary expansion,
the ternary expansion and the decimal expansion of x respectively.

It is usual to write the base g expansion of the number x ∈ [0, 1] in the form

0.x1x2x3x4 . . . :=
∞∑

k=1

xkg−k,

assuming that the choice of g is clear. It is easy to see that any m ∈ N has a unique
representation in the form3

m =
�∑

j=0

yjg
j , yk ∈ {0, 1, . . . , g − 1} , 0 ≤ k ≤ � . (7.3)

3See Exercise I.5.11. To get uniqueness we have to ignore leading zeros. For example, we
consider 0 33 + 0 32 + 1 31 + 2 30 and 1 31 + 2 30 to be identical ternary representations of 5.
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Then

x = m +
∞∑

k=1

xkg−k =
�∑

j=0

yjg
j +

∞∑
k=1

xkg−k

is a nonnegative real number. The right hand side of this equation is called the
base g expansion of x and is written

y�y�−1 . . . y0.x1x2x3 . . .

(if g is clear). Similarly,
−y�y�−1 . . . y0.x1x2x3 . . .

is called the base g expansion of −x. Finally, a base g expansion is called periodic
if there are � ∈ N and p ∈ N× such that xk+p = xk for all k ≥ �.

7.11 Theorem Suppose that g ≥ 2. Then every real number x has a base g
expansion. This expansion is unique if expansions satisfying xk = g − 1 for almost
all k ∈ N are excluded. Moreover, x is a rational number if and only if its base g
expansion is periodic.

Proof (a) It suffices to consider only the case x ≥ 0. Then there is some r ∈ [0, 1)
such that x =  x! + r. Because of the above remarks, it suffices, in fact, to consider
only the case that x is in the interval [0, 1).

(b) In order to prove the existence of a base g expansion of x ∈ [0, 1), we
define a sequence x1, x2, . . . recursively by

x1 :=  gx! , xk :=
⌊
gk
(
x −

k−1∑
j=1

xjg
−j
)⌋

, k ≥ 2 . (7.4)

Of course, by construction, xk ∈ N. We show that the xk ∈ N are, in fact, base g
digits, that is,

xk ∈ {0, 1, . . . , g − 1} , k ∈ N× . (7.5)

We write first

gk
(
x −

k−1∑
j=1

xjg
−j
)

= gkx − x1g
k−1 − x2g

k−2 − · · · − xk−2g
2 − xk−1g

= gk−2
(
g(gx − x1) − x2

)
− · · · − xk−2g

2 − xk−1g

= g
(
· · · g

(
g(gx − x1) − x2

)
− · · · − xk−1

) (7.6)

(see Remark I.8.14(f)). Set r0 := x and rk := grk−1 − xk for all k ∈ N×. Then from
(7.6) we get

gk
(
x −

k−1∑
j=1

xjg
−j
)

= grk−1 , k ∈ N× . (7.7)
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Thus xk =  grk−1! for all k ∈ N×. Since

rk = grk−1 − xk = grk−1 −  grk−1! ∈ [0, 1) , k ∈ N ,

this proves that the xk ∈ N are base g digits.
Our next goal is to show that the value of the series

∑
xkg−k is x. Indeed,

from xk =  grk−1! and (7.7) it follows that

0 ≤ xk ≤ grk−1 = gk
(
x −

k−1∑
j=1

xjg
−j
)

, k ∈ N× ,

and hence

x −
k−1∑
j=1

xjg
−j ≥ 0 , k ≥ 2 . (7.8)

On the other hand, we have rk = gk
(
x −

∑k−1
j=1 xjg

−j
)
− xk < 1, and so

x −
k−1∑
j=1

xjg
−j < g−k(1 + xk) , k ≥ 2 . (7.9)

Combining (7.8) and (7.9), we have

0 ≤ x −
k−1∑
j=1

xjg
−j < g−k+1 , k ≥ 2 .

Since limk→∞ g−k+1 = 0, this implies that x =
∑∞

k=1 xkg−k.4

(c) To show uniqueness we suppose that there are xk, yk ∈ {0, 1, . . . , g − 1},
k ∈ N×, and some k0 ∈ N× such that

∞∑
k=1

xkg−k =
∞∑

k=1

ykg−k ,

with xk0 �= yk0 and xk = yk for 1 ≤ k ≤ k0 − 1. This implies

(xk0 − yk0)g
−k0 =

∞∑
k=k0+1

(yk − xk)g−k . (7.10)

Without loss of generality, we can suppose that xk0 > yk0 and so 1 ≤ xk0 − yk0 .
Moreover for all xk and yk we have yk − xk ≤ g − 1 and, since we have excluded

4One should also check that no series constructed by this algorithm satisfies the condition
xk = g − 1 for almost all k.
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the case that almost all base g digits are equal to g − 1, there is some k1 > k0 such
that yk1 − xk1 < g − 1. Thus, from (7.10), we get the inequalities

g−k0 ≤ (xk0 − yk0)g
−k0 < (g − 1)

∞∑
k=k0+1

g−k = g−k0 ,

which are clearly impossible. Therefore we have proved the uniqueness claim.
(d) Let

∑∞
k=1 xkg−k be a periodic base g expansion of x ∈ [0, 1). Then there

are � ∈ N and p ∈ N× such that xk+p = xk for all k ≥ �. It suffices to show that
x′ :=

∑∞
k=� xkg−k is a rational number. Set

x0 :=
�+p−1∑

k=�

xkg−k ∈ Q .

Since xk+p = xk for all k ≥ �, we have

gpx′ − x′ = gpx0 +
∞∑

k=�+p

xkg−k+p −
∞∑

k=�

xkg−k

= gpx0 +
∞∑

k=�

xk+pg
−k −

∞∑
k=�

xkg−k = gpx0 .

Thus x′ = gpx0(gp − 1)−1 is rational.
Now let x ∈ [0, 1) be a rational number, that is, x = p/q for some positive

natural numbers p and q with p < q. Let
∑∞

k=1 xkg−k be the base g expansion
of x. Set r0 := x and rk := grk−1 − xk for all k ∈ N× as in (b).

We claim that for each k ∈ N,

there is some sk ∈ {0, 1, . . . , q − 1} such that rk = sk/q . (7.11)

For k = 0, the claim is true with s0 := p. Suppose that (7.11) is true for some
k ∈ N, that is, rk = sk/q with 0 ≤ sk ≤ q − 1. Since xk+1 =  grk! =  gsk/q!, there
is some sk+1 ∈ {0, 1, . . . , q − 1} such that gsk = qxk+1 + sk+1, and so

rk+1 = grk − xk+1 =
gsk

q
− xk+1 =

sk+1

q
.

Consequently (7.11) is true for k + 1, and by induction, for all k. Since, for sk,
only the q values 0, 1, . . . , q − 1 are available, there are some k0 ∈ {1, . . . , q − 1} and
j0 ∈ {k0, k0 + 1, . . . , k0 + q} such that sj0 = sk0 . Hence rj0+1 = rk0 , which implies
rj0+i = rk0+i for all 1 ≤ i ≤ j0 − k0. Thus, from xk+1 =  grk! for k ∈ N×, it follows
that the base g expansion of x is periodic. �
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The Uncountability of R

With the help of Theorem 7.11 it is now easy to prove that R is uncountable.

7.12 Theorem The set of real numbers R is uncountable.

Proof Suppose that R is countable. The subset
{

1/n ; n ≥ 2
}
⊆ (0, 1) is count-

ably infinite, and so, by Example I.6.1(a) and Proposition I.6.7, the interval (0, 1) is
also countably infinite. Hence (0, 1) = {xn ; n ∈ N } for some sequence (xn)n∈N.
By Theorem 7.11, each xn ∈ (0, 1) has a unique ternary expansion of the form
xn = 0.xn,1xn,2 . . ., where, for infinitely many k ∈ N×, xn,k ∈ {0, 1, 2} is not equal
to 2. In particular, by Proposition I.6.7, the set

X := { 0.xn,1xn,2 . . . ; xn,k �= 2, n ∈ N, k ∈ N× }

is countable. Since X is clearly equinumerous with {0, 1}N, we have shown that
{0, 1}N is countable. This contradicts Proposition I.6.11. �

Exercises

1 Determine the values of the following series:

(a)
∑ (−1)k

2k
, (b)

∑ 1

4k2 − 1
.

2 Determine whether the following series converge or diverge:

(a)
∑ √

k + 1 −
√

k√
k

, (b)
∑

(−1)k(√k + 1 −
√

k
)

, (c)
∑ k!

kk
, (d)

∑ (k + 1)k−1

(−k)k
.

3 An infinitesimally small snail crawls with a constant speed of 5cm/hour along a 1 me-
ter long rubber band. At the end of the first and all subsequent hours, the rubber band
is stretched uniformly an extra meter. If the snail starts at the left end of the rubber
band, will it reach the right end in a finite amount of time?

4 Let
∑

ak be a convergent series in a Banach space E. Show that the sequence (rn)
with rn :=

∑∞
k=n ak is a null sequence.

5 Let (xk) be a decreasing sequence such that
∑

xk converges. Prove that (kxk) is a
null sequence.

6 Let (xk) be a sequence in [0,∞). Prove that∑
xk < ∞ ⇐⇒

∑ xk

1 + xk
< ∞ .

7 Let (dk) be a sequence in [0,∞) such that
∑∞

k=0 dk = ∞.

(a) What can be said about the convergence of the following series?

(i)
∑ dk

1 + dk
, (ii)

∑ dk

1 + k2dk
.

Is the hypothesis on the sequence (dk) needed in both cases?
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(b) Show by example that the series

(i)
∑ dk

1 + kdk
, (ii)

∑ dk

1 + d2
k

can both converge and diverge.

(Hint: (a) Consider separately the cases lim dk < ∞ and lim dk = ∞.)

8 Let s :=
∑∞

k=1 k−2. Show that

1 − 1

22
− 1

42
+

1

52
+

1

72
− 1

82
− 1

102
+ + − − · · · =

4

9
s .

9 For (j, k) ∈ N × N, let

xjk :=

{
1/(j2 − k2) , j 
= k ,

0 , j = k .

For each j ∈ N×, determine the value of the series
∑∞

k=0 xjk. (Hint: Factor xjk suitably.)

10 The series
∑

ck/k! is called a Cantor series if the coefficients ck are integers such
that 0 ≤ ck+1 ≤ k for all k ∈ N×.

Prove the following:

(a) Every nonnegative real number x can be represented as the value of a Cantor series,
that is, there is a Cantor series with x =

∑∞
k=1 ck/k! . This representation is unique if

almost all of the ck are not equal to k − 1.

(b) Show that
∞∑

k=n+1

k − 1

k!
=

1

n!
, n ∈ N .

(c) Let x ∈ [0, 1) be represented by the Cantor series
∑

ck/k!. Then x is rational5 if and
only if there is some k0 ∈ N× such that ck = 0 for all k ≥ k0.

11 Prove the Cauchy condensation theorem: If (xk) is a decreasing sequence in [0,∞),
then

∑
xk converges if and only if

∑
2kx2k converges.

12 Let s ≥ 0 be rational. Show that the series
∑

k k−s converges if and only if s > 1.
(Hint: Exercise 11 and Example 7.4.)

13 Prove the claim of (7.3).

14 Let

xn :=

{
n−1 , n odd ,

−n−2 , n even .

Show that
∑

xn diverges. Why does the Leibniz criterion not apply to this series?

5Compare Exercise 4.7(b).
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15 Let (zn) be a sequence in (0,∞) with lim zn = 0. Show that there are null sequences
(xn) and (yn) in (0,∞) such that

(a)
∑

xn < ∞ and lim xn/zn = ∞.

(b)
∑

yn = ∞ and lim yn/zn = 0.

In particular, for any slowly converging null sequence (zn) there is a null sequence (xn)
which converges quickly enough so that

∑
xn < ∞, but, even so, has a subsequence (xnk )

which converges more slowly to zero than the corresponding subsequence (znk ) of (zn).
And, for any quickly converging null sequence (zn) there is a null sequence (yn) which
converges slowly enough so that

∑
yn = ∞, but, even so, has a subsequence (ynk) which

converges more quickly to zero than the corresponding subsequence (znk ) of (zn).

(Hint: Let (zn) be a sequence in (0,∞) such that lim zn = 0.

(a) For each k ∈ N× choose some nk ∈ N such that znk < k−3. Now set xnk = k−2 for all

k ∈ N, and xn = n−2 otherwise.

(b) Choose a subsequence (znk ) with limk znk = 0. Set ynk = z2
nk

for all k ∈ N, and

yn = 1/n otherwise.)
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8 Absolute Convergence

Since series are a special type of sequences, the rules which we have derived for
general sequences apply also to series. But because the summands of a series
belong to some underlying normed vector space, we can derive other rules which
make use of this fact. For example, for a given series

∑
xn, we can investigate

the series
∑

|xn|. Even though the convergence of a sequence (yn) implies the
convergence of the sequence of its norms (|yn|), the convergence of a series

∑
xn

does not imply the convergence of
∑ |xn|. This is seen, for example, in the different

convergence behaviors of the alternating harmonic series,
∑

(−1)k+1/k, and the
harmonic series,

∑
1/k.

Moreover, we should not expect that the associative law holds for ‘infinitely
many’ additions:

1 = 1 + (−1 + 1) + (−1 + 1) + · · · = (1 − 1) + (1 − 1) + (1 − 1) + · · · = 0 .

This situation is considerably improved if we restrict our attention to convergent
series in R with positive summands, or, more generally, to series with the property
that the series of the absolute values (norms) of its summands converges.

In this section
∑

xk is a series in a Banach space E := (E, |·|).

The series
∑

xk converges absolutely or is absolutely convergent if
∑ |xk| con-

verges in R, that is,
∑

|xk| < ∞.

The next proposition justifies the word ‘convergent’ in this definition.

8.1 Proposition Every absolutely convergent series converges.

Proof Let
∑

xk be an absolutely convergent series in E. Then
∑ |xk| converges

in R. By Theorem 7.6,
∑

|xk| satisfies the Cauchy criterion, that is, for all ε > 0
there is some N such that

m∑
k=n+1

|xk| < ε , m > n ≥ N .

Since ∣∣∣ m∑
k=n+1

xk

∣∣∣ ≤ m∑
k=n+1

|xk| < ε , m > n ≥ N , (8.1)

the series
∑

xk also satisfies the Cauchy criterion. It follows from Theorem 7.6
that

∑
xk converges. �
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8.2 Remarks (a) The alternating harmonic series
∑

(−1)k+1/k shows that the
converse of Proposition 8.1 is false. This series converges (see Example 7.10(a)),
whereas the corresponding series of the absolute values, that is, the harmonic
series

∑
k−1, diverges (see Example 7.3).

(b) The series
∑

xk is called conditionally convergent if
∑

xk converges but
∑ |xk|

does not. The alternating harmonic series is a conditionally convergent series.

(c) For every absolutely convergent series
∑

xk we have the ‘generalized triangle
inequality’, ∣∣∣ ∞∑

k=0

xk

∣∣∣ ≤ ∞∑
k=0

|xk| .

Proof The triangle inequality implies

∣∣∣ n∑
k=0

xk

∣∣∣ ≤ n∑
k=0

|xk| , n ∈ N .

The claim now follows from Propositions 2.7, 2.10 and 5.3 (see also Remark 3.1(c)).

Majorant, Root and Ratio Tests

Absolute convergence plays a particularly significant role in the study of series.
Because of this, the majorant criterion is of key importance, since it provides an
easy and flexible means to show the absolute convergence of a series.

Let
∑

xk be a series in E and
∑

ak a series in R+. Then the series
∑

ak

is called a majorant (or minorant1) for
∑

xk if there is some K ∈ N such that
|xk| ≤ ak (or ak ≤ |xk|) for all k ≥ K.

8.3 Theorem (majorant criterion) If a series in a Banach space has a convergent
majorant, then it converges absolutely.

Proof Let
∑

xk be a series in E and
∑

ak a convergent majorant. Then there
is some K such that |xk| ≤ ak for all k ≥ K. By Theorem 7.6, for ε > 0, there
is some N ≥ K such that

∑m
k=n+1 ak < ε for all m > n ≥ N . Since

∑
ak is a

majorant for
∑

xk, we have

m∑
k=n+1

|xk| ≤
m∑

k=n+1

ak < ε , m > n ≥ N .

Since the series
∑

|xk| satisfies the Cauchy criterion,
∑

|xk| converges. This means
that the series

∑
xk converges absolutely. �

1Note that, by definition, a minorant has nonnegative terms.
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8.4 Examples (a) For m ≥ 2,
∑

k k−m converges in R.

Proof Because m ≥ 2 we have k−m ≤ k−2 for all k ∈ N×. Example 7.1(b) shows that∑
k−2 is a convergent majorant for

∑
k−m. �

(b) For any z ∈ C such that |z| < 1, the series
∑

zk converges absolutely.

Proof We have |zk| = |z|k for all k ∈ N. Because of |z| < 1 and Example 7.4, the geo-

metric series
∑ |z|k is a convergent majorant for

∑
zk. �

Using the majorant criterion we can derive other important tests for the
convergence of series. We start with the root test, a sufficient condition for the
absolute convergence of series in an arbitrary Banach space.

8.5 Theorem (root test) Let
∑

xk be a series in E and

α := lim k
√

|xk| .

Then the following hold:∑
xk converges absolutely if α < 1.∑
xk diverges if α > 1.

For α = 1, both convergence and divergence of
∑

xk are possible.

Proof (a) If α < 1, then the interval (α, 1) is not empty and we can choose some
q ∈ (α, 1). By Theorem 5.5, α is the greatest cluster point of the sequence

(
k
√

|xk|
)
.

Hence there is some K such that k
√

|xk| < q for all k ≥ K, that is, for all k ≥ K,
we have |xk| < qk. Therefore the geometric series

∑
qk is a convergent majorant

for
∑

xk, and the claim follows from Theorem 8.3.

(b) If α > 1, then, by Theorem 5.5 again, there are infinitely many k ∈ N
such that k

√
|xk| ≥ 1. Thus |xk| ≥ 1 for infinitely many k ∈ N. In particular, (xk)

is not a null sequence and the series
∑

xk diverges by Proposition 7.2.

(c) To prove the claim for the case α = 1 it suffices to provide a conditionally
convergent series in E = R such that α = 1. For the alternating harmonic series,
xk := (−1)k+1/k, we have, by Example 4.2(d),

k
√

|xk| = k

√
1
k

=
1

k
√

k
→ 1 (k → ∞) .

Thus α = lim k
√

|xk| = 1 follows from Theorem 5.7. �

The essential idea in this proof is the use of a geometric series as a convergent
majorant. This suggests a further useful convergence condition, the ratio test.
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8.6 Theorem (ratio test) Let
∑

xk be a series in E and K0 be such that xk �= 0
for all k ≥ K0. Then the following hold:

(i) If there are q ∈ (0, 1) and K ≥ K0 such that

|xk+1|
|xk|

≤ q , k ≥ K ,

then the series
∑

xk converges absolutely.

(ii) If there is some K ≥ K0 such that

|xk+1|
|xk|

≥ 1 , k ≥ K ,

then the series
∑

xk diverges.

Proof (i) By hypothesis we have |xk+1| ≤ q |xk| for all k ≥ K. A simple induction
argument yields the inequality

|xk| ≤ qk−K |xK | =
|xK |
qK

qk , k > K .

Set c := |xK |
/
qK . Then c

∑
qk is a convergent majorant for the series

∑
xk, and

the claim follows from Theorem 8.3.

(ii) The hypothesis implies that (xk) is not a null sequence. By Proposi-
tion 7.2, the series

∑
xk must be divergent. �

8.7 Examples (a)
∑

k22−k < ∞ since, from xk := k22−k, we get

|xk+1|
|xk|

=
(k + 1)2

2k+1
· 2k

k2
=

1
2

(
1 +

1
k

)2

→ 1
2

(k → ∞) .

Thus there is some K with |xk+1|/|xk| ≤ 3/4 for all k ≥ K. The claimed conver-
gence then follows from the ratio test.

(b) Consider the series

∑(1
2

)k+(−1)k

=
1
2

+ 1 +
1
8

+
1
4

+
1
32

+
1
16

+ · · ·

with summands xk :=
(

1
2

)k+(−1)k

for all k ∈ N. Then

|xk+1|
|xk|

=
{

2 , k even ,

1/8 , k odd ,
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and we recognize that neither hypothesis of Proposition 8.6 is satisfied.2 Even so,
the series converges since

lim k
√

|xk| = lim
k

√(
1
2

)k+(−1)k

=
1
2

lim
k

√(
1
2

)(−1)k

=
1
2

,

as Example 4.2(e) shows.

(c) For each z ∈ C, the series
∑

zk/k! converges absolutely.3

Proof Let z ∈ C×. With xk := zk/k! for all k ∈ N, we have

|xk+1|
|xk|

=
|z|

k + 1
≤ 1

2
, k ≥ 2 |z| ,

and so the claim follows from Theorem 8.6. �

The Exponential Function

Because of the previous example, we can define a function, exp, by

exp : C → C , z �→
∞∑

k=0

zk

k!
.

This is called the exponential function, and the series
∑

zk/k! is called the expo-
nential series. The exponential function is extremely important in all of mathe-
matics and we make a thorough study of its properties in the following. We already
notice that the exponential function of a real number is a real number, that is,
exp(R) ⊆ R. For the restriction of the exponential function to R we use again the
symbol exp.

Rearrangements of Series

Let σ : N → N be a permutation. Then the series
∑

k xσ(k) is called a rearrange-
ment of

∑
xk. The summands of the rearrangement

∑
k xσ(k) are the same as

those of the original series, but they occur in different order. If σ is a permuta-
tion of N with σ(k) = k for almost all k ∈ N, then

∑
xk and

∑
k xσ(k) have the

same convergence behavior, and their values are equal if the series converge. For a
permutation σ : N → N with σ(k) �= k for infinitely many k ∈ N, this may not be
true, as the following example demonstrates:

2For practical reasons it is advisable to try the ratio test first. If this test fails, it is still possible
that the root test may determine the convergence behavior of the series (see Exercise 5.4).

3This, together with Proposition 7.2, provides a further proof of the claim of Example 4.2(c).
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8.8 Example Let xk := (−1)k+1/k, and let σ : N× → N× be defined by σ(1) := 1,
σ(2) := 2 and

σ(k) :=

⎧⎪⎨⎪⎩
k + k/3 , if 3 |k ,

k − (k − 1)/3 , if 3 |(k − 1) ,

k + (k − 2)/3 , if 3 |(k − 2) ,

for all k ≥ 3. It is easy to check that σ is a permutation of N× and so∑
xσ(k) = 1 − 1

2
− 1

4
+

1
3
− 1

6
− 1

8
+

1
5
− 1

10
− 1

12
+ − − · · ·

is a rearrangement of the alternating harmonic series∑
xk = 1 − 1

2
+

1
3
− 1

4
+ − · · · .

We will show that this rearrangement converges. Denote the nth partial sums
of
∑

xk and
∑

k xσ(k) by sn and tn respectively. Let s = lim sn, the value of
∑

xk.
Since

σ(3n) = 4n , σ(3n − 1) = 4n − 2 , σ(3n − 2) = 2n − 1 , n ∈ N× ,

we have

t3n = 1 − 1
2
− 1

4
+

1
3
− 1

6
− 1

8
+ − − · · · + 1

2n − 1
− 1

4n − 2
− 1

4n

=
(
1 − 1

2
− 1

4

)
+
(1

3
− 1

6
− 1

8

)
+ · · · +

( 1
2n − 1

− 1
4n − 2

− 1
4n

)
=
(1

2
− 1

4

)
+
(1

6
− 1

8

)
+ · · · +

( 1
4n − 2

− 1
4n

)
=

1
2

(
1 − 1

2
+

1
3
− 1

4
+ − · · · + 1

2n − 1
− 1

2n

)
=

1
2
sn .

Thus the subsequence (t3n)n∈N× of (tm)m∈N× converges to s/2. Since we also have

lim
n→∞ |t3n+1 − t3n| = lim

n→∞ |t3n+2 − t3n| = 0 ,

it follows that (tm) is a Cauchy sequence. By Propositions 6.4 and 1.15, the se-
quence (tm) converges to s/2, that is,

∞∑
k=1

xσ(k) = 1 − 1
2
− 1

4
+

1
3
− 1

6
− 1

8
+

1
5
− 1

10
− 1

12
+ − − · · · =

s

2
.

Note that s is not zero since |s − 1| = |s − s1| ≤ −x2 = 1
2 by Corollary 7.9. �
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This example shows that addition is not commutative when there are ‘in-
finitely many summands’, that is, a convergent series cannot be arbitrarily rear-
ranged without changing its value.4 In contrast, the next proposition shows that
the value of an absolutely convergent series is invariant under rearrangements.

8.9 Theorem (rearrangement theorem) Every rearrangement of an absolutely
convergent series

∑
xk is absolutely convergent and has the same value as

∑
xk.

Proof For each ε > 0, there is, by Theorem 7.6, some N ∈ N such that
m∑

k=N+1

|xk| < ε , m > N .

Taking the limit m → ∞ yields the inequality
∑∞

k=N+1 |xk| ≤ ε.

Now let σ be a permutation of N. For M := max
{
σ−1(0), . . . , σ−1(N)

}
we

have
{
σ(0), . . . , σ(M)

}
⊇ {0, . . . , N}. Thus, for each m ≥ M ,∣∣∣ m∑

k=0

xσ(k) −
N∑

k=0

xk

∣∣∣ ≤ ∞∑
k=N+1

|xk| ≤ ε (8.2)

and also ∣∣∣ m∑
k=0

|xσ(k)| −
N∑

k=0

|xk|
∣∣∣ ≤ ε . (8.3)

The inequality (8.3) implies the absolute convergence of
∑

xσ(k). Taking the
limit m → ∞ in (8.2), and then using Proposition 2.10 and Remark 3.1(c), we
see that ∣∣∣ ∞∑

k=0

xσ(k) −
N∑

k=0

xk

∣∣∣ ≤ ε ,

and so the values of the two series agree. �

Double Series

As an application of the rearrangement theorem we consider double series
∑

xjk

in a Banach space E. Thus we have a function x : N × N → E and, just as in
Section 1, we abbreviate x(j, k) by xjk. The function x can be represented by a
doubly infinite array

x00 x01 x02 x03 . . .
x10 x11 x12 x13 . . .
x20 x21 x22 x23 . . .
x30 x31 x32 x33 . . .
...

...
...

...
...
...
...

(8.4)

4See Exercise 4.
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There are many ways that the entries in this array can be summed, that is, there
are many different ways of ordering the entries so as to form a series. It is not at
all clear under what conditions such series converge and to what extent the value
of these series are independent of the choice of ordering.

By Proposition I.6.9, the set N × N is countable, that is, there is a bijection
α : N → N × N. If α is such a bijection, we call the series

∑
n xα(n) an ordering

of the double series
∑

xjk. If we fix j ∈ N (or k ∈ N), then the series
∑

k xjk

(or
∑

j xjk) is called the jth row series (or jth column series) of
∑

xjk. If every
row series (or column series) converges, then we can consider the series of row
sums

∑
j

(∑∞
k=0 xjk

) (
or the series of column sums

∑
k

(∑∞
j=0 xjk

))
. Finally we

say that the double series
∑

xjk is summable5 if

sup
n∈N

n∑
j,k=0

|xjk| < ∞ .

8.10 Theorem (double series theorem) Let
∑

xjk be a summable double series.

(i) Every ordering
∑

n xα(n) of
∑

xjk converges absolutely to a value s ∈ E
which is independent of α.

(ii) The series of row sums
∑

j

(∑∞
k=0 xjk

)
and column sums

∑
k

(∑∞
j=0 xjk

)
con-

verge absolutely, and

∞∑
j=0

( ∞∑
k=0

xjk

)
=

∞∑
k=0

( ∞∑
j=0

xjk

)
= s .

Proof (i) Set M = supn∈N

∑n
j,k=0 |xjk| < ∞. Let α : N → N × N be a bijection

and N ∈ N. Then there is some K ∈ N such that{
α(0), . . . , α(N)

}
⊆
{
(0, 0), (1, 0), . . . , (K, 0), . . . , (0,K), . . . , (K,K)

}
. (8.5)

Together with the summability of
∑

xjk this implies

N∑
n=0

|xα(n)| ≤
K∑

j,k=0

|xjk| ≤ M .

Hence
∑

n xα(n) is absolutely convergent by Theorem 7.7.

5We have defined only the convergence of the row (and column) series and the convergence of
an arbitrary ordering of a double series. For the double series

∑
xjk itself, we have no definition

of convergence. Note that the convergence of each row (or column) series must be proved before
one can consider the series of row (or column) sums.
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Now let β : N → N × N be another bijection. Then σ := α−1 ◦ β is a permu-
tation of N. Set ym := xα(m) for all m ∈ N. Then

yσ(n) = xα(σ(n)) = xβ(n) , n ∈ N ,

that is,
∑

n xβ(n) is a rearrangement of
∑

n xα(n). Since we already know that∑
n xα(n) converges absolutely, the remaining claim follows from Theorem 8.9.

(ii) Note first that the row series
∑∞

k=0 xjk, j ∈ N, and the column se-
ries

∑∞
j=0 xjk, k ∈ N, converge absolutely. Indeed, this follows directly from the

summability of
∑

xjk and Theorem 7.7. So the series of row sums
∑

j

(∑∞
k=0 xjk

)
and the series of column sums

∑
k

(∑∞
j=0 xjk

)
are well defined.

We next prove that these series converge absolutely. Consider the inequalities

�∑
j=0

∣∣∣ m∑
k=0

xjk

∣∣∣ ≤ �∑
j=0

m∑
k=0

|xjk| ≤
m∑

j,k=0

|xjk| ≤ M , � ≤ m .

In the limit m → ∞ we get
∑�

j=0

∣∣∑∞
k=0 xjk

∣∣ ≤ M , � ∈ N, which proves the ab-
solute convergence of the series of row sums

∑
j

(∑∞
k=0 xjk

)
. A similar argument

shows the absolute convergence of the series of column sums.
Now let α : N → N × N be a bijection and s :=

∑∞
n=0 xα(n). For any ε > 0,

there is some N ∈ N such that
∑∞

n=N+1 |xα(n)| < ε/2. Also there is some K ∈ N
so that (8.5) holds. Hence we have

∣∣∣ �∑
j=0

m∑
k=0

xjk −
N∑

n=0

xα(n)

∣∣∣ ≤ ∞∑
n=N+1

|xα(n)| < ε/2 , �,m ≥ K .

Taking the limits m → ∞ and � → ∞, we get

∣∣∣ ∞∑
j=0

( ∞∑
k=0

xjk

)
−

N∑
n=0

xα(n)

∣∣∣ ≤ ε/2 .

Applying the triangle inequality to

∣∣∣s −
N∑

n=0

xα(n)

∣∣∣ ≤ ∞∑
n=N+1

|xα(n)| < ε/2

yields ∣∣∣ ∞∑
j=0

( ∞∑
k=0

xjk

)
− s

∣∣∣ ≤ ε .

Since this holds for each ε > 0, the series of row sums has the value s. A similar
argument shows that the value of

∑
k

(∑∞
j=0 xjk

)
is also s. �
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Cauchy Products

Double series appear naturally when one forms the product of two series. If
∑

xj

and
∑

yk are series in K, then multiplying the summands together we get the
following doubly infinite array:

x0y0 x0y1 x0y2 x0y3 . . .
x1y0 x1y1 x1y2 x1y3 . . .
x2y0 x2y1 x2y2 x2y3 . . .
x3y0 x3y1 x3y2 x3y3 . . .

...
...

...
...

...
...
...

(8.6)

If
∑

xj and
∑

yk both converge, then the series of row sums is
∑

j xj ·∑∞
k=0 yk and

the series of column sums is
∑

k yk ·
∑∞

j=0 xj . Set xjk := xjyk for all (j, k) ∈ N × N.
Let δ : N → N × N be the bijection from (I.6.3), so that, with the nth diagonal sum
defined by

zn :=
n∑

k=0

xkyn−k , n ∈ N , (8.7)

we have ∑
j

xδ(j) =
∑

n

zn =
∑

n

( n∑
k=0

xkyn−k

)
.

This particular ordering
∑

n xδ(n) is called the Cauchy product of the series
∑

xj

and
∑

yk (compare (8.8) in Section I.8).
In order to make use of the Cauchy product of

∑
xj and

∑
yk it is necessary

that the double series
∑

xjyk be summable. A simple sufficient criterion for this
is the absolute convergence of

∑
xj and

∑
yk.

8.11 Theorem (Cauchy product of series) Suppose that the series
∑

xj and
∑

yk

in K converge absolutely. Then the Cauchy product
∑

n

∑n
k=0 xkyn−k of

∑
xj

and
∑

yk converges absolutely, and( ∞∑
j=0

xj

)( ∞∑
k=0

yk

)
=

∞∑
n=0

n∑
k=0

xkyn−k .

Proof Setting xjk := xjyk for all (j, k) ∈ N × N, we have

n∑
j,k=0

|xjk| =
n∑

j=0

|xj | ·
n∑

k=0

|yk| ≤
∞∑

j=0

|xj | ·
∞∑

k=0

|yk| , n ∈ N .

Hence, because of the absolute convergence of
∑

xj and
∑

yk, the double se-
ries

∑
xjk is summable. The claims now follow from Theorem 8.10. �
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8.12 Examples (a) For the exponential function we have

exp(x) · exp(y) = exp(x + y) , x, y ∈ C . (8.8)

Proof By Example 8.7(c), the series
∑

xj/j! and
∑

yk/k! are absolutely convergent,
and so, Theorem 8.11 implies

exp(x) · exp(y) =
( ∞∑

j=0

xj

j!

)( ∞∑
k=0

yk

k!

)
=

∞∑
n=0

( n∑
k=0

xk

k!

yn−k

(n − k)!

)
. (8.9)

From the binomial formula we get

n∑
k=0

xk

k!

yn−k

(n − k)!
=

1

n!

n∑
k=0

n!

k! (n − k)!
xkyn−k =

1

n!

n∑
k=0

(n

k

)
xkyn−k =

1

n!
(x + y)n .

So, from (8.9), we get

exp(x) · exp(y) =
∞∑

n=0

(x + y)n

n!
= exp(x + y)

as claimed. �

(b) As an application of this property of the exponential function, we determine
the values of the exponential function for rational arguments.6 Namely,

exp(r) = er , r ∈ Q ,

that is, for a rational number r, exp(r) is the rth power of e.

Proof (i) From Example 7.1(a) we have exp(1) =
∑∞

k=0 1/k! = e. Thus (8.8) implies

exp(2) = exp(1 + 1) = exp(1) · exp(1) =
[
exp(1)

]2
= e2 .

A simple induction argument yields

exp(k) = ek , k ∈ N .

(ii) For k ∈ N, (8.8) implies that exp(−k) · exp(k) = exp(0). Since exp(0) = 1 we
have

exp(−k) =
[
exp(k)

]−1
, k ∈ N .

Using (i) we then have (see Exercise I.9.1)

exp(−k) =
1

exp(k)
=

1

ek
= (e−1)k = e−k , k ∈ N ,

that is, exp(k) = ek for all k ∈ Z.

6In Section III.6 we prove a generalization of this statement.
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(iii) For q ∈ N×, (8.8) implies that

e = exp(1) = exp
(
q · 1

q

)
= exp

(1

q
+ · · · + 1

q︸ ︷︷ ︸
q times

)
=
[
exp

(1

q

)]q

and hence exp(1/q) = e1/q. Finally let p ∈ N and q ∈ N×. Then, using Remark I.10.10(b),
we get

exp
(p

q

)
= exp

(1

q
+ · · · + 1

q︸ ︷︷ ︸
p times

)
=
[
exp

(1

q

)]p

=
[
e1/q]p

= ep/q

(see Exercise I.10.3). From (8.8) and exp(0) = 1 it follows also that

exp
(
−p

q

)
=
[
exp

(p

q

)]−1

.

By what we have already proved and Exercise I.10.3, we obtain finally

exp
(
−p

q

)
=
[
exp

(p

q

)]−1

=
[
ep/q]−1

= e−p/q .

This completes the proof. �

(c) For conditionally convergent series, Theorem 8.11 is false in general.

Proof For the Cauchy product of the conditionally convergent series
∑

xk and
∑

yk

defined by xk := yk := (−1)k
/√

k + 1 for all k ∈ N we have

zn :=

n∑
k=0

(−1)k(−1)n−k

√
k + 1

√
n − k + 1

= (−1)n
n∑

k=0

1√
k(n − k)

, n ∈ N× .

From the inequality

(k + 1)(n − k + 1) ≤ (n + 1)2

for 0 ≤ k ≤ n, we get

|zn| =
n∑

k=0

1√
(k + 1)(n − k + 1)

≥ n + 1

n + 1
= 1 .

Thus, by Proposition 7.2, the series
∑∞

k=1 zn cannot converge. �

(d) Consider the double series
∑

xjk with

xjk :=

⎧⎪⎨⎪⎩
1 , j − k = 1 ,

−1 , j − k = −1 ,

0 otherwise ,
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represented by the doubly infinite array7⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1
1 0 −1

1 0 −1 0
1 0 −1

1 0 −1
1 0 −1

1 0 −1
0 1 0

. . .

1
. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This double series is not summable and the values of the row and column

series disagree: ∑
j

( ∞∑
k=0

xjk

)
= −1 ,

∑
k

( ∞∑
j=0

xjk

)
= 1 .

The series
∑

n xδ(n), where δ : N → N × N denotes the bijection of (I.6.3), is di-
vergent.

Exercises

1 Determine whether the following series converge or diverge:

(a)
∑ k4

3k
, (b)

∑ k

( 3
√

k + 1)k
, (c)

∑(
1 − 1

k

)k2

,

(d)
∑(2k

k

)−1

, (e)
∑(2k

k

)
2−k , (f)

∑(2k

k

)
5−k .

2 For what values of a ∈ R do the series∑ a2k

(1 + a2)k−1
and

∑ 1 − a2k

1 + a2k

converge?

3 Let
∑

xk be a conditionally convergent series in R. Show that the series8
∑

x+
k

and
∑

x−
k diverge.

4 Prove Riemann’s rearrangement theorem: If
∑

xk is a conditionally convergent series
in R, then, for any s ∈ R, there is a permutation σ of N such that

∑
k xσ(k) = s. Further,

there is a permutation τ of N such that
∑

k xτ(k) diverges. (Hint: Use Exercise 3 and
approximate s ∈ R above and below by suitable combinations of the partial sums of the
series

∑
x+

k and −∑
x−

k .)

7The large zeros indicate that all entries which otherwise not specified are 0.
8For x ∈ R, define x+ := max{x, 0} and x− := max{−x, 0}.
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5 For all (j, k) ∈ N × N, let

xjk :=

{
(j2 − k2)−1 , j 
= k ,

0 , j = k .

Show that the double series
∑

xjk is not summable. (Hint: Using Exercise 7.9, determine
the values of the series of row sums and the series of column sums.)

6 Let

�1 := �1(K) :=
({

(xk) ∈ s ;
∑

xk is absolutely convergent }, ‖·‖1

)
where

‖(xk)‖1 :=
∞∑

k=0

|xk| .

Prove the following:

(a) �1 is a Banach space.

(b) �1 is a proper subspace of �∞ with ‖·‖∞ ≤ ‖·‖1.

(c) The norm induced on �1 from �∞ is not equivalent to the �1-norm. (Hint: Consider
the sequence (ξj) with ξj := (xj,k)k∈N where xj,k = 1 for k ≤ j, and xj,k = 0 for k > j.)

7 Let
∑

xn,
∑

yn and
∑

zn be series in (0,∞) with
∑

yn < ∞ and
∑

zn = ∞. Prove
the following:

(a) If there is some N such that

xn+1

xn
≤ yn+1

yn
, n ≥ N ,

then
∑

xn converges.

(b) If there is some N such that

xn+1

xn
≥ zn+1

zn
, n ≥ N ,

then
∑

xn diverges.

8 Determine whether the following series converge or diverge:∑ (−1)n+1

3n + (−1)nn
,

∑ (−1)n+1

3n + 6(−1)n
.

9 Let a, b > 0 with a − b = 1. Show that the Cauchy product of the series9

a +
∑
n≥1

an and − b +
∑
n≥1

bn

converges absolutely. In particular, the Cauchy product of

2 + 2 + 22 + 23 + · · · and − 1 + 1 + 1 + · · ·

converges absolutely.

9Note that the series a +
∑

an diverges.
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10 Prove the following properties of the exponential function:

(a) exp(x) > 0, x ∈ R.

(b) exp : R → R is strictly increasing.

(c) For each ε > 0, there are x < 0 and y > 0 such that

exp(x) < ε and exp(y) > 1/ε .

(Hint: Consider Examples 8.12(a) and (b).)
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9 Power Series

We investigate next the conditions under which formal power series can be consid-
ered to be well defined functions. As we have already seen in Remark I.8.14(e), for
a power series which is not a polynomial, this is a question about the convergence
of series.

Let
a :=

∑
akXk :=

∑
k

akXk (9.1)

be a (formal) power series in one indeterminate with coefficients in K. Then, for
each x ∈ K,

∑
akxk is a series in K. When this series converges we denote its value

by a(x), the value of the (formal) power series (9.1) at x. Set

dom(a) :=
{

x ∈ K ;
∑

akxk converges in K
}

.

Then a : dom(a) → K is a well defined function:

a(x) :=
∞∑

k=0

akxk , x ∈ dom(a) . (9.2)

Note that 0 ∈ dom(a) for any a ∈ K[[X]]. The following examples show that
each of the cases

dom(a) = K , {0} ⊂ dom(a) ⊂ K , dom(a) = {0}

is possible.

9.1 Examples (a) Let a ∈ K[X] ⊆ K[[X]], that is, ak = 0 for almost all k ∈ N.
Then dom(a) = K and a coincides with the polynomial function introduced in
Section I.8.

(b) The exponential series
∑

xk/k! converges absolutely for each x ∈ C. Thus, for
the power series

a :=
∑ 1

k!
Xk ∈ C[[X]] ,

we have dom(a) = C and a = exp.

(c) By Example 7.4, the geometric series
∑

k xk converges absolutely to the value
1/(1−x) for each x ∈ BK, and it diverges if x is not in BK. Thus for the geometric
series

a :=
∑

Xk ∈ K[[X]]

we have dom(a) = BK and a(x) = 1
/
(1 − x) for all x ∈ dom(a).
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(d) The series
∑

k k!xk diverges for all x ∈ K×. Consequently, the domain of the
function a represented by the power series a :=

∑
k!Xk is {0}.

Proof For all x ∈ K× and k ∈ N, let xk := k! xk. Then

|xk+1|
|xk|

= (k + 1) |x| → ∞ (k → ∞) .

Hence the series
∑

xk =
∑

k! xk diverges by the ratio test. �

The Radius of Convergence

For power series, the convergence tests of the previous section can be put in a
particularly useful form.

9.2 Theorem For a power series a =
∑

akXk with coefficients in K there is a
unique ρ := ρa ∈ [0,∞] with the following properties:

(i) The series
∑

akxk converges absolutely if |x| < ρ and diverges if |x| > ρ.

(ii) Hadamard’s formula holds:

ρa =
1

lim
k→∞

k
√

|ak|
. (9.3)

The number1 ρa ∈ [0,∞] is called the radius of convergence of a, and

ρaBK = {x ∈ K ; |x| < ρa }

is the disk of convergence of a.

Proof Define ρa by (9.3). Then ρa ∈ [0,∞] and

lim
k→∞

k

√
|akxk| = |x| lim

k→∞
k
√

|ak| = |x|/ρa .

Then all claims follow from the root test. �

9.3 Corollary For a =
∑

akXk ∈ K[[X]], we have ρaBK ⊆ dom(a) ⊆ ρaB̄K. In par-
ticular, the power series a represents the function a on its disk of convergence.2

For some power series the ratio test can also be used to determine the radius
of convergence.

1Of course in (9.3) we use the conventions of Section I.10 for the extended number line R̄.
2In Remark 9.6 we see that ρaBK is, in general, a proper subset of dom(a).
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9.4 Proposition Let a =
∑

akXk be a power series such that lim
∣∣ak/ak+1

∣∣ exists
in R̄. Then the radius of convergence of a is given by the formula

ρa = lim
k→∞

∣∣∣ ak

ak+1

∣∣∣ .

Proof Since α := lim
∣∣ak/ak+1

∣∣ exists in R̄, we have∣∣∣ak+1x
k+1

akxk

∣∣∣ =
∣∣∣ak+1

ak

∣∣∣ |x| → |x|
α

(k → ∞) . (9.4)

Now if x, y ∈ K are such that |x| < α and |y| > α, then (9.4) and the ratio test
imply that the series

∑
akxk converges absolutely and the series

∑
akyk diverges.

Hence, by Theorem 9.2, we have α = ρa. �

9.5 Examples (a) The radius of convergence of the exponential series
∑

(1/k!)Xk

is ∞.
Proof Since ∣∣∣ ak

ak+1

∣∣∣ =
∣∣∣ 1/k!

1/(k + 1)!

∣∣∣ = k + 1 → ∞ (k → ∞) ,

the claim follows from Proposition 9.4. �

(b) Let m ∈ Q. Then3 the radius of convergence of
∑

kmXk ∈ K[[X]] is 1.
Proof From Propositions 2.4 and 2.6 we get∣∣∣ ak

ak+1

∣∣∣ =
( k

k + 1

)m

→ 1 (k → ∞) .

Thus the claim follows from Proposition 9.4. �

(c) Let a ∈ K[[X]] be defined by

a =
∑ 1

k!
Xk2

= 1 + X +
1
2!

X4 +
1
3!

X9 + · · ·

Then ρa = 1.
Proof4 The coefficients ak of a satisfy

ak =

{
1/j! , k = j2 , j ∈ N ,

0 otherwise .

From 1 ≤ j! ≤ jj , Remark I.10.10(c) and Exercise I.10.3 we get the inequality

1 ≤ j2
√

j! ≤ j2
√

jj = (jj)1/j2 = j1/j = j
√

j .

Since limj
j
√

j = 1 (see Example 4.2(d)) we conclude that ρa = limk
k
√

|ak| = 1. �

3Here (and in similar situations) we make the convention that the zeroth coefficient a0 of the
power series a has the value 0 when not otherwise stated.

4Note that Proposition 9.4 cannot be used here. Why not?



II.9 Power Series 213

9.6 Remark No general statement can be made about the convergence of a
power series on the ‘boundary’, {x ∈ K ; |x| = ρ }, of the disk of convergence.
We demonstrate this using the power series obtained by setting m = 0,−1,−2 in
Example 9.5(b):

(i)
∑

Xk , (ii)
∑ 1

k
Xk , (iii)

∑ 1
k2

Xk .

These series have radius of convergence ρ = 1. On the boundary of the disk of
convergence we have the following behavior:

(i) By Example 7.4, the geometric series
∑

xk diverges for each x ∈ K such that
|x| = 1. Thus, is in this case, dom(a) = BK.

(ii) By the Leibniz criterion of Theorem 7.8, the series
∑

(−1)k/k converges con-
ditionally in R. On the other hand, in Example 7.3 we saw that the harmonic
series

∑
1/k diverges. Thus we have −1 ∈ dom(a) and 1 /∈ dom(a).

(iii) Let x ∈ K be such that |x| = 1. Then the majorant criterion of Theorem 8.3
and Example 7.1(b) ensure the absolute convergence of

∑
k−2xk. Consequently

dom(a) = B̄K. �

Addition and Multiplication of Power Series

From Section I.8 we know that K[[X]] is a ring when addition is defined ‘termwise’
and multiplication is defined by convolution. The following proposition shows that
these operations are compatible with the addition and multiplication of the corre-
sponding functions.

9.7 Proposition Let a =
∑

akXk and b =
∑

bkXk be power series with radii of
convergence ρa and ρb respectively. Set ρ := min(ρa, ρb). Then for all x ∈ K such
that |x| < ρ we have

∞∑
k=0

akxk +
∞∑

k=0

bkxk =
∞∑

k=0

(ak + bk)xk ,

[ ∞∑
k=0

akxk
][ ∞∑

k=0

bkxk
]

=
∞∑

k=0

( k∑
j=0

ajbk−j

)
xk .

In particular, the radii of convergence ρa+b and ρa·b of the power series a + b and
a · b satisfy ρa+b ≥ ρ and ρa·b ≥ ρ.

Proof Because of Theorem 9.2, all the claims follow directly from Proposition 7.5
and Theorem 8.11. �
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The Uniqueness of Power Series Representations

Let p ∈ K[X]. In Remark I.8.19(c) we showed that if p has at least deg(p) + 1 zeros
then p is the zero polynomial. The following theorem extends this result to power
series.

9.8 Theorem Let
∑

akXk be a power series with positive radius of convergence ρa.
If there is a null sequence (yj) such that 0 < |yj | < ρa and

a(yj) =
∞∑

k=0

akyk
j = 0 , j ∈ N , (9.5)

then ak = 0 for all k ∈ N, that is, a = 0 ∈ K[[X]].

Proof (i) For an arbitrary n ∈ N, we derive an estimate of
∑

k≥n akxk. Choose
r ∈ (0, ρa) and x ∈ rB̄K. The absolute convergence of a on ρaBK implies that∣∣∣ ∞∑

k=n

akxk
∣∣∣ ≤ ∞∑

k=n

|ak| |x|k = |x|n
∞∑

k=n

|ak| |x|k−n ≤ |x|n
∞∑

j=0

|aj+n| rj .

So, for each r ∈ (0, ρa) and n ∈ N, there is some

C := C(r, n) :=
∞∑

j=0

|aj+n| rj ∈ [0,∞)

such that ∣∣∣ ∞∑
k=n

akxk
∣∣∣ ≤ C |x|n , x ∈ B̄K(0, r) . (9.6)

(ii) Since (yj) is a null sequence, there is some r ∈ (0, ρa) such that all yj are
in rB̄K. Suppose that there is some n ∈ N such that an �= 0. Then, by the well
ordering principle, there is a least n0 ∈ N such that an0 �= 0. From (9.6) we have
the inequality

|a(x) − an0x
n0 | ≤ C |x|n0+1

, x ∈ B̄K(0, r) ,

and so (9.5) implies |an0 | ≤ C |yj | for all j ∈ N. But yj → 0 and so, by Corol-
lary I.10.7, we have the contradiction an0 = 0. �

9.9 Corollary (identity theorem for power series) Let

a =
∑

akXk and b =
∑

bkXk

be power series with positive radii of convergence ρa and ρb respectively. If there
is a null sequence (yj) such that 0 < |yj | < min(ρa, ρb) and a(yj) = b(yj) for all
j ∈ N, then a = b in K[[X]], that is, ak = bk for all k ∈ N.

Proof This follows directly from Proposition 9.7 and Theorem 9.8. �
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9.10 Remarks (a) If a power series a =
∑

akXk has positive radius of conver-
gence, then, by Corollary 9.9, the coefficients ak of a are uniquely determined by a
in the disk of convergence. In other words, if a function f : dom(f) ⊆ K → K can
be represented by a power series on a disk around the origin, then this power series
is unique.

(b) The function a represented by a =
∑

akXk on ρaBK is bounded on any closed
ball rB̄K with r ∈ (0, ρa). More precisely,

sup
|x|≤r

|a(x)| ≤
∞∑

k=0

|ak| rk .

Proof This follows directly from (9.6) with n = 0. �

(c) In Section III.6 we will investigate nonzero power series which have infinitely
many zeros. Thus the hypothesis of Theorem 9.8, that the sequence of zeros con-
verges, cannot be omitted.

(d) Let a =
∑

akXk be a real power series, that is, an element of R[[X]]. Because
R[[X]] ⊆ C[[X]], a can also be considered as a complex power series. If we denote
by aC the function represented by a ∈ C[[X]], then aC ⊇ a, that is, aC is an extension
of a. In view of Theorem 9.2, the radius of convergence ρa is independent of whether
a is thought of as a real or complex power series. Hence

(−ρa, ρa) = dom(a) ∩ ρaBC ⊆ ρaBC ⊆ dom(aC) .

Thus it suffices, in fact, to consider only complex power series. If a convergent
series has real coefficients, then the corresponding function is real valued on real
arguments. �

Exercises

1 Determine the radius of convergence of the power series
∑

akXk when ak is given by
each of the following:

(a)

√
k2k

(k + 1)6
, (b) (−1)k k!

kk
, (c)

1√
1 + k2

, (d)
1√
k!

, (e)
1

kk
, (f)

(
1 +

1

k2

)k

.

2 Show that the power series a =
∑

(1 + k)Xk has radius of convergence 1 and that
a(z) = (1 − z)−2 for all |z| < 1.

3 Suppose that the power series
∑

akXk has radius of convergence ρ > 0. Show that
the series

∑
(k + 1)ak+1X

k has the same radius of convergence ρ.
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4 Suppose that
∑

ak is a divergent series in (0,∞) such that
∑

akXk has radius of
convergence 1. Define

fn :=
∞∑

k=0

ak

(
1 − 1

n

)k

, n ∈ N× .

Prove that the sequence (fn) converges to ∞. (Hint: Use the Bernoulli inequality to get
an upper bound for terms of the form 1 − (1 − 1/n)m.)

5 Suppose that a sequence (ak) in K satisfies

0 < lim |ak| ≤ lim |ak| < ∞ .

Determine the radius of convergence of
∑

akXk.

6 Show that the radius of convergence ρ of a power series
∑

akXk such that ak 
= 0 for
all k ∈ N satisfies

lim
∣∣∣ ak

ak+1

∣∣∣ ≤ ρ ≤ lim
∣∣∣ ak

ak+1

∣∣∣ .

7 A subset D of a vector space is called symmetric with respect to 0 if x ∈ D implies
−x ∈ D for all x. If D is symmetric and f : D → E is a function to a vector space E,
then f is called even (or odd) if f(x) = f(−x) (or f(x) = −f(−x)) for all x ∈ D. Now
let f : K → K be a function which can be represented by power series on a suitable disk
centered at 0. What conditions on the coefficients of this power series determine whether
f is even or odd?

8 Let a and b be power series with radii of convergence ρa and ρb respectively. Show,
by example, that ρa+b > max(ρa, ρb) and ρab > max(ρa, ρb) are possible.

9 Let a =
∑

akXk ∈ C[[X]] with a0 = 1.

(a) Show that there is some b =
∑

bkXk ∈ C[[X]] such that ab = 1 ∈ C[[X]]. Provide a
recursive algorithm for calculating the coefficients bk.

(b) Show that the radius of convergence ρb of b is positive if the radius of convergence
of a is positive.

10 Suppose that b =
∑

bkXk ∈ C[[X]] satisfies (1 − X − X2)b = 1 ∈ C[[X]].

(a) Show that the coefficients bk satisfy

b0 = 1 , b1 = 1 , bk+1 = bk + bk−1 , k ∈ N× ,

that is, (bk) is the Fibonacci sequence (see Exercise 4.9).

(b) What is the radius of convergence of b?



Chapter III

Continuous Functions

In this chapter we investigate the topological foundations of analysis and give
some of its first applications. We limit ourselves primarily to the topology of met-
ric spaces because the theory of metric spaces is the framework for a huge part
of analysis, yet is simple and concrete enough so as to minimize difficulties for
beginners. Even so, the concept of a metric space is not general enough for deeper
mathematical investigations, and so, when possible, we have provided proofs which
are valid in general topological spaces. The extent to which the theorems are true
in general topological spaces is discussed at the end of each section. These com-
ments, which can be neglected on the first reading of this book, provide the reader
with an introduction to abstract topology.

In the first section we consider continuous functions between metric spaces.
In particular, we use the results about convergent sequences from the previous
chapter to investigate continuity.

Section 2 is dedicated to the concept of openness. One key result here is the
characterization of continuous functions as functions with the property that the
preimage of each open set is open.

In the next section we discuss compact metric spaces. In particular, we show
that, for metric spaces, compactness is the same as sequential compactness. The
great importance of compactness is already apparent in the applications we present
in this section. For example, using the extreme value theorem for continuous real
valued functions on compact metric spaces, we show that all norms on Kn are
equivalent, and give a proof of the fundamental theorem of algebra.

In Section 4 we investigate connected and path connected spaces. In particu-
lar, we show that these concepts coincide for open subsets of normed vector spaces.
As an important application of connectivity, we prove a generalized version of the
intermediate value theorem.

After this excursion into abstract topology, laying the foundation for the
analytic investigations in the following chapters, we turn in the two remaining
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sections of this chapter to the study of real functions. In the short fifth section
we discuss the behavior of monotone functions of real variables and prove, in
particular, the inverse function theorem for continuous monotone functions.

In contrast to the relatively abstract nature of the first five sections of this
chapter, in the last, comparatively long, section we study the exponential function
and its relatives: the logarithm, the power and the trigonometric functions. In this
investigation we put into action practically all of the methods and theorems that
are introduced in this chapter.
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1 Continuity

Experience shows that, even though functions can, in general, be very complicated
and hard to describe, the functions that occur in applications share some important
qualitative properties. One of these is continuity. For a function f : X → Y , being
(or not being) continuous measures how ‘small changes’ in the image f(X) ⊆ Y
arise from corresponding ‘small changes’ in the domain X. For this to make sense,
the sets X and Y must be endowed with some extra structure that allows a precise
meaning for ‘small changes’. Metric spaces are the obvious candidates for sets with
this extra structure.

Elementary Properties and Examples

Let f : X → Y be a function between metric spaces1 (X, dX) and (Y, dY ). Then f is
continuous at x0 ∈ X if, for each neighborhood V of f(x0) in Y , there is a neigh-
borhood U of x0 in X such that f(U) ⊆ V .

�
�

�� �
����

�����

�

�

Hence to prove the continuity of f at x0, one supposes that an arbitrary neigh-
borhood V of f(x0) is given and then shows that there is a neighborhood U of x0

such that f(U) ⊆ V , that is, f(x) ∈ V for all x ∈ U .

The function f : X → Y is continuous if it is continuous at each point of X.
We say f is discontinuous at x0 if f is not continuous at x0. Finally f is discontinu-
ous if it is discontinuous at (at least) one point of X, that is, if f is not continuous.
The set of all continuous functions from X to Y is denoted C(X,Y ). Obviously
C(X,Y ) is a subset of Y X .

This definition of continuity uses the concept of neighborhoods and so is quite
simple. In concrete situations the following equivalent formulation is often more
useful.

1.1 Proposition A function f : X → Y is continuous at x0 ∈ X if and only if, for
each ε > 0, there is some2 δ := δ(x0, ε) > 0 with the property that

d
(
f(x0), f(x)

)
< ε for all x ∈ X such that d(x0, x) < δ . (1.1)

1We usually write d for both the metric dX in X and the metric dY in Y .
2The notation δ := δ(x0, ε) indicates that δ depends, in general, on x0 ∈ X and ε > 0.



220 III Continuous Functions

Proof ‘=⇒’ Let f be continuous at x0 and ε > 0. Then, for the neighborhood
V := BY

(
f(x0), ε

)
∈ UY

(
f(x0)

)
, there is some U ∈ UX(x0) such that f(U) ⊆ V .

By definition, there is some δ := δ(x0, ε) > 0 such that BX(x0, δ) ⊆ U . Thus

f
(
BX(x0, δ)

)
⊆ f(U) ⊆ V = BY

(
f(x0), ε

)
.

These inclusions imply (1.1).

‘⇐=’ Suppose that (1.1) is true and V ∈ UY

(
f(x0)

)
. Then there is some ε > 0

such that BY

(
f(x0), ε

)
⊆ V . Because of (1.1), there is some δ > 0 such that the im-

age of U := BX(x0, δ) is contained in BY

(
f(x0), ε

)
, and hence also in V . Thus f is

continuous at x0. �

1.2 Corollary Let E and F be normed vector spaces and X ⊆ E. Then f : X → F
is continuous at x0 ∈ X if and only if, for each ε > 0, there is some δ := δ(x0, ε) > 0
satisfying

‖f(x) − f(x0)‖F < ε for all x ∈ X such that ‖x − x0‖E < δ .

Proof This follows directly from the definition of the metric in a normed vector
space. �

Suppose that E := F := R and the function f : X → R is given by the fol-
lowing graph.
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Then f is continuous at x0 since, for each ε > 0, there is some δ > 0 such that the
image of U := (x0 − δ, x0 + δ) is contained in V :=

(
f(x0) − ε, f(x0) + ε

)
.

On the other hand, there is no δ > 0 such that |f(x) − f(x1)| < ε1 for all
x ∈ (x1, x1 + δ), and so f is discontinuous at x1.

1.3 Examples In the following examples, X and Y are metric spaces.

(a) The square root function R+ → R+, x �→ √
x is continuous.

Proof Let x0 ∈ R+ and ε > 0. If x0 = 0, we set δ := ε2 > 0. Then∣∣√x − √
x0

∣∣ =
√

x < ε , x ∈ [0, δ) .

Otherwise x0 > 0, and we choose δ := δ(x0, ε) := min
{
ε
√

x0, x0

}
. Then

∣∣√x − √
x0

∣∣ =
∣∣∣ x − x0√

x +
√

x0

∣∣∣ <
|x − x0|√

x0
≤ ε

for all x ∈ (x0 − δ, x0 + δ). �

(b) The floor function  ·! : R → R, x �→  x! := max{ k ∈ Z ; k ≤ x } is continu-
ous at x0 ∈ R\Z and discontinuous at x0 ∈ Z.
Proof If x0 ∈ R\Z, then there is a unique k ∈ Z such that x0 ∈ (k, k + 1). If we choose
δ := min{x0 − k, k + 1 − x0} > 0, then we clearly have∣∣ x! −  x0!

∣∣ = 0 , x ∈ (x0 − δ, x0 + δ) .

Thus the floor function  ·! is continuous at x0.

Otherwise, for x0 ∈ Z, we have the inequality
∣∣ x! −  x0!

∣∣ =  x0! −  x! ≥ 1 for all

x < x0. So there is no neighborhood U of x0 such that
∣∣ x! −  x0!

∣∣ < 1/2 for all x ∈ U .

That is,  ·! is discontinuous at x0. �

(c) The Dirichlet function f : R → R defined by

f(x) :=
{

1 , x ∈ Q ,

0 , x ∈ R\Q ,

is nowhere continuous, that is, it is discontinuous at every x0 ∈ R.

Proof Let x0 ∈ R. Since both the rational numbers Q and the irrational numbers R\Q
are dense in R (see Propositions I.10.8 and I.10.11), in each neighborhood of x0 there is

some x such that |f(x) − f(x0)| = 1. Thus f is discontinuous at x0. �

(d) Suppose that f : X → R is continuous at x0 ∈ X and f(x0) > 0. Then there
is a neighborhood U of x0 such that f(x) > 0 for all x ∈ U .
Proof Set ε := f(x0)/2 > 0. Then there is a neighborhood U of x0 such that

f(x0) − f(x) ≤ |f(x) − f(x0)| < ε =
f(x0)

2
, x ∈ U .

Thus we have f(x) > f(x0)/2 > 0 for all x ∈ U . �
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(e) A function f : X → Y is Lipschitz continuous with Lipschitz constant α > 0 if

d
(
f(x), f(y)

)
≤ αd(x, y) , x, y ∈ X .

Every Lipschitz continuous function is continuous.3

Proof Given x0 ∈ X and ε > 0, set δ := ε/α. The continuity of f then follows from

Proposition 1.1. Note that, in this case, δ is independent of x0 ∈ X. �

(f ) Any constant function X → Y , x �→ y0 is Lipschitz continuous.

(g) The identity function id : X → X, x �→ x is Lipschitz continuous.

(h) If E1, . . . , Em are normed vector spaces, then E := E1 × · · · × Em is a normed
vector space with respect to the product norm ‖·‖∞ of Example II.3.3(c). The
canonical projections

prk : E → Ek , x = (x1, . . . , xm) �→ xk , 1 ≤ k ≤ m ,

are Lipschitz continuous. In particular, the projections prk : Km → K are Lipschitz
continuous.

Proof For x = (x1, . . . , xm) and y = (y1, . . . , ym), we have

‖ prk(x) − prk(y)‖Ek = ‖xk − yk‖Ek ≤ ‖x − y‖∞ ,

which implies the Lipschitz continuity of prk. For the remaining claim, see Proposi-

tion II.3.12. �

(i) Each of the functions z �→ Re(z), z �→ Im(z) and z �→ z is Lipschitz continuous
on C.

Proof This follows from the inequality

max
{
|Re(z1) − Re(z2)|, | Im(z1) − Im(z2)|

}
≤ |z1 − z2| = |z1 − z2| , z1, z2 ∈ C ,

which comes from Proposition I.11.4. �

(j) Let E be a normed vector space. Then the norm function

‖·‖ : E → R , x �→ ‖x‖

is Lipschitz continuous.

Proof The reversed triangle inequality,∣∣ ‖x‖ − ‖y‖
∣∣ ≤ ‖x − y‖ , x, y ∈ E ,

implies the claim. �

3The converse is not true. See Exercise 18.
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(k) If A ⊆ X and f : X → Y is continuous at x0 ∈ A, then f |A : A → Y is con-
tinuous at x0. Here A has the metric induced from X.

Proof This follows directly from the continuity of f and the definition of the induced

metric. �

(l) Let M ⊆ X be a nonempty subset of X. For each x ∈ X,

d(x,M) := inf
m∈M

d(x,m)

is called the distance from x to M . The distance function

d(·,M) : X → R , x �→ d(x,M)

is Lipschitz continuous.
Proof Let x, y ∈ X. From the triangle inequality we have d(x, m) ≤ d(x, y) + d(y, m)
for each m ∈ M . Since d(x, M) ≤ d(x, m) for all m ∈ M this implies

d(x, M) ≤ d(x, y) + d(y, m) , m ∈ M .

Taking the infimum over all m ∈ M yields

d(x, M) ≤ d(x, y) + d(y, M) .

Combining this equation and the same equation with x and y interchanged gives

|d(x, M) − d(y, M)| ≤ d(x, y) ,

which shows the Lipschitz continuity of d(·, M). �

(m) For any inner product space
(
E, (· | ·)

)
, the scalar product (· | ·) : E × E → K

is continuous.
Proof Let (x, y), (x0, y0) ∈ E × E and ε ∈ (0, 1). From the triangle and Cauchy-Schwarz
inequalities we get∣∣(x |y) − (x0 |y0)

∣∣ ≤ ∣∣(x − x0 |y)
∣∣ +

∣∣(x0 |y − y0)
∣∣

≤ ‖x − x0‖ ‖y‖ + ‖x0‖ ‖y − y0‖
≤ d

(
(x, y), (x0, y0)

)
(‖y‖ + ‖x0‖)

≤ d
(
(x, y), (x0, y0)

)
(‖x0‖ + ‖y0‖ + ‖y − y0‖) ,

where d is the product metric. Set M := max{1, ‖x0‖, ‖y0‖} and δ := ε/(1 + 2M). Then,
for all (x, y) ∈ BE×E

(
(x0, y0), δ

)
, it follows from the above inequality that∣∣(x |y) − (x0 |y0)

∣∣ < δ(2M + δ) < ε ,

which proves the continuity of the scalar product at the point (x0, y0). �

(n) Let E and F be normed vector spaces and X ⊆ E. Then the continuity of
f : X → F at x0 ∈ X is independent of the choice of equivalent norms on E and
on F .

Proof This follows easily from Corollary 1.2. �
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(o) A function f between metric spaces X and Y is isometric (or an isometry) if
d
(
f(x), f(x′)

)
= d(x, x′) for all x, x′ ∈ X, that is, if f ‘preserves distances’. Clearly,

such a function is Lipschitz continuous and is a bijection from X to its image f(X).
If E and F are normed vector spaces and T : E → F is linear, then T is isometric
if and only if ‖Tx‖ = ‖x‖ for all x ∈ E. If, in addition, T is surjective then T is
an isometric isomorphism from E to F , and T−1 is also isometric. �

Sequential Continuity

The neighborhood concept is central for both the definition of continuity and
the definition of the convergence of a sequence. This suggests that the continuity
of a function could be defined using sequences: A function f : X → Y between
metric spaces X and Y is called sequentially continuous at x ∈ X, if, for every
sequence (xk) in X such that limxk = x, we have lim f(xk) = f(x).

1.4 Theorem (sequence criterion) Let X, Y be metric spaces. Then a function
f : X → Y is continuous at x if and only if it is sequentially continuous at x.

Proof ‘=⇒’ Let (xk) be a sequence in X such that xk → x. Let V be a neighbor-
hood of f(x) in Y . By supposition there is a neighborhood U of x in X such that
f(U) ⊆ V . Since xk → x, there is some N ∈ N such that xk ∈ U for all k ≥ N .
Thus f(xk) ∈ V for all k ≥ N , that is, f(xk) converges to f(x).

‘⇐=’ Suppose, to the contrary, that f is sequentially continuous but discontin-
uous at x. Then there is a neighborhood V of f(x) such that no neighborhood U
of x satisfies f(U) ⊆ V . In particular, we have

f
(
B(x, 1/k)

)
∩ V c �= ∅ , k ∈ N× .

Hence, for each k ∈ N×, we can choose some xk ∈ X such that d(x, xk) < 1/k and
f(xk) /∈ V . By construction, (xk) converges to x but

(
f(xk)

)
does not converge

to f(x). This contradicts the sequential continuity of f . �

Let f : X → Y be a continuous function between metric spaces. Then for any
convergent sequence (xk) in X we have

lim f(xk) = f(limxk) .

Thus one says that ‘continuous functions respect the taking of limits’.

Addition and Multiplication of Continuous Functions

Theorem 1.4 makes it possible to apply theorems about convergent sequences to
continuous functions. To do so, it is first useful to introduce a few definitions.
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Let M be an arbitrary set and F a vector space. Let f and g be functions
with dom(f),dom(g) ⊆ M and values in F . Then the sum of f and g is the func-
tion f + g defined by

f + g : dom(f + g) := dom(f) ∩ dom(g) → F , x �→ f(x) + g(x) .

Similarly, for λ ∈ K, we define λf by4

λf : dom(f) → F , x �→ λf(x) .

Finally, in the special case F = K, we set

dom(f · g) := dom(f) ∩ dom(g) ,

dom(f/g) := dom(f) ∩
{

x ∈ dom(g) ; g(x) �= 0
}

,

and define the product and quotient of f and g by

f · g : dom(f · g) → K , x �→ f(x) · g(x)

and
f/g : dom(f/g) → K , x �→ f(x)

/
g(x) .

1.5 Proposition Suppose that X is a metric space, F is a normed vector space, and

f : dom(f) ⊆ X → F , g : dom(g) ⊆ X → F

are continuous at x0 ∈ dom(f) ∩ dom(g).
(i) f + g and λf are continuous at x0.

(ii) If F = K, then f · g is continuous at x0.

(iii) If F = K and g(x0) �= 0, then f/g is continuous at x0.

Proof These claims follow from the sequence criterion of Theorem 1.4, Propo-
sition II.2.2 and Remark II.3.1(c), together with Propositions II.2.4(ii) and II.2.6
and Example 1.3(d). �

1.6 Corollary

(i) Rational functions are continuous.

(ii) Polynomials in n variables are continuous (on Kn).
(iii) C(X,F ) is a subspace of FX , the vector space of continuous functions5

from X to F .

Proof Claims (i) and (iii) are immediate consequences of Proposition 1.5. For (ii),
Example 1.3(h) is also needed. �

4The definitions of f + g and λf coincide with those of Example I.12.3(e) if f and g are
defined on all of M .

5When no confusion is possible, we often write C(X) instead of C(X, K).
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1.7 Proposition Let a =
∑

akXk be a power series with positive radius of con-
vergence ρa. Then the function a represented by a is continuous on ρaB.

Proof Let x0 ∈ ρaBC, ε > 0, and |x0| < r < ρa. Since, by Theorem II.9.2, the
series

∑ |ak| rk converges, there is some K ∈ N such that

∞∑
k=K+1

|ak| rk < ε/4 . (1.2)

Thus, for |x| ≤ r, we have

|a(x) − a(x0)| ≤
∣∣∣ K∑
k=0

akxk −
K∑

k=0

akxk
0

∣∣∣ +
∞∑

k=K+1

|ak| |x|k +
∞∑

k=K+1

|ak| |x0|k

≤ |p(x) − p(x0)| + 2
∞∑

k=K+1

|ak| rk ,

(1.3)

where we have set

p :=
K∑

k=0

akXk ∈ C[X] .

By Corollary 1.6, there is some δ ∈ (0, r − |x0|) such that

|p(x) − p(x0)| < ε/2 , |x − x0| < δ .

Together with (1.2) and (1.3), this implies |a(x) − a(x0)| < ε for all |x − x0| < δ.
Since B(x0, δ) ⊆ ρaBC, we have proved the claim. �

The following important theorem often provides a simple proof of the conti-
nuity of certain functions. This we illustrate in the examples following the theorem.

1.8 Theorem (continuity of compositions) Let X, Y and Z be metric spaces.
Suppose that f : X → Y is continuous at x ∈ X, and g : Y → Z is continuous at
f(x) ∈ Y . Then the composition g ◦ f : X → Z is continuous at x.

Proof Let W be a neighborhood of g ◦ f(x) = g
(
f(x)

)
in Z. Because of the con-

tinuity of g at f(x), there is a neighborhood V of f(x) in Y such that g(V ) ⊆ W .
Since f is continuous at x, there is a neighborhood U of x in X such that f(U) ⊆ V .
Thus

g ◦ f(U) = g
(
f(U)

)
⊆ g(V ) ⊆ W ,

from which the claim follows. �
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1.9 Examples In the following, X is a metric space and E is a normed vector
space.

(a) Let f : X → E be continuous at x0. Then the norm of f ,

‖f‖ : X → R , x �→ ‖f(x)‖ ,

is continuous at x0.

Proof By Example 1.3(j), ‖·‖ : E → R is Lipschitz continuous. Since ‖f‖ = ‖·‖ ◦ f , the

claim follows from Theorem 1.8. �

(b) Let g : R → X be continuous. Then the function ĝ : E → X, x �→ g(‖x‖) is
continuous.

Proof It suffices to note that ĝ = g ◦ ‖·‖ is a composition of continuous functions. �

(c) The converse of Theorem 1.8 is false, that is, the continuity of g ◦ f does not
imply that f or g is continuous.
Proof Set Z := [−3/2,−1/2] ∪ (1/2, 3/2] and I := [−1, 1]. Define functions f : Z → R
and g : I → R by

f(x) :=

{
x + 1/2 , x ∈ [−3/2,−1/2] ,

x − 1/2 , x ∈ (1/2, 3/2] ,

and

g(y) :=

{
y − 1/2 , y ∈ [−1, 0] ,

y + 1/2 , y ∈ (0, 1] .

It is not difficult to check that f : Z → R is continuous and g : I → R is discontinuous

at 0, whereas the compositions f ◦ g = idI and g ◦ f = idZ are both continuous. We leave

the reader the task of constructing a similar example in which f is also discontinuous. �

(d) The function f : R → R, x �→ 1
/√

1 + x2 is continuous.

Proof Since 1
/√

1 + x2 =
√

1/(1 + x2), the claim follows from Corollary 1.6.(i), Propo-

sition 1.5.(iii), Theorem 1.8 and Example 1.3(a). �

(e) The exponential function exp : C → C is continuous.

Proof This follows from Proposition 1.7 and Example II.9.5(a). �

1.10 Proposition Let X be a metric space. Then a function f = (f1, . . . , fm)
from X to Km is continuous at x if and only if fk : X → K is continuous at x for
each k. In particular, f : X → C is continuous at x if and only if Re f and Im f
are continuous at x.

Proof Let (xn) be a sequence in X such that xn → x. From Proposition II.3.14
we have

f(xn) → f(x) ⇐⇒ fk(xn) → fk(x) , k = 1, . . . , m .

The claim now follows from the sequence criterion. �
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One-Sided Continuity

Let X be a subset of R and x0 ∈ X. The order structure of R allows us to con-
sider one-sided neighborhoods of x0. Specifically, for δ > 0, the set X ∩ (x0 − δ, x0]
(or X ∩ [x0, x0 + δ)) is called a left (or right) δ-neighborhood of x0.

Now let Y be a metric space. Then f : X → Y is left (or right) continuous
at x0, if, for each neighborhood V of f(x0) in Y , there is some δ > 0 such that
f
(
X ∩ (x0 − δ, x0]

)
⊆ V (or f

(
X ∩ [x0, x0 + δ)

)
⊆ V ).

As in Proposition 1.1, it suffices to consider ε-neighborhoods of f(x0) in Y ,
that is, f : X → Y is left (or right) continuous at x0 if and only if, for each ε > 0,
there is some δ > 0 such that d

(
f(x0), f(x)

)
< ε for all x in the left (or right)

δ-neighborhood of x.
It is clear that continuous functions are left and right continuous. On the other

hand, one-sided continuity does not imply continuity, as we see in the following
examples.

1.11 Examples (a) The floor function  ·! : R → R is continuous at x ∈ R\Z and
right, but not left, continuous at x ∈ Z.

(b) The function

sign : R → R , x �→

⎧⎪⎨⎪⎩
−1 , x < 0 ,

0 , x = 0 ,

1 , x > 0 ,

is neither left nor right continuous at 0. �

The next proposition generalizes the sequence criterion of Theorem 1.4 to
one-sided continuous functions.

1.12 Proposition Let Y be a metric space, X ⊆ R, and f : X → Y . Then the
following are equivalent:

(i) f is left (or right) continuous at x ∈ X.

(ii) For each sequence (xn) in X such that xn → x and xn ≤ x (or xn ≥ x), the
sequence

(
f(xn)

)
converges to f(x).

Proof The proof of this claim is similar to the proof of Theorem 1.4. �

One-sided continuity can also be used to characterize continuity.

1.13 Proposition Let Y be a metric space, X ⊆ R, and f : X → Y . Then the
following are equivalent:

(i) f is continuous at x0.

(ii) f is left and right continuous at x0.
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Proof The implication ‘=⇒’ is clear.

‘⇐=’ Let ε > 0. By the left and right continuity of f at x0, there are posi-
tive numbers δ− and δ+ such that d

(
f(x), f(x0)

)
< ε for all x ∈ X ∩ (x0 − δ−, x0]

and x ∈ X ∩ [x0, x0 + δ+). Set δ := min{δ−, δ+}. Then d
(
f(x), f(x0)

)
< ε for all

x ∈ X ∩ (x0 − δ, x0 + δ). Therefore f is continuous at x0. �

Exercises

1 The function zigzag : R → R is defined by

zigzag(x) := | x + 1/2! − x| , x ∈ R ,

where  ·! is the floor function. Sketch the graph of zigzag and show the following:

(a) zigzag(x) = |x| for all |x| ≤ 1/2.

(b) zigzag(x + n) = zigzag(x), x ∈ R, n ∈ Z.

(c) zigzag is continuous.

2 Let q ∈ Q. Prove that the function (0,∞) → (0,∞), x �→ xq is continuous.6 (Hint:
See Exercise II.2.7.)

3 Let ϕ : R → (−1, 1), x �→ x/(1 + |x|). Show that ϕ is bijective and that ϕ and ϕ−1

are continuous.

4 Prove or disprove that the function

f : Q → R , x �→
{

0 , x <
√

2 ,

1 , x >
√

2 ,

is continuous.

5 Let d1 and d2 be metrics on X, and Xj := (X, dj), j = 1, 2. Then d1 is stronger than d2

if UX1(x) ⊇ UX2(x) for each x ∈ X, that is, if each point has more d1 neighborhoods than
d2 neighborhoods. In this case, one says also that d2 is weaker than d1.

Show the following:

(a) d1 is stronger than d2 if and only if the identity function i : X1 → X2, x �→ x is
continuous.

(b) d1 and d2 are equivalent if and only if d1 is both stronger and weaker than d2, that is,
for each x ∈ X, UX1(x) = UX2(x).

6 Let f : R → R be a continuous7 homomorphism of the additive group (R, +). Show
that f is linear, that is, there is some a ∈ R such that f(x) = ax, x ∈ R.
(Hint: Show that f(q) = qf(1) for all q ∈ Q and use Proposition I.10.8.)

6In Section 6 we investigate the function x �→ xq in more generality.
7It can be proved that discontinuous homomorphisms of (R, +) exist (see Volume III, Exer-

cise IX.5.6).
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7 Let f : R → R be defined by

f(x) :=

⎧⎪⎨⎪⎩
−1 , x ≥ 1 ,

1/n , 1/(n + 1) ≤ x < 1/n , n ∈ N× ,

0 , x ≤ 0 .

Where is f continuous? left continuous? right continuous?

8 Suppose that X is a metric space and f, g ∈ RX are continuous at x0. Prove or disprove
that8

|f | , f+ := 0 ∨ f , f− := 0 ∨ (−f) , f ∨ g , f ∧ g (1.4)

are continuous at x0. (Hint: Example 1.3(j) and Exercise I.8.11.)

9 Let f : R → R and g : R → R be defined by

f(x) :=

{
1 , x rational ,

−1 , x irrational ,
g(x) :=

{
x , x rational ,

−x , x irrational .

Where are the functions f , g, |f |, |g| and f · g continuous?

10 Let f : R → R be defined by

f(x) :=

{
1/n , x ∈ Q and x = m/n in lowest terms ,

0 , x ∈ R\Q .

Show that f is continuous at each irrational number and discontinuous at each rational
number.9 (Hint: For each x ∈ Q there is, by Proposition I.10.11, a sequence xn ∈ R\Q
such that xn → x. So f cannot be continuous at x.
Let x ∈ R\Q and ε > 0. Then there are only finitely many n ∈ N such that n ≤ 1/ε. Thus
there is some δ > 0 such that no q = m/n with n ≤ 1/ε is in (x − δ, x + δ). That is, for
y = m/n ∈ (x − δ, x + δ), we have f(y) = f(m/n) = 1/n < ε.)

11 Consider the function

f : R2 → R , (x, y) �→
{

xy/(x2 + y2) , (x, y) 
= (0, 0) ,

0 , (x, y) = (0, 0) ,

and, for a fixed x0 ∈ R, define

f1 : R → R , x �→ f(x, x0) , f2 : R → R , x �→ f(x0, x) .

Prove the following:

(a) f1 and f2 are continuous.

(b) f is continuous on R2
∖{

(0, 0)
}

and discontinuous at (0, 0). (Hint: For a null se-
quence (xn) consider f(xn, xn).)

12 Show that any linear function from Kn to Km is Lipschitz continuous. (Hint: Use
Proposition II.3.12 with suitable norms.)

8See Example I.4.4(c).
9It can be shown that there is no function from R to R which is continuous at each rational

number and discontinuous at each irrational number (see Exercise V.4.5).
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13 Suppose that V and W are normed vector spaces and f : V → W is a continuous
group homomorphism from (V, +) to (W, +). Prove that f is linear. (Hint: If K = R,
x ∈ V and q ∈ Q, then f(qx) = qf(x). See also Exercise 6.)

14 Let
(
E, (· | ·)

)
be an inner product space and x0 ∈ E. Show that the functions

E → K , x �→ (x |x0) , E → K , x �→ (x0 |x)

are continuous.

15 Let A ∈ End(Kn). Prove that the function

Kn → K , x �→ (Ax |x)

is continuous. (Hint: Use Exercise 12 and the Cauchy-Schwarz inequality.)

16 Let n ∈ N×. The determinant of a matrix A = [ajk] ∈ Kn×n is defined by (see Exer-
cise I.9.6)

det A =
∑

σ∈Sn

(sign σ)a1σ(1) · · · · · anσ(n) .

Show that the function
Kn×n → K , A �→ det A

is continuous (see Exercise II.3.14). (Hint: Use the bijection

Km×n → Kmn ,

⎡⎢⎣ a11, . . . , a1n

...
...

am1, . . . , amn

⎤⎥⎦ �→ (a11, . . . , a1n, a21, . . . , amn)

to define the natural topology on Km×n. )

17 Let X and Y be metric spaces and f : X → Y . For x ∈ X, the function

ωf (x, ·) : (0,∞) → R , ε �→ sup
y,z∈B(x,ε)

d
(
f(y), f(z)

)
is called the modulus of continuity of f . Set

ωf (x) := inf
ε>0

ωf (x, ε) .

Show that f is continuous at x if and only if ωf (x) = 0.

18 Show that the square root function w : R+ → R, x �→ √
x is continuous but not

Lipschitz continuous. Show that w | [a,∞) is Lipschitz continuous for each a > 0.
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2 The Fundamentals of Topology

For a deeper understanding of continuous functions, we introduce in this section
some of the basic concepts of topological spaces. The main result is Theorem 2.20
which characterizes continuous functions as structure preserving functions between
topological spaces.

Open Sets

In the following, X := (X, d) is a metric space. An element a of a subset A of X
is called an interior point of A if there is a neighborhood U of a such that U ⊆ A.
The set A is called open if every point of A is an interior point.

2.1 Remarks (a) Clearly, a is an interior point of A if and only if there is some
ε > 0 such that B(a, ε) ⊆ A.

(b) A is open if and only if A is a neighborhood of each of its points.

2.2 Example The open ball B(a, r) is open.

Proof For x0 ∈ B(a, r), set s := d(x0, a). Then
ε := r − s is positive. For all x ∈ B(x0, ε) we
have

d(x, a) ≤ d(x, x0) + d(x0, a) < ε + s = r ,

and so B(x0, ε) is contained in B(a, r). This

shows that x0 is an interior point of B(a, r). �

�

�

�

��

�

2.3 Remarks (a) The concepts ‘interior point’ and ‘open set’ depend on the
surrounding metric space X. It is sometimes useful to make this explicit by saying
‘a is an interior point of A with respect to X’, or ‘A is open in X’.

For example, an open ball in R, that is, an open interval J , is open in R by
the preceding example. However, if we consider R as embedded in R2, then J is
not open in R2.

(b) Let X = (X, ‖·‖) be a normed vector space and ‖·‖1 and ‖·‖ equivalent norms
on X. Then, by Remark II.3.13(d),

A is open in (X, ‖·‖) ⇐⇒ A is open in (X, ‖·‖1) .

Thus if A is open with respect to a particular norm, it is open with respect to all
equivalent norms.

(c) It follows from Example 2.2 that every point in a metric space has an open
neighborhood. �
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2.4 Proposition Let T := {O ⊆ X ; O is open } be a family of open sets.
(i) ∅, X ∈ T .
(ii) If Oα ∈ T for all α ∈ A, then

⋃
α Oα ∈ T . That is, arbitrary unions of open

sets are open.
(iii) If O0, . . . , On ∈ T , then

⋂n
k=0 Ok ∈ T . That is, finite intersections of open

sets are open.

Proof (i) It is obvious that X is in T , and, from Remark I.2.1(a), ∅ is also open.
(ii) Let A be an index set, Oα ∈ T for all α ∈ A, and x0 a point of

⋃
α Oα.

Then there is some α0 ∈ A such that x0 ∈ Oα0 . Since Oα0 is open, there is some
neighborhood U of x0 in X such that U ⊆ Oα0 ⊆

⋃
α Oα. Hence

⋃
α Oα is open.

(iii) Let O0, . . . , On ∈ T and x0 ∈ ⋂n
k=0 Ok. Then there are positive numbers

εk such that B(x0, εk) ⊆ Ok for k = 0, . . . , n. Set ε := min{ε0, . . . , εn} > 0. Then
B(x0, ε) is contained in each Ok, and so B(x0, ε) ⊆

⋂n
k=0 Ok. �

Properties (i)–(iii) of Proposition 2.4 involve the set operations
⋃

and
⋂

, but
do not involve the metric. This suggests the following generalization of the concept
of a metric space: Let M be a set and T ⊆ P(M), a set of subsets satisfying (i)–(iii).
Then T is called a topology on M , and the elements of T are called the open sets
with respect to T . Finally the pair (M, T ) is a called a topological space.

2.5 Remarks (a) Let T ⊆ P(X) be the family of sets of Proposition 2.4. Then T is
called the topology on X induced from the metric d. If X is a normed vector space
with metric induced from the norm, then T is called the norm topology.

(b) Let (X, ‖·‖) be a normed vector space, and ‖·‖1 a norm on X which is equiv-
alent to ‖·‖. Let T‖·‖ and T‖·‖1 be the norm topologies induced from (X, ‖·‖)
and (X, ‖·‖1). By Remark 2.3(b), T‖·‖ and T‖·‖1 coincide, that is, equivalent
norms induce the same topology on X. �

Closed Sets

A subset A of the metric space X is called closed in X if Ac is open1 in X.

2.6 Proposition

(i) ∅ and X are closed.

(ii) Arbitrary intersections of closed sets are closed.

(iii) Finite unions of closed sets are closed.

Proof These claims follow easily from Proposition 2.4 and Proposition I.2.7(iii). �

1Note that A not being open does not imply that A is closed. For example, let X := R and
A := [0, 1). Then A is neither open nor closed in R.
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2.7 Remarks (a) Infinite intersections of open sets need not be open.

Proof In R we have, for example,
⋂∞

n=1 B(0, 1/n) = {0}. �

(b) Infinite unions of closed sets need not be closed.

Proof For example,
⋃∞

n=1

[
B(0, 1/n)

]c
= R× in R. �

Let A ⊆ X and x ∈ X. We call x an accumulation point of A if every neigh-
borhood of x in X has a nonempty intersection with A. The element x ∈ X is
called a limit point of A if every neighborhood of x in X contains a point of A
other than x. Finally we set

A := {x ∈ X ; x is an accumulation point of A } .

Clearly any element of A and any limit point of A is an accumulation point of A.
Indeed A is the union of A and the set of limit points of A.

2.8 Proposition Let A be a subset of a metric space X.

(i) A ⊆ A.

(ii) A = A ⇐⇒ A is closed.

Proof Claim (i) is clear.

(ii) ‘=⇒’ Let x ∈ Ac = (A)c. Since x is not an accumulation point of A, there
is some U ∈ U(x) such that U ∩ A = ∅. Thus U ⊆ Ac, that is, x is an interior point
of Ac. Consequently Ac is open and A is closed in X.

‘⇐=’ Let A be closed in X. Then Ac is open in X. For any x ∈ Ac, there
is some U ∈ U(x) such that U ⊆ Ac. This means that U and A are disjoint, and
so x is not an accumulation point of A, that is, x ∈ (A)c. Hence we have proved the
inclusion Ac ⊆ (A)c, which is equivalent to A ⊆ A. With (i), this implies A = A. �

The limit points of a set A are the limits of certain sequences in A.

2.9 Proposition An element x of X is a limit point of A if and only if there is a
sequence (xk) in A\{x} which converges to x.

Proof Let x be a limit point of A. For each k ∈ N×, choose some element xk �= x
in B(x, 1/k). Then (xk) is a sequence in A\{x} such that xk → x.

Conversely, let (xk) be a sequence in A\{x} such that xk → x. Then, for
each neighborhood U of x, there is some k ∈ N such that xk ∈ U . This means that
xk ∈ U ∩

(
A\{x}

)
. Hence each neighborhood of x contains an element of A other

than x. �
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2.10 Corollary An element x of X is an accumulation point of A if and only if
there is a sequence (xk) in A such that xk → x.

Proof If x is a limit point, then the claim follows from Proposition 2.9. Other-
wise, if x is an accumulation point, but not a limit point of A, then there is a
neighborhood U of x such that U ∩ A = {x}. Thus x is in A, and the constant
sequence (xk) with xk = x for all k ∈ N has the desired property. �

We can now characterize closed sets using convergent sequences.

2.11 Proposition For A ⊆ X, the following are equivalent:
(i) A is closed.

(ii) A contains all its limit points.

(iii) Every sequence in A which converges in X, has its limit in A.

Proof ‘(i)=⇒(ii)’ Any limit point of A is also an accumulation point and so is
contained in A. By (i) and Proposition 2.8, A = A, and so all limit points are
in A.

‘(ii)=⇒(iii)’ Let (xk) be a sequence in A such that xk → x in X. Then, by
Corollary 2.10, x is an accumulation point of A. This means that, either x is in A,
or x is a limit point of A, so, by assumption, x is in A.

‘(iii)=⇒(i)’ This implication follows from Proposition 2.8 and Corollary 2.10. �

The Closure of a Set

Let A be a subset of a metric space X. Define the closure of A by

cl(A) := clX(A) :=
⋂

B∈M

B

with
M := {B ⊆ X ; B ⊇ A and B is closed in X } .

Since X is closed and contains A, the set M is nonempty and the definition makes
sense. By Proposition 2.6(ii), cl(A) is closed. Since A ⊆ cl(A), the closure of A is
precisely the smallest closed set which contains A, that is, any closed set which
contains A, also contains cl(A).

In the next proposition we show that the closure of A is simply the set of all
accumulation points of A, that is, A = cl(A).

2.12 Proposition Let A be a subset of a metric space X. Then A = cl(A).

Proof (i) First we prove that A ⊆ cl(A). If cl(A) = X, the statement is clearly
true. Suppose otherwise that cl(A) �= X and x ∈ U :=

(
cl(A)

)c. Since cl(A) is
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closed, U is open and hence is a neighborhood of x. It follows from A ⊆ cl(A)
that A and U are disjoint, that is, x is not an accumulation point of A. This
implies that

(
cl(A)

)c ⊆ (A)c and so A ⊆ cl(A).

(ii) We now prove the opposite inclusion, cl(A) ⊆ A. Once again the case
A = X is trivial. If x /∈ A, then there is an open neighborhood U of x such that
U ∩ A = ∅, that is, A is contained in the closed set U c. Thus x ∈ U ⊆

(
cl(A)

)c and
we have proved that (A)c ⊆

(
cl(A)

)c, and equivalently cl(A) ⊆ A. �

The following corollary collects some easy consequences of the fact that A is
the smallest closed set which contains A.

2.13 Corollary Let A and B be subsets of X.

(i) A ⊆ B =⇒ A ⊆ B.

(ii) (A) = A.

(iii) A ∪ B = A ∪ B.

Proof Claims (i) and (ii) follow directly from Proposition 2.12.

To prove (iii), we note first that, by Propositions 2.6(iii) and 2.12, A ∪ B is
closed. Since A ∪ B contains A ∪ B, Proposition 2.12 implies that A ∪ B ⊆ A ∪ B.
On the other hand A ∪ B is also closed. Since A ⊆ A ∪ B and B ⊆ A ∪ B, we get
the inclusions A ⊆ A ∪ B and B ⊆ A ∪ B. Together, these imply A ∪ B ⊆ A ∪ B. �

This corollary implies that the function h : P(X) → P(X), A �→ A is in-
creasing and idempotent, that is, h ◦ h = h.

The Interior of a Set

The relationship between closed sets, accumulation points and the closure has a
parallel for open sets which we describe in this section. Taking the role of the
closure is the interior of A, defined by

int(A) := intX(A) :=
⋃

{O ⊆ A ; O is open in X } .

Clearly int(A) is a subset of A, and, by Proposition 2.4(ii), int(A) is open. Thus
int(A) is the largest open subset of A. The role of accumulation points is taken by
interior points and we define

Å := { a ∈ A ; a is an interior point of A } .

Then, corresponding to Proposition 2.12, we have the following:
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2.14 Proposition Let A be a subset of a metric space X. Then Å = int(A).

Proof (i) For each a ∈ Å, there is an open neighborhood U of a such that U ⊆ A.
Thus a ∈ U ⊆ int(A), and so we have proved that Å ⊆ int(A).

(ii) Conversely, let a ∈ int(A). Then there is an open subset O of A such that
a ∈ O. Thus O is a neighborhood of a which is contained in A, that is, a is an
interior point of A. Thus we have the inclusion int(A) ⊆ Å. �

The following corollary is an immediate consequence of this proposition.

2.15 Corollary Let A and B be subsets of X.

(i) A ⊆ B =⇒ Å ⊆ B̊.

(ii)
(
Å
)◦ = Å.

(iii) A is open ⇐⇒ A = Å.

Similar to the case of the closure, the function P(X) → P(X), A �→ Å is increasing
and idempotent.

The Boundary of a Set

Intuitively, we expect that the boundary of a disk in the plane is the circle which
encloses it. This notion of what the boundary should be can be made precise
using the concepts of open and closed sets. Specifically, for a subset A of a metric
space X, the (topological) boundary of A is defined by ∂A := A\Å. For example,
the boundary of X is empty, that is, ∂X = ∅.

2.16 Proposition Let A be a subset of X.

(i) ∂A is closed.

(ii) x is in ∂A if and only if every neighborhood of x has nonempty intersection
with both A and Ac.

Proof These claims follow immediately from ∂A = A ∩ (Å)c. �

The Hausdorff Condition

The following proposition shows that, in metric spaces, any two distinct points
have disjoint neighborhoods.

2.17 Proposition Let x, y ∈ X be such that x �= y. Then there are a neighbor-
hood U of x and a neighborhood V of y such that U ∩ V = ∅.
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Proof Since x �= y, we have ε := d(x, y)/2 > 0. Set U := B(x, ε) and V := B(y, ε).
Suppose that U ∩ V �= ∅ so that there is some z ∈ U ∩ V . Then, by the triangle
inequality,

2ε = d(x, y) ≤ d(x, z) + d(z, y) < ε + ε = 2ε ,

a contradiction. Thus U and V are disjoint. �

The claim of Proposition 2.17 is called the Hausdorff condition. To prove this
condition, we have made essential use of the existence of a metric. Indeed there are
(non-metric) topological spaces for which Proposition 2.17 fails. A simple example
of such a topological space appears in Exercise 10.

One easy consequence of the Hausdorff condition is⋂{
U ; U ∈ UX(x)

}
= {x} , x ∈ X ,

meaning that there are sufficiently many neighborhoods to distinguish the points
of a metric space.

2.18 Corollary Any one element subset of a metric space is closed.

Proof2 Fix x ∈ X. If X = {x}, then the claim follows from Proposition 2.6(i).
Otherwise, if y ∈ {x}c, then, by Proposition 2.17, there are neighborhoods U
of x and V of y such that U ∩ V = ∅. In particular, {x} ∩ V ⊆ U ∩ V = ∅ and
so V ⊆ {x}c. Thus {x}c is open. �

Examples

We illustrate these new concepts with examples which, in particular, show that
the previously defined notions, ‘open interval’, ‘closed interval’, ‘open ball’ and
‘closed ball’, are consistent with the topological concepts.

2.19 Examples (a) The open interval (a, b) ⊆ R is open in R.

(b) The closed interval [a, b] ⊆ R is closed in R.

(c) Let I ⊆ R be an interval, a := inf I and b := sup I. Then

∂I =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∅ , I = R or I = ∅ ,

{a} , a ∈ R and b = ∞ ,

{b} , b ∈ R and a = −∞ ,

{a, b} , −∞ < a < b < ∞ ,

{a} , a = b ∈ R .

2This is also an easy consequence of Proposition 2.11(iii) (see also Remark 2.29(d)).
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(d) The closed ball B̄(x, r) is closed.
Proof If X = B̄(x, r) there is nothing to show. So we suppose that B̄(x, r) 
= X and
y is not in B̄(x, r), that is, ε := d(x, y) − r > 0. Then, for z ∈ B(y, ε), it follows from the
reversed triangle inequality that

d(x, z) ≥ d(x, y) − d(y, z) > d(x, y) − ε = r .

Hence the ball B(y, ε) is contained in
(
B̄(x, r)

)c
. Since this holds for all y ∈

(
B̄(x, r)

)c
,(

B̄(x, r)
)c

is open. �

(e) In any metric space, B(x, r) ⊆ B̄(x, r) for r ≥ 0. If X is a normed vector space3

and r > 0, then B(x, r) = B̄(x, r).
Proof The first claim is a consequence of (d) and Proposition 2.12.

For the second claim, suppose that X is a normed vector space and r > 0. It suffices
to show the inclusion B̄(x, r) ⊆ B(x, r). Suppose, to the contrary, that B(x, r) ⊂ B̄(x, r).
Choose some y ∈ B̄(x, r)\B(x, r) and note that d(y, x) = ‖y − x‖ = r > 0, and therefore
x 
= y. For ε ∈ (0, 1), define

xε := x + (1 − ε)(y − x) = εx + (1 − ε)y .

Then ‖x − xε‖ = (1 − ε) ‖y − x‖ = (1 − ε)r < r and
‖y − xε‖ = ε ‖x − y‖ = εr > 0. Now let (εk) be a
null sequence in (0, 1) and xk := xεk for all k ∈ N.
Then (xk) is a sequence in B(x, r) such that xk → y.
By Proposition 2.10, y is an accumulation point
of B(x, r), that is, y ∈ B(x, r). But this contradicts
our choice of y. �

�

��

�

(f ) In any normed vector space X,

∂B(x, r) = ∂B̄(x, r) = { y ∈ X ; ‖x − y‖ = r } .

Proof This follows from (e). �

(g) The n-sphere Sn := {x ∈ Rn+1 ; |x| = 1 } is closed in Rn+1.

Proof Since Sn = ∂Bn+1, the claim follows from Proposition 2.16(i). �

A Characterization of Continuous Functions

We now present the previously announced main result of this section.

2.20 Theorem Let f : X → Y be a function between metric spaces X and Y .
Then the following are equivalent:

(i) f is continuous.

(ii) f−1(O) is open in X for each open set O in Y .

(iii) f−1(A) is closed in X for each closed set A in Y .

3There are metric spaces in which B(x, r) is a proper subset of B̄(x, r), as Exercise 3 shows.
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Proof ‘(i)=⇒(ii)’ Let O ⊆ Y be open. If f−1(O) = ∅, then the claim follows from
Proposition 2.4(i). Thus we suppose that f−1(O) �= ∅. Since f is continuous, for
each x ∈ f−1(O), there is an open neighborhood Ux of x in X such that f(Ux) ⊆ O.
This implies

x ∈ Ux ⊆ f−1(O) , x ∈ f−1(O) ,

from which we get ⋃
x∈f−1(O)

Ux = f−1(O) .

By Example 2.2 and Proposition 2.4(iii), f−1(O) is open in X.
‘(ii)=⇒(iii)’ Let A ⊆ Y be closed. Then Ac is open in Y . By (ii) and Proposi-

tion I.3.8(iv′), f−1(Ac) =
(
f−1(A)

)c is open in X. Thus f−1(A) is closed in X.
‘(iii)=⇒(i)’ Let x ∈ X. If V is an open neighborhood of f(x) in Y , then V c is

closed in Y . By Proposition I.3.8(iv′) and our hypothesis,
(
f−1(V )

)c = f−1(V c) is
closed in X, that is, U := f−1(V ) is open in X. Since x ∈ U , U is a neighborhood
of x such that f(U) ⊆ V . This means that f is continuous at x. �

2.21 Remark According to this theorem, a function is continuous if and only if
the preimage of any open set is open, if and only if the preimage of any closed set
is closed. For another formulation of this important result, we denote the topology
of a metric space X by TX , that is,

TX := {O ⊆ X ; O is open in X } .

Then
f : X → Y is continuous ⇐⇒ f−1 : TY → TX ,

that is, f : X → Y is continuous if and only if the image of TY under the set valued
function f−1 : P(Y ) → P(X) is contained in TX . �

The following examples show how Theorem 2.20 can be used to prove that
certain sets are open or closed.

2.22 Examples (a) Let X and Y be metric spaces, and f : X → Y continuous.
Then, for each y ∈ Y , the fiber f−1(y) of f is closed in X, that is, the solution set
of the equation f(x) = y is closed.

Proof This follows from Corollary 2.18 and Theorem 2.20. �

(b) Let k, n ∈ N× be such that k ≤ n. Then Kk is closed in Kn.
Proof If k = n the claim is clear. For k < n, consider the projection

pr : Kn → Kn−k , (x1, . . . , xn) �→ (xk+1, . . . , xn) .

Then Example 1.3(h) shows that this function is continuous. Moreover Kk = pr−1(0).

Hence the claim follows from (a). �
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(c) Solution sets of inequalities Let f : X → R be continuous and r ∈ R. Then{
x ∈ X ; f(x) ≤ r

}
is closed in X and

{
x ∈ X ; f(x) < r

}
is open in X.

Proof Clearly{
x ∈ X ; f(x) ≤ r

}
= f−1((−∞, r]

)
and

{
x ∈ X ; f(x) < r

}
= f−1((−∞, r)

)
.

Hence the claims follow from Examples 2.19(a), (b) and Theorem 2.20. �

(d) The closed n-dimensional unit cube

In := {x ∈ Rn ; 0 ≤ xk ≤ 1, 1 ≤ k ≤ n }

is closed in Rn.

Proof Let prk : Rn → R, (x1, . . . , xn) �→ xk be the kth projection. Then

In =
n⋂

k=1

(
{x ∈ Rn ; prk(x) ≤ 1 } ∩ {x ∈ Rn ; prk(x) ≥ 0 }

)
.

By (c), In is a finite intersection of closed sets, and hence, by Proposition 2.6, is itself

closed. �

(e) Continuous images of closed (or open) sets need not be closed (or open).

Proof (i) Let X := R2 and A :=
{

(x, y) ∈ R2 ; xy = 1
}
. Since the function R2 → R,

(x, y) �→ xy is continuous (see Proposition 1.5(ii)), it follows from (a) that the set A is
closed in X. Even though the projection pr1 : R2 → R is continuous, pr1(A) = R× is not
closed in R.

(ii) For the second claim, let X := Y := R, O := (−1, 1) and f : R → R, x �→ x2.

Then O is open in R and f is continuous, but f(O) = [0, 1) is not open in R. �

Continuous Extensions

Let X and Y be metric spaces. Suppose that D ⊆ X, f : D → Y is continuous and
a ∈ X is a limit point of D. If D is not closed, then a may not be in D and so f is
not defined at a. In this section we consider whether f(a) can be defined so that
f is continuous on D ∪ {a}. If such an extension exists, then, for any sequence (xn)
in D which converges to a,

(
f(xn)

)
converges to f(a). Thus, for a (not necessarily

continuous) function f : D → Y and a limit point a of D, we define

lim
x→a

f(x) = y (2.1)

if y ∈ Y is such that, for each sequence (xn) in D which converges to a, the
sequence

(
f(xn)

)
converges to y in Y .



242 III Continuous Functions

2.23 Remarks (a) The following are equivalent:
(i) limx→a f(x) = y.
(ii) For each neighborhood V of y in Y , there is a neighborhood U of a in X such

that f(U ∩ D) ⊆ V .
Proof ‘(i)=⇒(ii)’ We prove the contrapositive. Suppose that there is a neighborhood V
of y in Y such that f(U ∩ D) � V for each neighborhood U of a in X. In particular,

f
(
BX(a, 1/n) ∩ D

)
∩ V c 
= ∅ , n ∈ N× .

Thus, for each n ∈ N×, we can choose some xn ∈ BX(a, 1/n) ∩ D such that f(xn) ∈ V c.
In particular, the sequence (xn) is in D and converges to a. Since f(xn) 
∈ V for each n,(
f(xn)

)
cannot converge to y.

‘(ii)=⇒(i)’ Let (xn) be a sequence in D such that xn → a in X, and V a neighborhood

of y in Y . By hypothesis, there is some neighborhood U of a such that f(U ∩ D) ⊆ V .

Since (xn) converges to a, there is some N ∈ N such that xn ∈ U for all n ≥ N . Thus the

image
(
f(xn)

)
is contained in V for all n ≥ N . This means that f(xn) → y. �

(b) If a ∈ D is a limit point of D, then

lim
x→a

f(x) = f(a) ⇐⇒ f is continuous at a .

Proof This follows from (a). �

2.24 Proposition Let X and Y be metric spaces, D ⊆ X, and f : D → Y contin-
uous. Suppose that a ∈ Dc is a limit point of D and there is some y ∈ Y such that
limx→a f(x) = y. Then

f : D ∪ {a} → Y , x �→
{

f(x) , x ∈ D ,

y , x = a ,

is a continuous extension of f to D ∪ {a}.

Proof We need to prove only that f : D ∪ {a} → Y is continuous at a. But this
follows directly from Remarks 2.23. �

For the special case X ⊆ R, we can define one-sided limits as follows. Suppose
that D ⊆ X, f : D → Y is a function and a ∈ X is a limit point of D ∩ (−∞, a]
(or D ∩ [a,∞)). Then we define4 the left (or right) limit

lim
x→a− f(x) (or lim

x→a+
f(x))

similarly to limx→a f(x), by allowing only sequences such that xn < a (or xn > a).
Analogously, we write y = limx→∞ f(x) (or y = limx→−∞ f(x)) if, for every se-
quence (xn) such that xn → ∞ (or xn → −∞), we have f(xn) → y.

4We write also f(a−) := limx→a− f(x) and f(a+) := limx→a+ f(x) when no confusion is
possible.
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2.25 Examples (a) Suppose that X := R, D := R\{1}, n ∈ N× and f : D → R
is defined by f(x) := (xn − 1)/(x − 1). Then

lim
x→1

f(x) = lim
x→1

xn − 1
x − 1

= n .

Proof By Exercise I.8.1(b) we have

xn − 1

x − 1
= 1 + x + x2 + · · · + xn−1 .

The claim follows from this and continuity of polynomials in R. �

(b) For X := C and D := C×,

lim
z→0

exp(z) − 1
z

= 1 .

Proof From exp(z) =
∑

zk/k! we get

exp(z) − 1

z
− 1 =

z

2

[
1 +

z

3
+

z2

3 · 4 +
z3

3 · 4 · 5 + · · ·
]

.

Hence, for all z ∈ C× such that |z| < 1, we have the inequality∣∣∣ exp(z) − 1

z
− 1

∣∣∣ ≤ |z|
2

[
1 + |z| + |z2| + |z3| + · · ·

]
=

|z|
2(1 − |z|) .

The claim then follows from

lim
z→0

( |z|
2(1 − |z|)

)
= 0

which is a consequence of Remark 2.23(b) and the continuity of |z|/(1 − |z|) at z = 0. �

(c) Let X := D := Y := R and f(x) := xn for n ∈ N. Then

lim
x→∞xn =

{
1 , n = 0 ,

∞ , n ∈ N× ,

and

lim
x→−∞xn =

⎧⎪⎨⎪⎩
1 , n = 0 ,

∞ , n ∈ 2N× ,

−∞ , n ∈ 2N + 1 .

(d) Because limx→0− 1/x = −∞ and limx→0+ 1/x = ∞, the function R× → R,
x �→ 1/x cannot be extended to a continuous function on R. �
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Relative Topology

Let X be a metric space and Y a subset of X. Then Y is itself a metric space with
respect to the metric dY := d |Y × Y induced from X, and so ‘open in (Y, dY )’
and ‘closed in (Y, dY )’ are well defined concepts.

There is another way of defining the
open subsets of Y which completely avoids
the use of a metric. This definition requires
only that X be a topological space. Specif-
ically, a subset M of Y is open (or closed)
in Y , if there is an open set O in X (or a
closed set A in X) such that M = O ∩ Y
(or M = A ∩ Y ). If M ⊆ Y is open (or
closed) in Y , we say also that M is rel-
atively open (or relatively closed) in Y .
Using these definitions, it is easy to see

�

�

�

�

that the topological structure of X induces a topological structure on Y .
Thus we have two ways of defining the open subsets of Y . The next proposi-

tion shows that these definitions are equivalent.

2.26 Proposition Let X be a metric space and M ⊆ Y ⊆ X. Then M is open (or
closed) in Y if and only if M is open (or closed) in (Y, dY ).

Proof Without loss of generality we can assume that M is nonempty.
(i) Let M be open in Y . Then there is some open set O in X such that

M = O ∩ Y . Thus, for each x ∈ M , there is some r > 0 such that BX(x, r) ⊆ O.
Since

BY (x, r) = BX(x, r) ∩ Y ⊆ O ∩ Y = M ,

x is an interior point of M with respect to (Y, dY ). Consequently M is open
in (Y, dY ).

(ii) Now let M be open in (Y, dY ). For each x ∈ M , there is some rx > 0
such that BY (x, rx) ⊆ M . Set O :=

⋃
x∈M BX(x, rx). Then, by Example 2.2 and

Proposition 2.4(ii), O is an open subset of X. Moreover, from Proposition I.2.7(ii),

O ∩ Y =
( ⋃

x∈M

BX(x, rx)
)
∩ Y =

⋃
x∈M

(
BX(x, rx) ∩ Y

)
=

⋃
x∈M

BY (x, rx) = M .

Thus M is open in X.
(iii) Next we suppose that M is closed in Y , that is, there is a closed set A

in X such that M = Y ∩ A. Because Y \M = Y ∩ Ac, it follows from (i) that Y \M
is open in (Y, dY ). Hence M is closed in (Y, dY ).

(iv) Finally, if M is closed in (Y, dY ), then Y \M is open in (Y, dY ). By (ii),
Y \M is open in Y , and so there is an open set O in X such that O ∩ Y = Y \M .
This implies M = Y ∩ Oc, and so M is closed in Y . �
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2.27 Corollary If M ⊆ Y ⊆ X, then M is open in Y if and only if Y \M is closed
in Y .

2.28 Examples (a) Let X := R2, Y := R × {0} and M := (0, 1) × {0}. Then M is
open in Y , but not in X.

(b) Let X := R and Y := (0, 2]. Then (1, 2] is open in Y but not in X, and (0, 1] is
closed in Y but not in X. �

General Topological Spaces

Even though metric spaces are the natural framework for most of our discussion, in later

chapters — and in other books — general topological spaces are also important. For this

reason, it is useful to analyze the definitions and propositions of this section to find out

which are true in any topological space. This we do in the following remarks.

2.29 Remarks Let X = (X, T ) be a topological space.

(a) As above, A ⊆ X is called closed if Ac is open, that is, if Ac ∈ T . The definitions of
accumulation point, limit point and A remain unchanged. Then it is clear that Proposi-
tions 2.6 and 2.8 remain valid.

(b) A subset U ⊆ X is called a neighborhood of a subset A of X if there is an open set O
such that A ⊆ O ⊆ U . If A = {x}, then U is called a neighborhood of x. The set of all
neighborhoods of x we again denote by U(x), or more precisely, by UX(x). Clearly every
point has an open neighborhood. A point x is called an interior point of A ⊆ X if some
neighborhood of x is contained in A. It is clear that these definitions are consistent with
those introduced already for metric spaces.

Finally, the interior Å and boundary ∂A of A ⊆ X are defined exactly as for metric
spaces. It is then easy to check that Propositions 2.12 and 2.14, as well as Corollaries 2.13
and 2.15 remain true. Thus we have A = cl(A) and Å = int(A).

(c) Propositions 2.9 and 2.11, and Corollary 2.10 are not true in general topological
spaces. Even so, the following is always true: If A is closed and (xk) is a convergent
sequence in A with lim xk = x, then x is in A. Of course, here the convergence of a
sequence and the limit of a convergent sequence are defined just as in Section II.1. An
analysis of the proof of Proposition 2.9 shows that the following property of metric spaces
is used:

For each point x ∈ X, there is a sequence (Uk) of neighborhoods of x such
that, for any neighborhood U of x, there is some k ∈ N such that Uk ⊆ U.

}
(2.2)

For metric spaces it suffices to choose Uk := B(x, 1/k).

A sequence of neighborhoods (Uk) as above is called a countable neighborhood basis
for x. A topological space for which (2.2) holds is said to satisfy the first countability
axiom.
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(d) We have already noted that Proposition 2.17 does not hold in general topological
spaces. A topological space satisfying the Hausdorff condition is called a Hausdorff space.
Proposition 2.17 shows that any metric space is a Hausdorff space.

In a Hausdorff space, Corollary 2.18 holds with exactly the same proof, and so
every one element set is closed. Moreover a convergent sequence in a Hausdorff space has
a unique limit.

(e) The continuity of a function between topological spaces is defined exactly as in
Section 1. Thus Theorem 1.8, about the continuity of compositions, remains true. Propo-
sitions 1.5 and 1.10 are true when X is an arbitrary topological space, though the proofs
must be changed so as to make a more direct use of the definition of continuity (see
Exercise 19).

Finally, Theorem 2.20, the most important in this section, is true for arbitrary
topological spaces. Thus a function between topological spaces is continuous if and only
if the preimages of open (or closed) sets are open (or closed). Examples 2.22(a) and (c)
remain true if X is a topological space and Y is a Hausdorff space (Why?).

(f ) If X and Y are arbitrary topological spaces, then the first part of the proof of Theo-
rem 1.4 shows that any continuous function from X to Y is also sequentially continuous.
The second part of this same proof shows that the converse is true if X satisfies the first
countability axiom.

(g) Let X and Y be topological spaces and a ∈ X a limit point of D ⊆ X. Then, for
f : D → Y the limit

lim
x→a

f(x) (2.3)

can be defined as in (2.1) only if X satisfies the first countability axiom (more precisely,
if a has a countable neighborhood basis). In this case, Remark 2.23(a) remains true. If X
is an arbitrary topological space, then (ii) of Remark 2.23(a) is used as the definition of
(2.3). In either case, Remark 2.23(b) and Proposition 2.24 hold.

(h) If Y is a subset of a topological space X, the concepts relatively open (that is, open
in Y ) and relatively closed (that is, closed in Y ) are defined as previously. Then

TY := {B ⊆ Y ; B is open in Y }

is a topology on Y called the relative (or induced) topology of Y with respect to X.
Thus (Y, TY ) is a topological space itself and so is a topological subspace of X. It is easy
to see that A ⊆ Y is relatively closed if and only if A is closed in (Y, TY ), that is, if
Ac ∈ TY (see Corollary 2.27). Moreover, (Y, TY ) is a Hausdorff space (or satisfies the first
countability axiom) if the same is true of X. If i := iY : Y → X, y �→ y is the inclusion
of Example I.3.2(b), then i−1(A) = A ∩ Y for all A ⊆ X. Hence, if Y has some other
topology T ′

Y , then i : (Y, T ′
Y ) → X is continuous if and only if T ′

Y is stronger than the
relative topology TY .

(i) Let X and Y be topological spaces and A a subset of X with the relative topol-
ogy. If f : X → Y is continuous at x0 ∈ A, then f |A : A → Y is continuous at x0 (see
Example 1.3(k)).

Proof This follows from f |A = f ◦ iA and (h). �
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Exercises

1 For the following subsets M of a metric space X, determine M , M̊ , ∂M and the
set M ′ of all limit points of M :

(a) M = (0, 1], X = R.

(b) M = (0, 1] × {0}, X = R2.

(c) M = { 1/n ; n ∈ N× }, X = R.

(d) M = Q, X = R.

(e) M = R\Q, X = R.

2 Let Q have the natural metric and S :=
{

x ∈ Q ; −
√

2 < x <
√

2
}
. Prove or disprove

the following:

(a) S is open in Q.

(b) S is closed in Q.

3 Let X be a nonempty set and d the discrete metric on X. Show the following:

(a) Every subset of X is open, that is, P(X) is the topology of (X, d).

(b) It is not true, in general, that B̄(x, r) = B(x, r).

4 For S :=
{

(x, y) ∈ R2 ; x2 + y2 < 1
}∖ (

[0, 1) × {0}
)
, determine (S)0. Is (S)0 = S?

5 Let X be a metric space and A ⊆ X. Prove that Å = X
∖

(X\A).

6 Let Xj , j = 1, . . . , n, be metric spaces and X := X1 × · · · × Xn. Show the following:

(a) If Oj is open in Xj for all j, then O1 × · · · × On is open in X.

(b) If Aj is closed in Xj for all j, then A1 × · · · × An is closed in X.

7 Let h : P(X) → P(X) be a function with the properties

(i) h(∅) = ∅,
(ii) h(A) ⊇ A, A ∈ P(X),

(iii) h(A ∪ B) = h(A) ∪ h(B), A, B ∈ P(X),

(iv) h ◦ h = h.

(a) Set Th :=
{

Ac ∈ P(X) ; h(A) = A
}

and show that (X, Th) is a topological space.

(b) Given a topological space (X, T ), find a function h : P(X) → P(X) satisfying (i)–(iv)
and Th = T .

8 Let X be a metric space and A, B ⊆ X. Prove or disprove that (A ∪ B)◦ = Å ∪ B̊
and (A ∩ B)◦ = Å ∩ B̊.

9 Consider the metric on R given by δ(x, y) := |x − y|/(1 + |x − y|) (see Exercise II.1.9).
Show that the sets An := [n,∞), n ∈ N, are closed and bounded in (R, δ), and that5⋂k

n=0 An 
= ∅ for each k ∈ N and
⋂

An = ∅.
10 Let X := {1, 2, 3, 4, 5} and

T :=
{
∅, X, {1}, {3, 4}, {1, 3, 4}, {2, 3, 4, 5}

}
.

Show that (X, T ) is a topological space and determine the closure of {2, 4, 5}.
5Compare also Exercise 3.5.
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11 Let T1 and T2 be topologies on a set X. Prove or disprove that T1 ∪ T2 and T1 ∩ T2

are topologies on X.

12 Let X and Y be metric spaces. Prove that

f : X → Y is continuous ⇐⇒ f(A) ⊆ f(A), A ⊆ X .

13 Let A and B be closed subsets of a metric space X. Suppose that Y is a metric space
and g : A → Y and h : B → Y are continuous functions such that

g |A ∩ B = h |A ∩ B if A ∩ B 
= ∅ .

Show that the function

f : A ∪ B → Y , x �→
{

g(x) , x ∈ A ,

h(x) , x ∈ B ,

is continuous.

14 A function f : X → Y between metric spaces (X, d) and (Y, δ) is called open if
f(Td) ⊆ Tδ, that is, if the images of open sets are open. The function f is called closed
if f(A) is closed for any closed set A. Let d denote the natural metric and δ the discrete
metric on R. Prove the following:

(a) id : (R, d) → (R, δ) is open and closed, but not continuous.

(b) id : (R, δ) → (R, d) is continuous, but neither open nor closed.

15 Let f : R → R, x �→ exp(x) zigzag(x) (see Exercise 1.1). Then f is continuous, but
neither open nor closed. (Hint: Consider Exercise II.8.10 and determine f

(
(−∞, 0)

)
and f

({
−(2n + 1)/2 ; n ∈ N

})
.)

16 Prove that the function

f : [0, 2] → [0, 2] , x �→
{

0 , x ∈ [0, 1] ,

x − 1 , x ∈ (1, 2] ,

is continuous and closed, but not open.

17 Let S1 :=
{

(x, y) ∈ R2 ; x2 + y2 = 1
}
, the unit circle in R2, with the natural metric.

Show that the function

f : S1 → [0, 2) , (x, y) �→
{

0 , y ≥ 0 ,

1 + x , y ≤ 0 ,

is closed, but neither continuous nor open.

18 Let X and Y be metric spaces and

p : X × Y → X , (x, y) �→ x

the canonical projection onto X. Then p is continuous and open, but not, in general,
closed.

19 Prove Propositions 1.5 and 1.10 for an arbitrary topological space X.
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20 Let X and Y be metric spaces and f : X → Y . Show that (see Exercise 1.17)

An :=
{

x ∈ X ; ωf (x) ≥ 1/n
}

is closed for each n ∈ N×.

21 Let X be a metric space and A ⊆ X. Show the following:

(i) If A is complete, then A is closed in X. The converse is, in general, false.

(ii) If X is complete, then A is complete if and only if A is closed in X.
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3 Compactness

We have seen that continuous images of open sets may not be open, and continuous
images of closed sets may not be closed. In the next two sections we investigate
certain properties of topological spaces which, in contrast, are preserved by contin-
uous functions. These properties are of far reaching importance and are especially
useful for the study of real valued functions.

Covers

In the following, X := (X, d) is a metric space.

A family of sets {Aα ⊆ X ; α ∈ A } is called a cover of the subset K ⊆ X
if K ⊆ ⋃

α Aα. A cover is called open if each Aα is open in X. A subset K ⊆ X
is called compact if every open cover of K has a finite subfamily which is also a
cover of K. In other words, K ⊆ X is compact if every open cover of K has a
finite subcover.

3.1 Examples (a) Let (xk) be a convergent sequence in X with limit a. Then the
set K := {a} ∪ {xk ; k ∈ N} is compact.

Proof Let {Oα ; α ∈ A } be an open cover of K. Then there are α and αk ∈ A such

that a ∈ Oα and xk ∈ Oαk for all k ∈ N. Because lim xk = a, there is some N ∈ N such

that xk ∈ Oα for all k > N . Then {Oαk ; 0 ≤ k ≤ N } ∪ {Oα} is a finite subcover of the

given cover of K. �

(b) The statement of (a) is false, in general, if the limit a is not included in K.

Proof Let X := R and A := { 1/k ; k ∈ N× }. Set O1 := (1/2, 2) and, for all k ≥ 2,

Ok :=
(
1/(k + 1), 1/(k − 1)

)
. Then {Ok ; k ∈ N× } is an open cover of A with the prop-

erty that each Ok contains exactly one element of A. Thus {Ok ; k ∈ N } has no finite

subcover of A. �

(c) The set of natural numbers N is not compact in R.

Proof It suffices once again to construct an open cover {Ok ; k ∈ N } of N such that

each Ok contains exactly one natural number, for example, Ok := (k − 1/3, k + 1/3) for

all k ∈ N. �

3.2 Proposition Any compact set K ⊆ X is closed and bounded in X.

Proof Let K ⊆ X be compact.

(i) We prove first that K is closed in X. It clearly suffices to consider the
case K �= X since X is closed in X. Thus suppose that x0 is in Kc. Because of
the Hausdorff property, for each y ∈ K, there are open neighborhoods Uy ∈ U(y)
and Vy ∈ U(x0) such that Uy ∩ Vy = ∅. Since {Uy ; y ∈ K } is an open cover of K,
there are finitely many points y0, . . . , ym in K such that K ⊆ ⋃m

j=0 Uyj
=: U .
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By Proposition 2.4, U and V :=
⋂m

j=0 Vyj
are open and disjoint. Thus V is a

neighborhood of x0 such that V ⊆ Kc, that is, x0 is an interior point of Kc. Since
this holds for each x0 ∈ Kc, Kc is open and K is closed.

(ii) To verify the boundedness of K, fix some x0 in X. Since, by Exam-
ple 2.2, B(x0, k) is open and K ⊆ ⋃∞

k=1 B(x0, k) = X, the compactness of K im-
plies that there are k0, . . . , km ∈ N such that K ⊆ ⋃m

j=0 B(x0, kj). In particular,
K ⊆ B(x0, N) where N := max{k0, . . . , km}. Thus K is bounded. �

A Characterization of Compact Sets

The converse of Proposition 3.2 is false in general metric spaces (see Exercise 15)
and so compact sets are not simply closed and bounded sets. Instead we have in
the next theorem a characterization of compactness in terms of cluster points. For
the proof we need the following concept which appears again in Theorem 3.10:
A subset K of X is totally bounded if, for each r > 0, there are m ∈ N and
x0, . . . , xm ∈ K such that K ⊆

⋃m
k=0 B(xk, r). Obviously any totally bounded set

is bounded.

3.3 Theorem A subset K ⊆ X is compact if and only if every sequence in K has
a cluster point in K.

Proof (i) First we suppose that K is compact and that there is a sequence in K
with no cluster point in K. Thus, for each x ∈ K, there is an open neighbor-
hood Ux of x which contains at most finitely many terms of the sequence. Be-
cause {Ux ; x ∈ K } is an open cover of K, there are x0, . . . , xm ∈ K such that
{Uxk

; k = 0, . . . , m } is a cover of K. Hence K contains at most finitely many
terms of the sequence. This contradiction shows that every sequence in K has a
cluster point in K.

(ii) The proof of the converse is done in two steps:

(a) Let K be a subset of X with the property that each sequence in K has a
cluster point in K. We claim that K is totally bounded.

Suppose, to the contrary, that K is not totally bounded. Then there is some
r > 0 with the property that K is not contained in

⋃m
k=0 B(xk, r) for any finite

set x0, . . . , xm ∈ K. In particular, there is some x0 ∈ K such that K is not con-
tained in B(x0, r). Thus there is some x1 ∈ K\B(x0, r). Since K is not contained
in B(x0, r) ∪ B(x1, r), there is some x2 ∈ K

∖ [
B(x0, r) ∪ B(x1, r)

]
. Iterating this

process, we construct a sequence (xk) in K such that xn+1 is not in
⋃n

k=0 B(xk, r)
for all n. By hypothesis, the sequence (xk) has a cluster point x in K, and so, in
particular, there are m,N ∈ N× such that d(xN , x) < r/2 and d(xN+m, x) < r/2.
The triangle inequality implies that d(xN , xN+m) < r, that is, xN+m is in B(xN , r).
This contradicts the above property of the sequence (xk) and so we have proved
that K is totally bounded.
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(b) Now let {Oα ; α ∈ A } be an open cover of K. Suppose, contrary to our
claim, that there is no finite subcover of {Oα ; α ∈ A }. Since K is totally bounded,
for each k ∈ N×, there is a finite set of open balls of radius 1/k and center in K
which forms a cover of K. Then one of these open balls, Bk say, has the property
that no finite subset of {Oα ; α ∈ A } is a cover of K ∩ Bk. Let xk be the center
of Bk for k ∈ N×. By hypothesis, the sequence (xk) has a cluster point x in K.

Now let α ∈ A be such that x ∈ Oα. Since Oα is open, there is some ε > 0
such that B(x, ε) ⊆ Oα. Since x is a cluster point of the sequence (xk), there is
some M > 2/ε such that d(xM , x) < ε/2. Thus, for each x ∈ BM , we have

d(x, x) ≤ d(x, xM ) + d(xM , x) <
1
M

+
ε

2
<

ε

2
+

ε

2
= ε ,

that is, BM ⊆ B(x, ε) ⊆ Oα. This contradicts our choice of BM and so the cover
{Oα ; α ∈ A } must have a finite subcover. �

Sequential Compactness

We say that a subset K ⊆ X is sequentially compact if every sequence in K has a
subsequence which converges to an element of K.

The relationship between the cluster points of a sequence and convergent sub-
sequences (see Proposition II.1.17) makes possible a reformulation of Theorem 3.3
in terms of sequential compactness.

3.4 Theorem A subset of a metric space is compact if and only if it is sequentially
compact.

As an important application of Theorem 3.3 we describe the compact subsets
of Kn.

3.5 Theorem (Heine-Borel) A subset of Kn is compact if and only if it is closed
and bounded. In particular, an interval is compact if and only if it is closed and
bounded.

Proof By Proposition 3.2, any compact set is closed and bounded. The con-
verse follows from the Bolzano-Weierstrass theorem (see Theorem II.5.8), Propo-
sition 2.11 and Theorem 3.4. �

Continuous Functions on Compact Spaces

The following theorem shows that compactness is preserved under continuous func-
tions.
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3.6 Theorem Let X and Y be metric spaces and f : X → Y continuous. If X is
compact, then f(X) is compact. That is, continuous images of compact sets are
compact.

Proof Let {Oα ; α ∈ A } be an open cover of f(X) in Y . By Theorem 2.20,
for each α ∈ A, f−1(Oα) is an open subset of X. Hence

{
f−1(Oα) ; α ∈ A

}
is

an open cover of the compact space X and there are α0, . . . , αm ∈ A such that
X =

⋃m
k=0 f−1(Oαk

). It follows that f(X) ⊆ ⋃m
k=0 Oαk

, that is, {Oα0 , . . . , Oαm
}

is a finite subcover of {Oα ; α ∈ A }. Hence f(X) is compact. �

3.7 Corollary Let X and Y be metric spaces and f : X → Y continuous. If X is
compact, then f(X) is bounded.

Proof This follows directly from Theorem 3.6 and Proposition 3.2. �

The Extreme Value Theorem

For real valued functions, Theorem 3.6 has the important consequence that a real
valued continuous function on a compact set attains its minimum and maximum
values.

3.8 Corollary (extreme value theorem) Let X be a compact metric space and
f : X → R continuous. Then there are x0, x1 ∈ X such that

f(x0) = min
x∈X

f(x) and f(x1) = max
x∈X

f(x) .

Proof From Theorem 3.6 and Proposition 3.2 we know that f(X) is closed and
bounded in R. Thus m := inf

(
f(X)

)
and M := sup

(
f(X)

)
exist in R. By Proposi-

tion I.10.5, there are sequences (yn) and (zn) in f(X) which converge to m and M
in R. Since f(X) is closed, Proposition 2.11 implies that m and M are in f(X),
that is, there are x0, x1 ∈ X such that f(x0) = m and f(x1) = M . �

The importance of this result can be seen in the following examples.

3.9 Examples (a) All norms on Kn are equivalent.

Proof (i) Let |·| be the Euclidean norm and ‖·‖ an arbitrary norm on Kn. Then it
suffices to show the equivalence of these two norms, that is, the existence of a positive
constant C such that

C−1 |x| ≤ ‖x‖ ≤ C |x| , x ∈ Kn . (3.1)

(ii) Set S := {x ∈ Kn ; |x| = 1 }. From Example 1.3(j) we know that the function
|·| : Kn → R is continuous, and so, by Example 2.22(a), S is closed in Kn. Of course, S is
also bounded in Kn. By the Heine-Borel theorem, S is a compact subset of Kn.
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(iii) We next show that f : S → R, x �→ ‖x‖ is continuous.1 Let { ek ; 1 ≤ k ≤ n }
be the standard basis of Kn. For each x = (x1, . . . , xn) ∈ Kn, we have x =

∑n
k=1 xkek

(see Example I.12.4(a) and Remark I.12.5). From the triangle inequality for ‖·‖ we get

‖x‖ =
∥∥∥ n∑

k=1

xkek

∥∥∥ ≤
n∑

k=1

|xk| ‖ek‖ ≤ C0 |x| , x ∈ Kn , (3.2)

where we have set C0 :=
∑n

k=1 ‖ek‖ and used the inequality |xk| ≤ |x|. This proves the
second inequality of (3.1). Moreover, from (3.2) and the reversed triangle inequality
for ‖·‖, we get

|f(x) − f(y)| =
∣∣ ‖x‖ − ‖y‖

∣∣ ≤ ‖x − y‖ ≤ C0 |x − y| , x, y ∈ S ,

which proves the Lipschitz continuity of f .

(iv) For all x ∈ S, we have f(x) > 0, so, by the extreme value theorem, we know
that m := min f(S) is positive, that is,

0 < m = min f(S) ≤ f(x) = ‖x‖ , x ∈ S . (3.3)

Finally let x ∈ Kn\{0}. Then x/|x| is in S, and so, from (3.3), we have m ≤
∥∥x/|x|

∥∥,
that is,

m |x| ≤ ‖x‖ , x ∈ Kn . (3.4)

The claim now follows from (3.2) and (3.4) with C := max{C0, 1/m}. �

(b) The fundamental theorem of algebra2 Any nonconstant polynomial p ∈ C[X]
has a zero in C.

Proof (i) Let p be a such a polynomial. Without loss of generality we can assume that
the leading coefficient of p is 1 and so write p in the form

p = Xn + an−1X
n−1 + · · · + a1X + a0

with n ∈ N× and ak ∈ C. If n = 1, the claim is clear, so we suppose that n ≥ 2. Set

R := 1 +

n−1∑
k=0

|ak| .

Then, for each z ∈ C such that |z| > R ≥ 1, we have

|p(z)| ≥ |z|n − |an−1| |z|n−1 − · · · − |a1| |z| − |a0|
≥ |z|n −

(
|an−1| + · · · + |a1| + |a0|

)
|z|n−1

= |z|n−1 (|z| − (R − 1)
)
≥ |z|n−1 > Rn−1 ≥ R .

Hence the absolute value of p outside of the ball B̄C(0, R) is greater than R. Because
|p(0)| = |a0| < R, this means that

inf
z∈C

|p(z)| = inf
|z|≤R

|p(z)| .

1Example 1.3(j) cannot be used here. Why not?
2The fundamental theorem of algebra is not valid for the field of real numbers R, as the

example p = 1 + X2 shows.
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(ii) We next consider the function

|p| : B̄C(0, R) → R , z �→ |p(z)| ,

which, being a restriction of the composition of the continuous functions |·| and p, is
continuous (see Examples 1.3(k) and 1.9(a), as well as Corollary 1.6). By the Heine-
Borel theorem and Example 2.19(d), the closed ball B̄C(0, R) is compact. Thus, applying
the extreme value theorem to |p|, there is some z0 ∈ B̄C(0, R) such that the function |p|
is minimum at z0.

(iii) Suppose that p has no zeros in B̄C(0, R). Then, in particular, p(z0) 
= 0, and
q := p(X + z0)/p(z0) is a polynomial of degree n such that

|q(z)| ≥ 1 , z ∈ C , and q(0) = 1 . (3.5)

Hence we can write q in the form

q = 1 + αXk + Xk+1r

for suitable α ∈ C×, k ∈ {1, . . . , n − 1} and r ∈ C[X].

(iv) At this point we make use of the existence of complex roots, a result which we
prove later in Section 6 (of course, without using the fundamental theorem of algebra).
This theorem says, in particular that some z1 ∈ C exists3 such that zk

1 = −1/α. Thus

q(tz1) = 1 − tk + tk+1zk+1
1 r(tz1) , t ∈ [0, 1] ,

and hence
|q(tz1)| ≤ 1 − tk + tk · t |zk+1

1 r(tz1)| , t ∈ [0, 1] . (3.6)

(v) Finally we consider the function

h : [0, 1] → R , t �→ |zk+1
1 r(tz1)| .

It is not difficult to see that h is continuous (see Proposition 1.5(ii), Corollary 1.6, The-
orem 1.8 and Example 1.9(a)). By the Heine-Borel theorem and Corollary 3.7, there is
some M ≥ 1 such that

h(t) = |zk+1
1 r(tz1)| ≤ M , t ∈ [0, 1] .

If we use this bound in (3.6) we get

|q(tz1)| ≤ 1 − tk(1 − tM) ≤ 1 − tk/2 < 1 , t ∈
(
0, 1/(2M)

)
,

which contradicts the first statement of (3.5). Therefore p must have a zero in B̄C(0, R). �

Corollary Let
p = anXn + an−1X

n−1 + · · · + a1X + a0

with a0, . . . , an ∈ C, an �= 0 and n ≥ 1. Then there are z1, . . . , zn ∈ C such that

p = an

n∏
k=1

(X − zk) .

Thus each polynomial p over C has exactly deg(p) (counted with multiplicities)
zeros.

3Note that this claim is false for R. Indeed, this is the only place in the proof where the special
properties of C are used.
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Proof By the fundamental theorem of algebra, p(z1) = 0 for some z1 ∈ C. By Theo-

rem I.8.17, there is some p1 ∈ C[X] such that p = (X − z1)p1 and deg(p1) = deg(p) − 1.

A simple induction argument finishes the proof. �

(c) Let A and K be disjoint subsets of a metric space with K compact and A
closed. Then the distance d(K,A) from K to A is positive, that is,

d(K,A) := inf
k∈K

d(k,A) > 0 .

Proof By Examples 1.3(k) and (l), the real valued function d(·, A) is continuous on K
and so, by the extreme value theorem, there is some k0 ∈ K such that d(k0, A) = d(K, A).
Suppose that

d(k0, A) = inf
a∈A

d(k0, a) = 0 .

Then there is a sequence (ak) in A such that d(k0, ak) → 0 for all k → ∞. Hence the

sequence (ak) converges to k0. Because A is closed, k0 is in A, contradicting A ∩ K = ∅.
Therefore we have d(k0, A) = d(K, A) > 0. �

(d) The compactness of K is necessary in (c).

Proof The sets A := R × {0} and B :=
{

(x, y) ∈ R2 ; xy = 1
}

are closed but not com-

pact in R2. Since d
(
(n, 0), (n, 1/n)

)
= 1/n for n ∈ N×, we have d(A, B) = 0. �

Total Boundedness

With the practical importance of the concept of compactness amply demonstrated
by the above examples, we now present another characterization of compact sets
which uses completeness and total boundedness.

3.10 Theorem A subset of a metric space is compact if and only if it is complete
and totally bounded.

Proof ‘=⇒’ Let K ⊆ X be compact and (xj) a Cauchy sequence in K. Since K is
sequentially compact, (xj) has a subsequence which converges in K. Thus, by
Proposition II.6.4, the sequence (xj) itself converges in K. This implies that K is
complete.

For each r > 0, the set
{

B(x, r) ; x ∈ K
}

is an open cover of K. Since K is
compact, this cover has a finite subcover. Thus we have shown that K is totally
bounded.

‘⇐=’ Let K be complete and totally bounded. Let (xj) be a sequence in K.
Since K is totally bounded, for each n ∈ N×, there is a finite set of open balls with
centers in K and radius 1/n which forms a cover of K. In particular, there is a
subsequence (x1,j)j∈N of (xj) which is contained in a ball of radius 1. Then there
is a subsequence (x2,j)j∈N of (x1,j)j∈N which is contained in a ball of radius 1/2.
Further, there is a subsequence (x3,j)j∈N of (x2,j)j∈N which is contained in a ball
of radius 1/3.
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Iterating this construction yields, for each n ∈ N×, a subsequence (xn+1,j)j∈N

of (xn,j)j∈N which is contained in a ball of radius 1/(n + 1).

Now set yn := xn,n for all n ∈ N×. It is easy to check that (yn) is a Cauchy
sequence in K (see Remark 3.11(a)). Since K is complete, the sequence (yn) con-
verges in K.

Thus the sequence (xj) has a subsequence, namely (yn), which converges
in K. This shows that K is sequentially compact and also, by Theorem 3.4, that
K is compact. �

3.11 Remarks (a) In the second part of the preceding proof we have used a
trick which is useful in many other situations: From a given sequence (x0,j)j∈N,
choose successive subsequences (xn+1,j)j∈N so that, for all n ∈ N, (xn+1,j)j∈N is
a subsequence of (xn,j). Then form the diagonal sequence by choosing, for each
n ∈ N, the nth element from the nth subsequence.

x0,0 , x0,1 , x0,2 , x0,3 , . . .

x1,0 , x1,1 , x1,2 , x1,3 , . . .

x2,0 , x2,1 , x2,2 , x2,3 , . . .

x3,0 , x3,1 , x3,2 , x3,3 , . . .

...
...

...
...

...
...
...

��
��

��
��

��
��

��
��

The diagonal sequence (yn) := (xn,n)n∈N clearly has the property that (yn)n≥N is
a subsequence of (xN,j)j∈N for each N ∈ N, and so it has the same properties ‘at
infinity’ as each of the subsequences (xn,j)j∈N.

(b) A subset K of a metric space X is compact if and only if K with the induced
metric is a compact metric space.

Proof This is a simple consequence of the definition of relative topology and Proposi-

tion 2.26. �

Because of Remark 3.11(b), it would have sufficed to formulate Theorems 3.3
and 3.4 for X rather than for a subset K of X. However, in applications an
‘underlying’ metric space X is usually given, for example, X is often a Banach
space, and then it is certain subsets of X which are to be studied. So the above
somewhat longer formulations are ‘closer to reality’.
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Uniform Continuity

Let X and Y be metric spaces and f : X → Y continuous. Then, by Proposi-
tion 1.1, for each x0 ∈ X and each ε > 0, there is some δ(x0, ε) > 0 such that for
each x ∈ X with d(x, x0) < δ we have d

(
f(x0), f(x)

)
< ε. As we noted after Propo-

sition 1.1 and saw explicitly in Example 1.3(a), the number δ(x0, ε) depends, in
general, on x0 ∈ X. On the other hand, Example 1.3(e) shows that there are con-
tinuous functions for which the number δ can be chosen independently of x0 ∈ X.
Such functions are called uniformly continuous and are of great practical impor-
tance. Specifically, a function f : X → Y is called uniformly continuous if, for each
ε > 0, there is some δ(ε) > 0 such that

d
(
f(x), f(y)

)
< ε for all x, y ∈ X such that d(x, y) < δ(ε) .

3.12 Examples (a) Lipschitz continuous functions are uniformly continuous (see
Example 1.3(e)).

(b) The function r : (0,∞) → R, x �→ 1/x is continuous, but not uniformly con-
tinuous.

Proof Since r is the restriction of a rational function, it is certainly continuous. Now

let ε > 0. Suppose that there is some δ := δ(ε) > 0 such that |r(x) − r(y)| < ε for all

x, y ∈ (0, 1) such that |x − y| < δ. Choose x := δ/(1 + δε) and y := x/2. Then x, y ∈ (0, 1)

and |x − y| = δ
/[

2(1 + δε)
]

< δ and |r(x) − r(y)| = (1 + δε)/δ > ε. This contradicts our

choice of δ. �

The following important theorem shows that in many cases, continuous func-
tions are automatically uniformly continuous.

3.13 Theorem Suppose that X and Y are metric spaces with X compact. If
f : X → Y is continuous, then f is uniformly continuous. That is, continuous func-
tions on compact sets are uniformly continuous.

Proof Suppose that f is continuous but not uniformly continuous. Then there ex-
ists some ε > 0 with the property that, for each δ > 0, there are x, y ∈ X such that
d(x, y) < δ but d

(
f(x), f(y)

)
≥ ε. In particular, there are sequences (xn) and (yn)

in X such that

d(xn, yn) < 1/n and d
(
f(xn), f(yn)

)
≥ ε , n ∈ N×.

Since X is compact, by Theorem 3.4, there is a subsequence (xnk
)k∈N of (xn) such

that limk→∞ xnk
= x ∈ X. For the corresponding subsequence (ynk

)k∈N of (yn) we
have

d(x, ynk
) ≤ d(x, xnk

) + d(xnk
, ynk

) ≤ d(x, xnk
) + 1/nk , k ∈ N× .



III.3 Compactness 259

Hence (ynk
)k∈N also converges to x. Since f is continuous the images of the two

sequences converge to f(x), in particular, there is some K ∈ N such that

d
(
f(xnK

), f(x)
)

< ε/2 and d
(
f(ynK

), f(x)
)

< ε/2 .

This leads to the contradiction

ε ≤ d
(
f(xnK

), f(ynK
)
)
≤ d

(
f(xnK

), f(x)
)

+ d
(
f(x), f(ynK

)
)

< ε .

Thus f is uniformly continuous. �

Compactness in General Topological Spaces

Just as at the end of the previous section, we want to briefly consider the case of general

topological spaces. Admittedly, the general situation is no longer simple and we must limit

our discussion here to a description of the results. For the proofs and a deeper exploration

of (set theoretical) topology, Dugundji’s book [Dug66] is highly recommended.

3.14 Remarks (a) Let X = (X, T ) be a topological space. Then X is compact if X
is a Hausdorff space and every open cover of X has a finite subcover. The space X
is sequentially compact if it is a Hausdorff space and every sequence has a convergent
subsequence. A subset Y ⊆ X is compact (or sequentially compact) if the topological
subspace (Y, TY ) is compact (or sequentially compact). By Propositions 2.17 and 2.26
as well as Remark 3.11(b), these definitions generalize the concepts of compact and
sequentially compact subsets of a metric space.

(b) Any compact subset K of a Hausdorff space X is closed. For each x0 ∈ Kc there are
disjoint open sets U and V in X such that K ⊆ U and x0 ∈ V . In other words, a compact
subset of a Hausdorff space and a point, not in that subset, can be separated by open
neighborhoods.

Proof This follows from the first part of the proof of Proposition 3.2 �

(c) Any closed subset of a compact space is compact.

Proof See Exercise 2. �

(d) Let X be compact and Y Hausdorff. Then the image of any continuous function
f : X → Y is compact.

Proof The proof of Theorem 3.6 and the definition of relative topology show that every
open cover of f(X) has a finite subcover. Since a subspace of a Hausdorff space is itself
a Hausdorff space, the claim follows. �

(e) In general topological spaces, compactness and sequential compactness are distinct
concepts. That is, a compact space need not be sequentially compact, and a sequentially
compact space need not be compact.

(f ) Uniform continuity is undefined in general topological spaces since the definition
given above makes essential use of the metric. �



260 III Continuous Functions

Exercises

1 Let Xj , j = 1, . . . , n, be metric spaces. Prove that X1 × · · · × Xn is compact if and
only if each Xj is compact.

2 Let X be a compact metric space and Y a subset of X. Prove that Y is compact if
and only if Y is closed.

3 Let X and Y be metric spaces. A bijection f : X → Y is called a homeomorphism if
both f and f−1 are continuous. Show the following:

(a) If f : X → Y is a homeomorphism, then U
(
f(x)

)
= f

(
U(x)

)
for all x ∈ X, that is,

‘f maps neighborhoods to neighborhoods’.

(b) Suppose that X is compact and f : X → Y is continuous.

(i) f is closed (see Exercise 2.14).

(ii) If f is bijective, it is a homeomorphism.

4 A family M of subsets of a nonempty set has the finite intersection property if each
finite subset of M has nonempty intersection.
Prove that the following are equivalent:

(a) X is a compact metric space.

(b) Every family A of closed subsets of X which has the finite intersection property, has
nonempty intersection, that is,

⋂A 
= ∅.
5 Let (Aj) be a sequence of nonempty closed subsets of X with Aj ⊇ Aj+1 for all j ∈ N.
Show that, if A0 is compact, then

⋂
Aj 
= ∅.4

6 Let E and F be finite dimensional normed vector spaces and A : E → F linear. Prove
that A is Lipschitz continuous. (Hint: Example 3.9(a).)

7 Show that the set O(n) of all real orthogonal matrices is a compact subset of R(n2).

8 Let

C0 := [0, 1] , C1 := C0\(1/3, 2/3) , C2 := C1

∖ (
(1/9, 2/9) ∪ (7/9, 8/9)

)
, . . .

In general, Cn+1 is formed by removing the open middle third from each of the 2n inter-
vals which make up Cn. The intersection C :=

⋂
Cn is called the Cantor set. Prove the

following:

(a) C is compact and has empty interior.

(b) C consists of all numbers in [0, 1] whose ternary expansion is
∑∞

k=1 ak3−k with
ak ∈ {0, 2}.
(c) Every point of C is a limit point of C, that is, C is perfect.

(d) For x ∈ C with the ternary expansion
∑∞

k=1 ak3−k, define

ϕ(x) :=
∞∑

k=1

ak2−(k+1) .

Then ϕ : C → [0, 1] is increasing, surjective and continuous.

(e) C is uncountable.

(f) ϕ has a continuous extension f : [0, 1] → [0, 1] which is constant on each interval in
[0, 1]\C. The function f is called the Cantor function of C.

4Compare Exercise 2.9.
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9 Let X be a metric space. A function f : X → R is called lower continuous at a ∈ X if,
for each sequence (xn) in X such that lim xn = a, we have f(a) ≤ lim f(xn). It is called
upper continuous at a if −f is lower continuous at a. Finally f is called lower continuous
(or upper continuous) if f is lower continuous (or upper continuous) at each point of X.

(a) Show the equivalence of the following:

(i) f is lower continuous.

(ii) For each a ∈ X and ε > 0, there is some U ∈ U(a) such that f(x) > f(a) − ε for
all x ∈ U .

(iii) For each α ∈ R, f−1
(
(α,∞)

)
is open.

(iv) For each α ∈ R, f−1
(
(−∞, α]

)
is closed.

(b) f is continuous if and only if f is lower and upper continuous.

(c) Let χA be the characteristic function of A ⊆ X. Then A is open if and only if χA is
lower continuous.

(d) Let X be compact and f : X → R lower continuous. Then f attains its minimum,
that is, there is some x ∈ X such that f(x) ≤ f(y) for all y ∈ X. (Hint: Consider a
sequence (xn) in X such that f(xn) → inf f(X).)

10 Let f, g : [0, 1] → R be defined by

f(x) :=

{
1/n , x ∈ Q where x = m/n in lowest terms ,

0 , x /∈ Q ,

and

g(x) :=

{
(−1)nn/(n + 1) , x ∈ Q where x = m/n in lowest terms ,

0 , x /∈ Q .

Prove or disprove the following:

(a) f is upper continuous.

(b) f is lower continuous.

(c) g is upper continuous.

(d) g is lower continuous.

11 Let X be a metric space and f : [0, 1) → X continuous. Show that f is uniformly
continuous if limt→1 f(t) exists.

12 Which of the functions

f : (0,∞) → R , t �→ (1 + t2)−1 , g : (0,∞) → R , t �→ t−2

is uniformly continuous?

13 Prove that a finite dimensional subspace of a normed vector space is closed.
(Hint: Let E be a normed vector space and F a subspace of E with finite dimen-
sion. Let (vn) be a sequence in F and v ∈ E such that lim vn = v in E. Because of
Remark I.12.5, Proposition 1.10 and the Bolzano-Weierstrass theorem, there are some
subsequence (vnk )k∈N of (vn) and w ∈ F such that limk vnk = w in F . Now use Proposi-
tions 2.11 and 2.17 to show that v = w ∈ F .)
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14 Suppose that X is a metric space and f : X → R is bounded. Show that ωf : X → R
is upper continuous (see Exercises 1.17 and 2.20).

15 Show that the closed unit ball in �∞ (see Remark II.3.6(a)) is not compact.

(Hint: Consider the sequence (en) of ‘unit vectors’ en given by en(j) := δnj for all j ∈ N.)
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4 Connectivity

It is intuitively clear that an open interval in R is ‘connected’, but that it becomes
‘disconnected’ if we remove a single point. In this section, we make this intuitive
concept of connectivity more precise. In doing so, we discover once again that
topology plays an essential role.

Definition and Basic Properties

A metric space X is called connected if X cannot be represented as the union of
two disjoint nonempty open subsets. Thus X is connected if and only if

� O1, O2 ⊆ X, open, nonempty, with O1 ∩ O2 = ∅ and O1 ∪ O2 = X .

A subset M of X is called connected in X if M is connected with respect to the
metric induced from X.

4.1 Examples (a) Clearly, the empty set and any one element set are connected.

(b) The set of the natural numbers N is not connected.

Proof By Example 2.19(a) and Theorem 2.26, the subsets O1 := {0} = N ∩ (−∞, 1/2)

and O2 := {1, 2, 3, . . .} = N ∩ (1/2,∞) are open in N. Since, of course, O1 ∩ O2 = ∅ and

O1 ∪ O2 = N, this shows that N is not connected. �

(c) The set of rational numbers Q is not connected in R.

Proof The subsets O1 :=
{

x ∈ Q ; x <
√

2
}

and O2 :=
{

x ∈ Q ; x >
√

2
}

are open,

nonempty and satisfy O1 ∩ O2 = ∅ and O1 ∪ O2 = Q. �

4.2 Proposition For any metric space X, the following are equivalent:

(i) X is connected.

(ii) X is the only nonempty subset of X which is both open and closed.

Proof ‘(i)=⇒(ii)’ Let O be a nonempty subset of X which is both open and closed.
Then Oc is also open and closed in X, and, of course, O ∩ Oc = ∅ and X = O ∪ Oc.
Since X is connected and O is nonempty by hypothesis, it follows that Oc must
be empty. Hence O = X.

‘(ii)=⇒(i)’ Suppose that O1 and O2 are nonempty open subsets of X such
that O1 ∩ O2 = ∅ and O1 ∪ O2 = X. Then O1 = Oc

2 is nonempty, open and closed
in X so, by hypothesis, O1 = Oc

2 = X. This implies O2 = ∅, a contradiction. �

4.3 Remark This proposition is often used for proving statements about connected
sets as follows: Suppose that we want to prove that each element x of a connected
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set X has property E, that is, E(x) holds for all x ∈ X. Set

O :=
{

x ∈ X ; E(x) is true
}

.

Then it suffices to show that the set O is nonempty, open and closed, since then,
by Proposition 4.2, O = X. �

Connectivity in R

The next proposition describes all connected subsets of R and also provides our
first concrete examples of nontrivial connected sets.

4.4 Theorem A subset of R is connected if and only if it is an interval.

Proof Because of Example 4.1(a) we can suppose that the subset contains more
than one element.
‘=⇒’ Let X ⊆ R be connected.

(i) Set a := inf(X) ∈ R̄ and b := sup(X) ∈ R̄. Since X has at least two ele-
ments, the interval (a, b) is nonempty and1 X ⊆ (a, b) ∪ {a, b}.

(ii) We prove first the inclusion (a, b) ⊆ X. Suppose, to the contrary, that
(a, b) is not contained in X. Then there is some c ∈ (a, b) which is not in X.
Set O1 := X ∩ (−∞, c) and O2 := X ∩ (c,∞). Then O1 and O2 are, by Proposi-
tion 2.26, open in X. Of course, O1 and O2 are disjoint and their union is X. By
our choice of a, b and c there are elements x, y ∈ X such that x < c and y > c.
This means that x is in O1 and y is in O2, and so O1 and O2 are nonempty. Hence
X is not connected, contradicting our hypothesis.

(iii) Since we have shown the inclusions (a, b) ⊆ X ⊆ (a, b) ∪ {a, b}, X is an
interval.
‘⇐=’ (i) Suppose, to the contrary, that X is an interval and there are open,
nonempty subsets O1 and O2 of X such that O1 ∩ O2 = ∅ and O1 ∪ O2 = X.
Choose x ∈ O1 and y ∈ O2 and consider first the case x < y. Since R is order
complete, z := sup

(
O1 ∩ [x, y]

)
is a well defined real number.

(ii) The element z cannot be in O1 because O1 is open in X and X is an
interval and so there is some ε > 0 such that [z, z + ε) ⊆ O1 ∩ [x, y]. This contra-
dicts the supremum property of z. Similarly, z cannot be in O2 since otherwise
there is some ε > 0 such that

(z − ε, z] ⊆ O2 ∩ [x, y] ,

which contradicts O1 ∩ O2 = ∅ and the definition of z. Thus z /∈ O1 ∪ O2 = X. On
the other hand, [x, y] is contained in X because X is an interval. This leads to the
contradiction z ∈ [x, y] ⊆ X and z /∈ X. The case y < x can be proved similarly. �

1If a and b are real numbers, then (a, b) ∪ {a, b} = [a, b].
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The Generalized Intermediate Value Theorem

Connected sets have the property that their images under continuous functions
are also connected. This important fact can be proved easily using the results of
Section 2.

4.5 Theorem Let X and Y be metric spaces and f : X → Y continuous. If X
is connected, then so is f(X). That is, continuous images of connected sets are
connected.

Proof Suppose, to the contrary, that f(X) is not connected. Then there are
nonempty subsets V1 and V2 of f(X) such that V1 and V2 are open in f(X),
V1 ∩ V2 = ∅ and V1 ∪ V2 = f(X). By Proposition 2.26, there are open sets Oj in Y
such that Vj = Oj ∩ f(X) for j = 1, 2. Set Uj := f−1(Oj). Then, by Theorem 2.20,
Uj is open in X for j = 1, 2. Moreover

U1 ∪ U2 = X , U1 ∩ U2 = ∅ and Uj �= ∅ , j = 1, 2 ,

which is not possible for the connected set X. �

4.6 Corollary Continuous images of intervals are connected.

We will demonstrate in the next two sections that Theorems 4.4 and 4.5 are
extremely useful tools for the investigation of real functions. Already we note the
following easy consequence of these theorems.

4.7 Theorem (generalized intermediate value theorem) Let X be a connected
metric space and f : X → R continuous. Then f(X) is an interval. In particular,
f takes on every value between any two given function values.

Proof This follows directly from Theorems 4.4 and 4.5. �

Path Connectivity

Let α, β ∈ R with α < β. A continuous function w : [α, β] → X is called a contin-
uous path connecting the end points w(α) and w(β).

� �

�

����

��������

����
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A metric space X is called
path connected if, for each pair
(x, y) ∈ X × X, there is a continu-
ous path in X connecting x and y.
A subset of a metric space is called
path connected if it is a path con-
nected metric space with respect to
the induced metric.

�

�

4.8 Proposition Any path connected space is connected.

Proof Suppose, to the contrary, that there is a metric space X which is path
connected, but not connected. Then there are nonempty open sets O1, O2 in X
such that O1 ∩ O2 = ∅ and O1 ∪ O2 = X. Choose x ∈ O1 and y ∈ O2. By hy-
pothesis, there is a path w : [α, β] → X such that w(α) = x and w(β) = y. Set
Uj := w−1(Oj). Then, by Theorem 2.20, Uj is open in [α, β]. We now have α in U1

and β in U2, as well as U1 ∩ U2 = ∅ and U1 ∪ U2 = [α, β], and so the interval [α, β]
is not connected. This contradicts Theorem 4.4. �

Let E be a normed vector space and a, b ∈ E. The linear structure of E allows
us to consider ‘straight’ paths in E:

v : [0, 1] → E , t �→ (1 − t)a + tb . (4.1)

We denote the image of the path v by [[a, b]].

A subset X of E is called convex if, for each pair (a, b) ∈ X × X, [[a, b]] is
contained in X.

Convex Not convex

4.9 Remarks Let E be a normed vector space.

(a) Every convex subset of E is path connected and connected.

Proof Let X be convex and a, b ∈ X. Then (4.1) defines a path in X connecting a and b.

Thus X is path connected. Proposition 4.7 then implies that X is connected. �

(b) For all a ∈ E and r > 0, the balls BE(a, r) and B̄E(a, r) are convex.
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Proof For x, y ∈ BE(a, r) and t ∈ [0, 1] we have

‖(1 − t)x + ty − a‖ = ‖(1 − t)(x − a) + t(y − a)‖
≤ (1 − t) ‖x − a‖ + t ‖y − a‖ < (1 − t)r + tr = r .

This inequality implies that [[x, y]] is in BE(a, r). The second claim can be proved simi-

larly. �

(c) A subset of R is convex if and only if it is an interval.

Proof Let X ⊆ R be convex. Then, by (a), X is connected and so, by Theorem 4.4, X is

an interval. The claim that intervals are convex is clear. �

In R2 there are simple exam-
ples of connected sets which are
not convex. Even so, in such cases,
it seems plausible that any pair of
points in the set can be joined with
a path which consists of finitely
many straight line segments. The
following theorem shows that this
holds, not just in R2, but in any
normed vector space, so long as the
set is open.

�����

����

����

Let X be a subset of a normed vector space. A function w : [α, β] → X is
called a polygonal path2 in X if there are n ∈ N and real numbers α0, . . . , αn+1

such that α = α0 < α1 < · · · < αn+1 = β and

w
(
(1 − t)αj + tαj+1

)
= (1 − t)w(αj) + tw(αj+1)

for all t ∈ [0, 1] and j = 0, . . . , n.

4.10 Theorem Let X be a nonempty, open and connected subset of a normed
vector space. Then any pair of points of X can be connected by a polygonal path
in X.

Proof Let a ∈ X and

M :=
{

x ∈ X ; there is a polygonal path in X connecting x and a
}
.

We now apply the proof technique described in Remark 4.3.
(i) Because a ∈ M , the set M is not empty.
(ii) We next prove that M is open in X. Let x ∈ M . Since X is open, there is

some r > 0 such that B(x, r) ⊆ X. By Remark 4.9(b), for each y ∈ B(x, r), the set
[[x, y]] is contained in B(x, r) and so also in X. Since x ∈ M , there is a polygonal
path w : [α, β] → X such that w(α) = a and w(β) = x.

2The function w : [α, β] → X is clearly left and right continuous at each point, and so, by
Proposition 1.12, is continuous. Thus a polygonal path is, in particular, a path.
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�

�

� ��� ��

��������

�

� � ����

Now define w̃ : [α, β + 1] → X by

w̃(t) :=
{

w(t) , t ∈ [α, β] ,

(t − β)y + (β + 1 − t)x , t ∈ (β, β + 1] .

Then w̃ is a polygonal path in X which connects a and y. This shows that B(x, r)
is contained in M , x is an interior point of M , and M is open in X.

(iii) It remains to show that M is closed. Let y ∈ X\M . Since X is open,
there is some r > 0 such that B(y, r) is contained in X. The sets B(y, r) and M
must be disjoint since, if x ∈ B(y, r) ∩ M , then, by the argument of (ii), there
would be a polygonal path in X connecting a and y, and so y is in M , contrary to
assumption. Thus y is an interior point of X\M and, since y ∈ X\M is arbitrary,
X\M is open. This implies that M is closed in X. �

4.11 Corollary An open subset of a normed vector space is connected if and
only if it is path connected.

Proof This follows from Proposition 4.8 and Theorem 4.10. �

Connectivity in General Topological Spaces

To end this section we analyze the above proofs for their dependence on the existence of

a metric.

4.12 Remarks (a) The definitions of ‘connected’ and ‘path connected’ depend on the
topology only and do not make use of a metric. Hence these are valid in any topological
space. The same is true for Propositions 4.2, 4.5 and 4.8. In particular, the generalized
intermediate value theorem (Theorem 4.7) holds when X is an arbitrary topological
space.

(b) There are examples of connected spaces which are not path connected. For this
reason, Theorem 4.10 is particularly useful. �

Exercises

In the following, X is a metric space.

1 Prove the equivalence of the following:



III.4 Connectivity 269

(a) X is connected.

(b) There is no continuous surjection X → {0, 1}.
2 Suppose that Cα ⊆ X is connected for each α in an index set A. Show that

⋃
α Cα is

connected if Cα ∩ Cβ 
= ∅ for all α, β ∈ A. That is, arbitrary unions of connected pairwise
nondisjoint sets are connected. (Hint: Use Exercise 1 and prove by contradiction.)

3 Show by example that the intersection of connected sets is not, in general, connected.

4 Let Xj , j = 1, . . . , n, be metric spaces. Prove that the product X1 × · · · × Xn is
connected if and only if each Xj is connected. (Hint: Write X × Y as a union of sets of
the form

(
X × {y}

)
∪
(
{x} × Y

)
.)

5 Show that the closure of a connected set is also connected. (Hint: Consider a contin-
uous function f : A → {0, 1} and use f(A) ⊆ f(A) (see Exercise 2.12).)

6 Given an element x ∈ X, the set

K(x) :=
⋃

Y ∈M

Y where M := {Y ⊆ X ; Y is connected and x ∈ Y }

is, by Exercise 2, the largest connected subset of X which contains x, and hence is called
the connected component of x in X. Prove the following:

(a)
{

K(x) ; x ∈ X
}

is a partition of X, that is, each x ∈ X is contained in exactly one
connected component of X.

(b) Each connected component is closed.

7 Determine all the connected components of Q in R.

8 Let E = (E, ‖·‖) be a normed vector space with dim(E) ≥ 2. Prove that E\{0} and
the unit sphere S := {x ∈ E ; ‖x‖ = 1 } are connected.

9 Prove that the following metric spaces X and Y are not homeomorphic (see Exer-
cise 3.3):

(a) X := S1, Y := [0, 1].

(b) X := R, Y := Rn, n ≥ 2.

(c) X := (0, 1) ∪ (2, 3), Y := (0, 1) ∪ (2, 3].

(Hint: In each case, remove one or two points from X.)

10 Show that the set O(n) of all real orthogonal n × n matrices is not connected.
(Hint: The function O(n) → {−1, 1}, A �→ det A is continuous and surjective (see Exer-
cise 1.16).)

11 For bj,k ∈ R, 1 ≤ j, k ≤ n, consider the bilinear form

B : Rn × Rn → R , (x, y) �→
n∑

j,k=1

bj,kxjyk .

If B(x, x) > 0 (or B(x, x) < 0) for all x ∈ Rn\{0}, then B is called positive (or negative)
definite. If B is neither positive nor negative definite, it is indefinite. Show the following:

(a) If B is indefinite, then there is some x ∈ Sn−1 such that B(x, x) = 0.

(b) If B is positive definite, then there is some β > 0 such that B(x, x) ≥ β |x|2, x ∈ Rn.

(Hint: For (a), use the intermediate value theorem. For (b), use the extreme value theo-
rem.)
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12 Let E be a vector space. Suppose that x1, . . . , xn ∈ E and α1, . . . , αn ∈ R+ are such
that

∑n
j=1 αj = 1. Then

∑n
j=1 αjxj is called a convex combination of x1, . . . , xn.

Prove the following:

(a) Arbitrary intersections of convex subsets of E are convex.

(b) A subset M of E is convex if and only if M is closed under convex combinations,
that is, every convex combination of points of M is in M .

(c) If E is a normed vector space and M ⊆ E is convex, then M̊ and M are also convex.
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5 Functions on R

Our abstract development of continuity is especially fruitful when applied to real
valued functions on R. This is, of course, a consequence of the rich structure of R.

Bolzano’s Intermediate Value Theorem

Applying the generalized intermediate value theorem to real valued functions gives
Bolzano’s original version of this important theorem.

5.1 Theorem (Bolzano’s intermediate value theorem) Suppose that I ⊆ R is an
interval and f : I → R is continuous. Then f(I) is an interval. That is, continuous
images of intervals are intervals.

Proof This follows from Theorems 4.4 and 4.7. �

In the following I denotes a nonempty interval in R.

5.2 Examples (a) The claim in Bolzano’s intermediate value theorem is false
if f is not continuous or is not defined on an interval. This is illustrated by the
functions whose graphs are below:

�

�

�

�

(b) If f : I → R is continuous and there are a, b ∈ I such that f(a) < 0 < f(b),
then there is some ξ between a and b such that f(ξ) = 0.

�

�

� � � �

(c) Every polynomial p ∈ R[X] with odd degree has a real zero.
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Proof Without loss of generality, we can write p in the form

p = X2n+1 + a2nX2n + · · · + a0

with n ∈ N and ak ∈ R. Then

p(x) = x2n+1
(
1 +

a2n

x
+ · · · + a0

x2n+1

)
, x ∈ R× .

For a sufficiently large R > 0 we have

1 +
a2n

R
+ · · · + a0

R2n+1
≥ 1 − |a2n|

R
− · · · − |a0|

R2n+1
≥ 1

2
,

and so p(R) ≥ R2n+1/2 > 0 and p(−R) ≤ −R2n+1/2 < 0. Since polynomial functions are

continuous, the claim follows from (b). �

Monotone Functions

The order completeness of R has far reaching consequences for monotone functions.
As a first example, we show the existence of the left and right limits of a monotone,
but not necessarily continuous, real function at the ends of an interval.

5.3 Proposition Let f : I → R be monotone, α := inf I and β := sup I. Then

lim
x→α+

f(x) =
{

inf f(I) , if f is increasing ,

sup f(I) , if f is decreasing ,

and

lim
x→β−

f(x) =
{

sup f(I) , if f is increasing ,

inf f(I) , if f is decreasing .

Proof Suppose that f is increasing and b := sup f(I) ∈ R̄. By the definition of b,
for each γ < b, there is some xγ ∈ I such that f(xγ) > γ. Since f is increasing we
have

γ < f(xγ) ≤ f(x) ≤ b , x ≥ xγ .

The analog of Remark 2.23 for left-sided limits then implies limx→β− f(x) = b.
The claims for the left end of the interval and for decreasing functions are proved
similarly. �

To investigate discontinuities and continuous extensions of real functions, we
need the following lemma.
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5.4 Lemma Let D ⊆ R, t ∈ R and

Dt := D ∩ (−∞, t) ∩ D ∩ (t,∞) .

If Dt is not empty, then Dt = {t} and there are sequences (rn), (sn) in D such
that

rn < t , sn > t , n ∈ N , and lim rn = lim sn = t .

Proof Suppose that Dt �= ∅ and τ ∈ Dt. Then, by the definition of Dt and Propo-
sition 2.9, there are sequences (rn) and (sn) in D such that
(i) rn < t, n ∈ N, and lim rn = τ , (ii) sn > t, n ∈ N, and lim sn = τ .
By Proposition II.2.7, (i) implies τ ≤ t and (ii) implies τ ≥ t. Thus τ = t, and all
claims are proved. �

5.5 Examples (a) Let D be an interval. Then

Dt =

{
{t} , t ∈ D̊ ,

∅ , t /∈ D̊ .

(b) If D = R×, then Dt = {t} for each t ∈ R. �

We now consider a function f : D → X where X = (X, d) is a metric space
and D is a subset of R. Let t0 ∈ R be such that Dt0 �= ∅. If the one-sided limits
f(t0+) = limt→t0+ f(t) and f(t0−) = limt→t0− f(t) exist and are distinct, then t0
is called a jump discontinuity of f and d(f(t0+), f(t0−)) is called the size of the
jump discontinuity at t0.

�
�� �

�
�� �

5.6 Proposition If f : I → R is monotone, then f is continuous except perhaps
at countably many jump discontinuities.

Proof It suffices to consider the case of an increasing function f : I → R. For
t0 ∈ I̊, Proposition 5.3 applied to each of the restricted functions f |I ∩ (−∞, t0)
and f |I ∩ (t0,∞) implies that limt→t0+ f(t) and limt→t0− f(t) exist. Because of
Propositions 1.12 and 1.13, it suffices to show that the set

M :=
{

t0 ∈ I̊ ; f(t0−) �= f(t0+)
}
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is countable. For each t ∈ M , we have f(t−) < f(t+) and so we can choose some
r(t) ∈ Q ∩

(
f(t−), f(t+)

)
. This defines a function

r : M → Q , t �→ r(t) ,

which must be injective because f is increasing. Thus M is equinumerous to a
subset of Q. In particular, by Propositions I.6.7 and I.9.4, M is countable. �

Continuous Monotone Functions

The important theorem which follows shows that any strictly monotone continuous
function is injective and has a continuous monotone inverse function defined on
its image.

5.7 Theorem (inverse function theorem for monotone functions ) Suppose that
I ⊆ R is a nonempty interval and f : I → R is continuous and strictly increasing
(or strictly decreasing).

(i) J := f(I) is an interval.

(ii) f : I → J is bijective.

(iii) f−1 : J → I is continuous and strictly increasing (or strictly decreasing).

Proof Claim (i) follows from Theorem 5.1, and (ii) is a direct consequence of the
strict monotonicity of f .

To prove (iii), suppose that f is strictly increasing and set g := f−1 : J → I.
If s1, s2 ∈ J are such that s1 < s2, then g(s1) < g(s2) since otherwise

s1 = f
(
g(s1)

)
≥ f

(
g(s2)

)
= s2 .

Thus g is strictly increasing.
To prove the continuity of g : J → I it suffices to consider the case when

J has more than one point since otherwise the claim is clear. Suppose that g is
not continuous at s0 ∈ J . Then there are ε > 0 and a sequence (sn) in J such that

|sn − s0| < 1/n and |g(sn) − g(s0)| ≥ ε , n ∈ N× . (5.1)

Thus sn ∈ [s0 − 1, s0 + 1] for all n ∈ N×, and, since g is increasing, there are
α, β ∈ R such that α < β and

tn := g(sn) ∈ [α, β] .

By the Bolzano-Weierstrass theorem, the sequence (tn) has a convergent subse-
quence (tnk

)k∈N. Let t0 be the limit of this subsequence. Then the continuity of f
implies that f(tnk

) → f(t0) as k → ∞. But, from the first claim of (5.1), we also
know that f(tnk

) = snk
converges to s0. Thus s0 = f(t0) and so

g(snk
) = tnk

→ t0 = g(s0) (k → ∞) .

This contradicts the second claim of (5.1) and completes the proof. �
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5.8 Examples (a) For each n ∈ N×, the function

R+ → R+ , x �→ n
√

x

is continuous1 and strictly increasing. In addition, limx→∞ n
√

x = ∞.

Proof For n ∈ N×, let f : R+ → R+ be defined by t �→ tn. Being the restriction of a
polynomial function, f is continuous. If 0 ≤ s < t, then

f(t) − f(s) = tn − sn = tn
(
1 −

( s

t

)n)
> 0 ,

which shows that f is strictly increasing. Finally limt→∞ f(t) = ∞ and so all claims

follow from Theorem 5.7. �

(b) The continuity claim of Theorem 5.7(iii) is false, in general, if I is not an
interval.

Proof The function f : Z → R of Example 1.9(c) is continuous and strictly increasing,

but the inverse function of f is not continuous. �

Further important applications of the inverse function theorem for monotone
functions appear in the following section.

Exercises

In the following, I is a compact interval containing more than one point.

1 Let f : I → I be continuous. Show that f has a fixed point, that is, there is some
ξ ∈ I such that f(ξ) = ξ.

2 Let f : I → R be continuous and injective. Show that f is strictly monotone.

3 Let D be an open subset of R and f : D → R continuous and injective. Prove that
f : D → f(D) is a homeomorphism.2

4 Let α : N → Q be a bijection and, for x ∈ R, let Nx be the set
{

k ∈ N ; α(k) ≤ x
}
.

Let (yn) be a sequence in (0,∞) such that
∑

yn < ∞. Define

f : R → R , x �→
∑

k∈Nx

yk .

Prove the following:3

(a) f is strictly monotone.

(b) f is continuous at each irrational number.

(c) At each rational number q, there is a jump discontinuity of size yn where n = α−1(q).

1See also Exercise II.2.7.
2See Exercise 3.3.
3This exercise shows that Proposition 5.6 cannot be strengthened.
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5 Consider the function

f : [0, 1] → [0, 1] , x �→
{

x , x rational ,

1 − x , x irrational .

Show the following:

(a) f is bijective.

(b) f is not monotone on any subinterval of [0, 1].

(c) f is continuous only at x = 1/2.

6 Let f0 := zigzag (see Exercise 1.1) and

F (x) :=

∞∑
n=0

4−nf0(4
nx) , x ∈ R .

Prove the following:

(a) F is well defined.

(b) F is not monotone on any interval.

(c) F is continuous.

(Hint: (a) For each x ∈ R, find a convergent majorant for
∑

4−nf0(4
nx).

(b) Let fn(x) := 4−nf0(4
nx) for all x ∈ R and n ∈ N. Set a := k · 4−m and h := 4−2m−1

for k ∈ Z and m ∈ N×. Then

fn(a) = 0 , n ≥ m , and fn(a ± h) = 0 , n ≥ 2m + 1 ,

and so F (a ± h) − F (a) ≥ h. Finally approximate an arbitrary x ∈ R by k · 4−m with
k ∈ Z and m ∈ N×.
(c) For x, y ∈ R and m ∈ N×, we have |F (x) − F (y)| ≤ ∑m

k=0 |fk(x) − fk(y)| + 4−m/3.)

7 Let f : I → R be monotone. Prove that ωf (x) = |f(x+) − f(x−)| where ωf (x) is de-

fined as in Exercise 1.17.
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6 The Exponential and Related Functions

In this (rather long) section we study one of the most important functions of
mathematics, the exponential function. Its importance is apparent already in its
close relationship to the trigonometric and logarithm functions, which we also
investigate.

Euler’s Formula

In Chapter II, we defined the exponential function using the exponential series,

exp(z) := ez :=
∞∑

n=0

zn

n!
= 1 + z +

z2

2!
+

z3

3!
+ · · · , z ∈ C .

The use of the notation ez for exp(z) is justified by Example II.8.12(b). Associated
with this series are the cosine series∑

(−1)n z2n

(2n)!
= 1 − z2

2!
+

z4

4!
− + · · · ,

and the sine series∑
(−1)n z2n+1

(2n + 1)!
= z − z3

3!
+

z5

5!
− + · · · .

We will show that — analogous to the exponential series — the cosine and sine
series converge absolutely everywhere. The functions defined by these series,

cos : C → C , z �→
∞∑

n=0

(−1)n z2n

(2n)!

and

sin : C → C , z �→
∞∑

n=0

(−1)n z2n+1

(2n + 1)!
,

are called the cosine and sine functions.1

6.1 Theorem

(i) The exponential, cosine and sine series have infinite radii of convergence.

(ii) The functions exp, cos, sin are real valued on real arguments.

(iii) The addition theorem for the exponential function holds:

ew+z = ewez , w, z ∈ C .

1We will later see that these definitions give the familiar trigonometric functions.
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(iv) Euler’s formula holds:

ei z = cos z + i sin z , z ∈ C . (6.1)

(v) The functions exp, cos and sin are continuous on C.

Proof (i) In Example II.8.7(c), we have already proved that the exponential series
has radius of convergence ∞. Thus Hadamard’s formula yields

∞ =
1

lim
n→∞

n
√

1/n!
= lim

n→∞
n
√

n! .

By Theorem II.5.7, the sequence
(

n
√

n!
)
n∈N

and all of its subsequences converge
to ∞. Thus

1
lim

n→∞
2n
√

1/(2n)!
= lim

n→∞
2n
√

(2n)! = ∞

and
1

lim
n→∞

2n+1
√

1/(2n + 1)!
= lim

n→∞
2n+1
√

(2n + 1)! = ∞ ,

so that, by Hadamard’s formula, the cosine and sine series have infinite radii of
convergence.

(ii) Because R is a field, all partial sums of the above series are real if z is
real. Since R is closed in C, the claim follows.

(iii) This is proved in Example II.8.12(a).

(iv) For n ∈ N, we have

i2n = (i2)n = (−1)n and i2n+1 = i · i2n = i · (−1)n .

Thus, by Proposition II.7.5,

ei z =
∞∑

n=0

(iz)n

n!
=

∞∑
k=0

(iz)2k

(2k)!
+

∞∑
k=0

(iz)2k+1

(2k + 1)!
= cos z + i sin z

for all z ∈ C.

(v) This follows from Proposition 1.7. �

6.2 Remarks (a) Cosine is an even function and sine is an odd function, that is,2

cos(z) = cos(−z) and sin(z) = − sin(−z) , z ∈ C . (6.2)

2See Exercise II.9.7.
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(b) From (a) and Euler’s formula (6.1) we get

cos(z) =
ei z + e−i z

2
, sin(z) =

ei z − e−i z

2i
, z ∈ C . (6.3)

(c) For w, z ∈ C, we have

ez �= 0 , e−z = 1/ez , ez−w = ez/ew , ez = ez .

Proof From the addition theorem we get eze−z = ez−z = e0 = 1, from which the first
three claims follow.

By Example 1.3(i), the function C → C, w �→ w is continuous. Theorem 1.4 then
implies that

ez = lim
n→∞

n∑
k=0

zk

k!
= lim

n→∞

n∑
k=0

zk

k!
= ez

for all z ∈ C. �

(d) For all x ∈ R, cos(x) = Re(eix) and sin(x) = Im(eix).

Proof This follows from Euler’s formula and Theorem 6.1(ii). �

In the following proposition we use the name ‘trigonometric function’ for
cosine and sine. This usage is justified after Remarks 6.18.

6.3 Proposition (addition theorem for trigonometric functions) For all z, w ∈ C
we have3

(i) cos(z ± w) = cos z cos w ∓ sin z sin w,
sin(z ± w) = sin z cos w ± cos z sin w.

(ii) sin z − sin w = 2 cos
z + w

2
sin

z − w

2
,

cos z − cos w = −2 sin
z + w

2
sin

z − w

2
.

Proof (i) The formulas in (6.3) and the addition theorem for the exponential
function yield

cos z cos w − sin z sin w =
1
4
{
(ei z + e−i z)(eiw + e−iw) + (ei z − e−i z)(eiw − e−iw)

}
=

1
2
{
ei (z+w) + e−i (z+w)

}
= cos(z + w)

for all z, w ∈ C. Using also (6.2), we get

cos(z − w) = cos z cos w + sin z sin w , z, w ∈ C .

The second formula in (i) can be proved similarly.
3When no misunderstanding is possible, it is usual to write cos z and sin z instead of cos(z)

and sin(z).
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(ii) For z, w ∈ C, set u := (z + w)/2 and v := (z − w)/2. Then u + v = z
and u − v = w, and so, using (i), we get

sin z − sin w = sin(u + v) − sin(u − v) = 2 cos u sin v

= 2 cos
z + w

2
sin

z − w

2
.

The second formula in (ii) can be proved similarly. �

6.4 Corollary For z ∈ C, cos2 z + sin2 z = 1.

Proof Setting z = w in Proposition 6.3(i) we get

cos2 z + sin2 z = cos(z − z) = cos(0) = 1 ,

which proves the claim. �

If we write z ∈ C in the form z = x + iy with x, y ∈ R, then ez = exeiy. This
simple observation shows that the exponential function is completely determined
by the real exponential function expR := exp |R and the restriction of exp to iR,
that is, by expiR := exp |iR. Hence, to understand the ‘complex’ exponential func-
tion exp : C → C, we begin by studying these two functions separately.

The Real Exponential Function

We collect in the next proposition the most important qualitative properties of
the function expR.

6.5 Proposition

(i) If x < 0, then 0 < ex < 1. If x > 0, then 1 < ex < ∞.

(ii) expR : R → R+ is strictly increasing.

(iii) For each α ∈ Q,

lim
x→∞

ex

xα
= ∞ ,

that is, the exponential function increases faster than any power function.
(iv) lim

x→−∞ ex = 0.

Proof (i) From

ex = 1 +
∞∑

n=1

xn

n!
, x ∈ R ,

we see that ex > 1 for all x > 0. If x < 0, then −x > 0 and so e−x > 1. This implies
ex = e−(−x) = 1/e−x ∈ (0, 1).
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(ii) Let x, y ∈ R be such that x < y. Since ex > 0 and ey−x > 1, it follows
that

ey = ex+(y−x) = exey−x > ex .

(iii) It suffices to consider the case α > 0. Let n :=  α! + 1. It follows from
the exponential series that ex > xn+1/(n + 1)! for all x > 0. Thus

ex

xα
>

ex

xn
>

x

(n + 1)!
, x > 0 ,

which proves the claim.

(iv) If we set α = 0 in (iii) we get limx→∞ ex = ∞. Thus

lim
x→−∞ ex = lim

y→∞ e−y = lim
y→∞

1
ey

= 0 ,

and all the claims are proved. �

The Logarithm and Power Functions

From Proposition 6.5 we have

expR : R → R+ is continuous and strictly increasing and exp(R) = (0,∞) .

Thus, by Theorem 5.7, the real exponential
function has a continuous and strictly in-
creasing inverse function defined on (0,∞).
This inverse function is called the (natural)
logarithm and is written log, that is,

log := (expR)−1 : (0,∞) → R .

In particular, log 1 = 0 and log e = 1.

���

���

6.6 Theorem (addition theorem for the logarithm function) For all x, y ∈ (0,∞),

log(xy) = log x + log y and log(x/y) = log x − log y .

Proof Let x, y ∈ (0,∞). For a := log x and b := log y, we have x = ea and y = eb.
The addition theorem for the exponential function then implies xy = eaeb = ea+b

and x/y = ea/eb = ea−b, from which the claims follow. �
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6.7 Proposition For all a > 0 and r ∈ Q,4

ar = er log a . (6.4)

Proof By definition, we have a = elog a, and so Theorem 6.1(iii) implies that
an = (elog a)n = en log a for all n ∈ N. In addition,

a−n = (elog a)−n =
1

(elog a)n
=

1
en log a

= e−n log a , n ∈ N .

Now set x := e
1
n log a. Then xn = en( 1

n log a) = elog a = a and hence, by Proposi-
tion I.10.9, e

1
n log a = a

1
n for all n ∈ N×.

Now let r ∈ Q. Then there are p ∈ Z and q ∈ N× such that r = p/q. From
above we have

ar = a
p
q =

(
a

1
q
)p =

(
e

1
q log a

)p = e
p
q log a = er log a ,

which completes the proof of (6.4). �

Let a > 0. So far we have defined ar only for rational exponents r, and for
such exponents we have shown that ar = er log a. Since er log a is defined for any
real number r ∈ R, this suggests an obvious generalization. Specifically, we define

ax := ex log a , x ∈ R , a > 0 .

6.8 Proposition For all a, b > 0 and x, y ∈ R,

axay = ax+y ,
ax

ay
= ax−y , axbx = (ab)x ,

ax

bx
=
(a

b

)x

,

log(ax) = x log a , (ax)y = axy .

Proof For example,

axay = ex log aey log a = e(x+y) log a = ax+y

and
(ax)y = (ex log a)y = exy log a = axy .

The remaining claims can be proved similarly. �

4Note that the left side of (6.4) is the rth power of the positive number a as defined in
Remark I.10.10(d), whereas, the right side is the value of the exponential function at r · log a ∈ R.
Note also that in the case a = e, (6.4) reduces to Example II.8.12(b).
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6.9 Proposition For all α > 0,

lim
x→∞

log x

xα
= 0 and lim

x→0+
xα log x = 0 .

In particular, the logarithm function increases more slowly than any (arbitrarily
small) positive power function.

Proof Since the logarithm is increasing, it follows from Proposition 6.5(iii) that

lim
x→∞

log x

xα
= lim

x→∞
log x

eα log x
= lim

y→∞
y

eαy
=

1
α

lim
t→∞

t

et
= 0 .

For the second limit we have

lim
x→0+

xα log x = lim
y→∞

(1
y

)α

log
1
y

= − lim
y→∞

log y

yα
= 0 ,

which proves the claim. �

Note that Proposition 6.5(iii) is also valid for α ∈ R.

The Exponential Function on iR

The function expiR has a completely different nature than the real exponential
function expR. For example, while expR is strictly increasing, we will prove that
expiR is a periodic function. In the process of determining its period we will define
the constant π. To prove these claims, we first need a few lemmas.

6.10 Lemma |ei t| = 1 for all t ∈ R.

Proof Since ez = ez for all z ∈ C, we have

|ei t|2 = ei t(ei t) = ei te−i t = e0 = 1 , t ∈ R ,

from which the claim follows. �

Rather than expiR, it is sometimes useful to consider the function

cis : R → C , t �→ ei t .

Lemma 6.10 says that the image of cis is contained in S1 := { z ∈ C ; |z| = 1 }. In
the next lemma we strengthen this result and prove that the image of cis is all
of S1.
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6.11 Lemma cis(R) = S1.

Proof (i) In the first step we show that the image of the cosine function is

cos(R) = pr1
[
cis(R)

]
= [−1, 1] . (6.5)

The first equality in (6.5) is a clear consequence of Euler’s formula. To prove
the second equality, set I := cos(R). Then it follows from Bolzano’s intermediate
value theorem (Theorem 5.1) that I is an interval. In addition, we know from
Lemma 6.10 that

I = pr1
(
cis(R)

)
⊆ [−1, 1] .

Of course, 1 = cos(0) is in I, but I = {1} is not possible since, if cos(z) = 1 for
all z ∈ R, then, by Corollary II.9.9, the cosine series would be 1 + 0z + 0z2 + · · ·.
Thus I has the form

I = [a, 1] or I = (a, 1]

for some suitable a ∈ [−1, 1).
Suppose that a is not equal to −1. Since a0 := (a + 1)/2 is in I, there is some

t0 ∈ R such that a0 = cos t0. Set

z0 := cis(t0) = cos t0 + i sin t0 .

Then, by Corollary 6.4,

pr1(z
2
0) = Re

(
(cos t0 + i sin t0)2

)
= cos2 t0 − sin2 t0

= 2 cos2 t0 − 1 = 2a2
0 − 1 = a − 1 − a2

2
< a ,

since, by assumption, a2 < 1. The inequality pr1(z2
0) < a contradicts the fact that

pr1(z2
0) = pr1(e2i t0) is in I. Thus we conclude that a = −1.
To complete the proof of (6.5), it remains to show that −1 is in I. We know

that there is some t0 ∈ R such that cos t0 = 0. Since sin2 t0 = 1 − cos2 t0 = 1, this
implies z0 = ei t0 = i sin t0 = ±i . Thus

−1 = pr1(−1) = pr1(z
2
0) = pr1(e

2i t0) ∈ I ,

as claimed.
(ii) We prove next that S1 ⊆ cis(R). If z ∈ S1, then

Re z ∈ [−1, 1] = pr1
(
cis(R)

)
,

and so, by (i), there is some t ∈ R such that Re z = Re ei t. Moreover, it follows
from |z| = 1 = |ei t| that either z = ei t or z = ei t. In the first case, z ∈ cis(R) is
clear. Otherwise z = ei t and, from z = z = ei t = e−i t, it follows that z ∈ cis(R) in
this case too. Thus we have proved S1 ⊆ cis(R). This, together with Lemma 6.10,
implies cis(R) = S1. �
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6.12 Lemma The set M := { t > 0 ; ei t = 1 } has a minimum element.

Proof (i) First we show that M is nonempty. By Lemma 6.11, there is some
t ∈ R× such that ei t = −1. Because

e−i t =
1

ei t
=

1
−1

= −1 ,

we can suppose that t > 0. Then e2i t = (ei t)2 = (−1)2 = 1 and M is nonempty.

(ii) Next we show that M is closed in R. To prove this, choose a sequence (tn)
in M which converges to t∗ ∈ R. Since tn is positive for all n, we have t∗ ≥ 0. In
addition, the continuity of cis implies

ei t∗ = cis(t∗) = cis(lim tn) = lim cis(tn) = 1 .

To prove that M is closed, it remains to show that t∗ is positive. Suppose, to
the contrary, that t∗ = 0. Then there is some m ∈ N such that tm ∈ (0, 1). From
Euler’s formula we have 1 = ei tm = cos tm + i sin tm and so sin tm = 0.

Applying Corollary II.7.9 to the sine series

sin t = t − t3

6
+

t5

5!
− + · · ·

we get
sin t ≥ t(1 − t2/6) , 0 < t < 1 . (6.6)

For tm, this yields 0 = sin tm ≥ tm(1 − t2m/6) > 5tm/6, a contradiction. Thus M is
closed.

(iii) Since M is a nonempty closed set which is bounded below, it has mini-
mum element. �

The Definition of π and its Consequences

The preceding lemma makes it possible to define a number π by

π :=
1
2

min{ t > 0 ; ei t = 1 } .

We will see in Section VI.5 that the number π defined this way has the usual
geometrical meaning, for example, as the area of a unit circle. For the moment,
however, π is simply the smallest positive real number such that e2πi = 1.

Consider the number eiπ. We have (eiπ)2 = e2πi = 1, and so eiπ = ±1. By
the definition of π, the case eiπ = 1 is not possible, and so eiπ = −1. This implies
also e−iπ = 1/eiπ = −1. These special cases can be used to determine all other
z ∈ C such that ez = 1 or ez = −1.



286 III Continuous Functions

6.13 Proposition

(i) ez = 1 ⇐⇒ z ∈ 2πiZ.
(ii) ez = −1 ⇐⇒ z ∈ πi + 2πiZ.

Proof (i) ‘⇐=’ For all k ∈ Z, we have e2πik = (e2πi )k = 1.
‘=⇒’ Suppose that z = x + iy with x, y ∈ R is such that ez = 1. Then

1 = |ez| = |ex| |eiy| = ex ,

and so x = 0. If k ∈ Z and r ∈ [0, 2π) are such that y = 2πk + r, then

1 = eiy = e2πki ei r = ei r .

The definition of π implies that r = 0, and so z = 2πik with k ∈ Z.
(ii) Since e−iπ = −1, we have ez = −1 if and only if ez−iπ = eze−iπ = 1.

By (i), ez−iπ = 1 if and only if z − iπ = 2πik, that is, z = iπ + 2πik for some
k ∈ Z. �

From Proposition 6.13(i) we have ez+2πik = eze2πik = ez for all k ∈ Z, and
hence the following corollary.

6.14 Corollary The exponential function is periodic5 with period 2πi , that is,

ez = ez+2πik , z ∈ C , k ∈ Z .

Using Proposition 6.13 we can show also that the function cis is bijective on
half open intervals of length 2π.

6.15 Proposition For each a ∈ R, the functions

cis
∣∣ [a, a + 2π) : [a, a + 2π) → S1 ,

cis
∣∣(a, a + 2π] : (a, a + 2π] → S1

are bijective.

Proof (i) Suppose that cis t = cis s for some s, t ∈ R. Since ei (t−s) = 1, there is,
by Proposition 6.13, some k ∈ Z such that t = s + 2πk. This implies that each of
the above functions is injective.

(ii) Let z ∈ S1. By Lemma 6.11, there is some t ∈ R such that cis t = z. Also
there are k1, k2 ∈ Z, r1 ∈ [0, 2π) and r2 ∈ (0, 2π] such that

t = a + 2πk1 + r1 = a + 2πk2 + r2 .

By Corollary 6.14, cis(a + r1) = cis(a + r2) = cis t = z, and so these functions are
also surjective. �

5If E is a vector space and M a set, then f : E → M is periodic with period p ∈ E\{0} if
f(x + p) = f(x) for all x ∈ E.
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6.16 Theorem

(i) cos z = cos(z + 2kπ), sin z = sin(z + 2kπ), z ∈ C, k ∈ Z,
that is, cos and sin are periodic with period 2π.

(ii) For all z ∈ C,
cos z = 0 ⇐⇒ z ∈ π/2 + πZ ,

sin z = 0 ⇐⇒ z ∈ πZ .

(iii) The function sin : R → R is positive on (0, π) and is strictly increasing on
the closed interval [0, π/2].

(iv) cos(z + π) = − cos z, sin(z + π) = − sin z, z ∈ C.
(v) cos z = sin(π/2 − z), sin z = cos(π/2 − z), z ∈ C.
(vi) cos(R) = sin(R) = [−1, 1].

Proof Claim (i) follows from (6.3) and Corollary 6.14.
(ii) From (6.3) and Proposition 6.13 we have

cos z = 0 ⇐⇒ ei z + e−i z = 0 ⇐⇒ e2i z = −1 ⇐⇒ z ∈ π/2 + πZ .

Similarly
sin z = 0 ⇐⇒ ei z − e−i z = 0 ⇐⇒ e2i z = 1 ⇐⇒ z ∈ πZ .

(iii) From what we just proved, sinx �= 0 for x ∈ (0, π). The inequality (6.6)
shows that sinx is positive for all x ∈

(
0,

√
6
)
. Because of the intermediate value

theorem (Theorem 5.1) we must have, in fact,

sin x > 0 , x ∈ (0, π) . (6.7)

Similarly, since cos(0) = 1 and cos t �= 0 for all t ∈ (−π/2, π/2), the intermediate
value theorem implies that cos t > 0 for all t in (−π/2, π/2).

For the second claim, suppose that 0 ≤ x < y ≤ π/2. From Proposition 6.3(ii)
we have

sin y − sin x = 2 cos
y + x

2
sin

y − x

2
. (6.8)

Since (y + x)/2 and (y − x)/2 are in (0, π/2), the right side of (6.8) is positive,
and hence, sin y > sin x.

(iv) From (ii) we have sinπ = 0, and so, by Proposition 6.13(ii),

cos π = cos π + i sin π = eiπ = −1 .

Now let z ∈ C. From Proposition 6.3(i) we get

cos(z + π) = cos z cos π − sin z sin π = − cos z

and
sin(z + π) = sin z cos π + cos z sin π = − sin z .
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(v) From (ii) we have cos(π/2) = 0, and so, using (iii) and Corollary 6.4, we
get

0 < sin(π/2) = | sin(π/2)| =
√

1 − cos2(π/2) = 1 .

From Proposition 6.3(i) we now have

cos(π/2 − z) = cos(π/2) cos z + sin(π/2) sin z = sin z

and
sin(π/2 − z) = sin(π/2) cos z − cos(π/2) sin z = cos z .

(vi) We have already shown in (6.5) that cos(R) = [−1, 1]. From (v) we get
also sin(R) = cos(R). �

6.17 Remarks (a) Because of the equations

sin(x + π) = − sin x , cos x = sin(π/2 − x) , x ∈ R ,

and the fact that sine is an odd function, the real sine and cosine functions are
completely determined by values of sinx on [0, π/2].

��

�

���

���

��

����

���

�

(b) π/2 is the least positive zero of the cosine function.

In principle, this observation, together with the cosine series, can be used to ap-
proximate the number π with arbitrary precision. For example, by Corollary II.7.9,
we have the inequalities

1 − t2

2
< cos t < 1 − t2

2
+

t4

24
, t ∈ R× ,

and so cos 2 < −1/3 and cos t > 0 for all 0 ≤ t <
√

2. From the intermediate value
theorem we know that the cosine function has a zero in the interval

[√
2, 2

)
. Indeed,

since cos t > 0 for all 0 ≤ t <
√

2, the least positive zero, namely π/2, must be
in this interval. Thus 2

√
2 ≤ π < 4. Since two distinct zeros are separated by a

distance π or more, π/2 is the only zero in the interval (0, 2).
For a better approximation, pick some t in the middle of the interval

[√
2, 2

)
,

and then use the cosine series and Corollary II.7.9 to calculate the sign of cos t.
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This will determine whether π/2 is in
[√

2, t
)

or in
(
t, 2

)
. By repeating this process,

π can be determined with arbitrary precision. After considerable effort, one gets6

π = 3.14159 26535 89793 23846 26433 83279 . . .

We will later develop a far more efficient procedure for calculating π.

(c) A complex number is called algebraic if it is a zero of a nonconstant polyno-
mial with integer coefficients. Complex numbers which are not algebraic are called
transcendental numbers. In particular, real transcendental numbers are irrational.

In 1882, F. Lindemann proved that π is transcendental. This, together with
classical results from algebra, provides a mathematical proof of the impossibility
of ‘squaring the circle’. That is, it is not possible, using only a rule and a compass,
to construct a square whose area is equal to the area of a given circle. �

The Tangent and Cotangent Functions

The tangent and cotangent functions are defined by

tan z :=
sin z

cos z
, z ∈ C\

(π

2
+ πZ

)
, cot z :=

cos z

sin z
, z ∈ C\πZ .

Restricted to the real numbers, the tangent and cotangent functions have the
following graphs:

����

���

Tangent

�

Cotangent

6A common mnemonic for the digits of π is

How I like a drink, alcoholic of course,
after the heavy lectures involving quantum mechanics.

The number of letters in each word gives the corresponding digit of π.
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6.18 Remarks (a) The tangent and cotangent functions are continuous, periodic
with period π, and odd.

(b) The addition theorem for the tangent function holds:

tan(z ± w) =
tan z ± tan w

1 ∓ tan z tan w

for all w, z ∈ dom(tan) such that z ± w ∈ dom(tan).

Proof This follows easily from Proposition 6.3(i). �

(c) For all z ∈ C\πZ, cot z = − tan(z − π/2).

Proof This follows directly from Theorem 6.16(iv). �

The Complex Exponential Function

In Propositions 6.1(v) and 6.15 we have seen that the function

cis : [0, 2π) → S1 , t �→ ei t

is continuous and bijective, and so,
for each z ∈ S1, there is a unique
α ∈ [0, 2π) such that

z = eiα = cis(α) = cos α + i sin α .

The number α ∈ [0, 2π) can be inter-
preted as the length of the circular arc
from 1 to z = eiα (see Exercise 12)
or, equally well, as an angle. In addi-
tion we know from Theorem 6.16 that
cis : R → S1 has period 2π. Hence this
function wraps the real axis infinitely
many times around S1.

�

��

����

����

�

� � �
��

����

�

6.19 Proposition For a ∈ R, let Ia be an interval of the form [a, a + 2π) or
(a, a + 2π]. Then the function

exp(R + iIa) : R + iIa → C× , z �→ ez (6.9)

is continuous and bijective.

Proof The continuity is, by Theorem 6.1(v), clear. To verify the injectivity, we
suppose that there are w, z ∈ R + iIa such that ez = ew. Write z = x + iy and
w = ξ + iη with x, y, ξ and η real. Then Lemma 6.10 implies that

ex = |exeiy| = |eξeiη| = eξ , (6.10)
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and so, by Proposition 6.5, x = ξ. We now have

ei (y−η) = ex+iy−(ξ+iy) = ez/ew = 1 ,

which, by Proposition 6.13, implies y − η ∈ 2πZ. By assumption, |y − η| < 2π and
so y = η. Thus we have shown that the function in (6.9) is injective.

Let w ∈ C×. For x := log |w| ∈ R we have ex = |w|. By Proposition 6.15, there
is a unique y ∈ Ia such that eiy = w/|w| ∈ S1. Setting z = x + iy ∈ R + iIa, we
have ez = exeiy = |w| (w/|w|) = w. �

The function of the previous proposition can be represented graphically as
below.

�

��� ���� ��� ����

��

� ��� ���

��

�

��

�

��	

��

��

�
��

Finally we note that

C =
⋃
k∈Z

{
R + i

[
a + 2kπ, a + 2(k + 1)π

) }
is a partition of the complex plane, so it follows from Proposition 6.19 that the
exponential function exp : C → C× wraps the complex plane infinitely many times
around the origin, covering infinitely many times the punctured complex plane C×.

Polar Coordinates

Using the exponential function, we can represent complex numbers using polar
coordinates. In this representation the multiplication of two complex numbers has
a simple geometrical interpretation.
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6.20 Theorem (polar coordinate representa-
tion of complex numbers) Each z ∈ C× has
a unique representation in the form

z = |z| eiα

with α ∈ [0, 2π).

Proof This follows directly from Proposi-
tion 6.19. �

�
�

�

�

��

� � ��� ���

��� � �����

The real number α ∈ [0, 2π) from this theorem is called the normalized argument
of z ∈ C× and is denoted argN (z).

6.21 Remarks (a) (product of complex
numbers) Let w, z ∈ C×, α := argN (z)
and β := argN (w). Multiplying z and w
we get zw = |z| |w| ei (α+β), and so, by
Lemma 6.10 and Corollary 6.14,

|zw| = |z| |w| ,

argN (zw) ≡ argN (z) + argN (w)

modulo 2π.

� �

�� �
�

�
� � �

(b) For n ∈ N×, the equation zn = 1
has exactly n complex solutions, the
nth roots of unity,

zk := e2πik/n , k = 0, . . . , n − 1 .

The points zk are on the unit circle and
are the vertices of a regular n-gon with
one vertex at 1.

(c) For all a ∈ C and k ∈ N×, the equation zk = a is solvable in C.7

Proof If a = 0, the claim is clear. Otherwise, a = |a| ei α with α := argN (a) ∈ [0, 2π).
Set z := k

√
|a|ei α/k. Then

zk = ( k
√

|a|ei α/k)k = ( k
√

|a|)k(ei α/k)k = |a| ei α = a ,

and we have found the desired solution. �

7This closes the gap in the proof of the fundamental theorem of algebra in Example 3.9(b).
It also shows the validity of the assumption in Exercise I.11.15 about the solutions of cubic
equations.
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(d) (polar coordinate representation of the plane) For each (x, y) ∈ R2
∖{

(0, 0)
}

there are unique real numbers r > 0 and α ∈ [0, 2π) such that

x = r cos α and y = r sin α .

Proof Let x, y ∈ R with z := x + iy ∈ C×. Set

r := |z| =
√

x2 + y2 > 0 and α := argN (z) ∈ [0, 2π) .

Then, by Theorem 6.20 and Euler’s formula, we have

x + iy = z = rei α = r cos α + ir sin α ,

from which the claim follows. �

(e) For all z ∈ C, |ez| = eRe z.

Proof This follows from |ez| = |eRe zei Im z| = eRe z |ei Im z| = eRe z. �

Complex Logarithms

For a given w ∈ C×, we want to determine all solutions of the equation ez = w.
From Theorem 6.20 we know that this equation is solvable since

w = elog |w|+i argN (w) .

Now let z ∈ C be an arbitrary solution of ez = w. By Corollary 6.14 and Proposi-
tion 6.15 there is a unique k ∈ Z such that z = log |w| + i argN (w) + 2πki . Hence{

log |w| + i
(
argN (w) + 2πk

)
∈ C ; k ∈ Z

}
is the set of all solutions of the equation ez = w. The set

Arg(w) := argN (w) + 2πZ

is called the argument of w, and the set

Log(w) := log |w| + i Arg(w)

is called the (complex) logarithm of w.

These equations define two set valued functions

Arg : C× → P(C) , w �→ Arg(w) ,

Log : C× → P(C) , w �→ Log(w) ,

called the argument and logarithm functions.
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Since set valued functions are, in general, rather cumbersome, we make use
of the fact that, for each w ∈ C×, there is a unique ϕ =: arg(w) ∈ (−π, π] such
that w = |w| eiϕ. This defines a real valued function

arg : C× → (−π, π] , w �→ arg(w)

called the principal value of the argument. The principal value of the logarithm8

is defined by

log : C× → R + i(−π, π] , w �→ log |w| + i arg(w) .

Propositions 6.5 and 6.15 imply that log is a bijection, and

elog w = w ,

log ez = z ,

w ∈ C× ,

z ∈ R + i(−π, π] .
(6.11)

In particular, log w is defined for w < 0, and, in this case, log w = log |w| + iπ.
For the set valued complex logarithm we have

eLog w = w , w ∈ C× , Log ez = z + 2πiZ , z ∈ C .

Finally,9

Log(zw) = Log z + Log w , Log(z/w) = Log z − Log w (6.12)

for all w, z ∈ C×. This can be proved similarly to the addition theorem of the
natural logarithm (Theorem 6.6).

Complex Powers

For z ∈ C× and w ∈ C,
zw := ew Log z

is called the (complex) power of z. Because Log is a set valued function, zw is a
set. Specifically,

zw =
{

ew(log |z|+i (argN (z)+2πk)) ; k ∈ Z
}

.

The principal value of zw is, of course, defined using the principal value of the
logarithm:

C× → C , z �→ zw := ew log z .

The rules in Proposition 6.8 generalize easily to the principal value of the power
function:

zazb = za+b and za · wa = (zw)a (6.13)

for all w, z ∈ C× and a, b ∈ C.
8For w ∈ (0,∞), this definition is consistent with the real logarithm (exp |R)−1.
9See (I.4.1) for the meaning of + and − on sets.
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6.22 Remarks (a) Theorem 6.1(iii) says that

exp : (C,+) → (C×, ·) (6.14)

is a group homomorphism between the Abelian groups (C,+) and (C×, ·). More-
over, Propositions 6.13 and 6.15 imply that (6.14) is surjective and has kernel 2πiZ.
By Example I.7.8(c), the quotient group (C,+)

/
(2πiZ) is isomorphic to (C×, ·).

(b) The unit circle S1 forms an Abelian group (S1, ·), the circle group under
multiplication (see Exercise I.11.9). From Theorem 6.1(iii) and Propositions 6.13
and 6.15, it follows that

cis : (R,+) → (S1, ·)

is a surjective group homomorphism with kernel 2πZ. Hence the groups (S1, ·) and
(R,+)

/
(2πZ) are isomorphic.

(c) The function
expR : (R,+) →

(
(0,∞), ·

)
is a group isomorphism with inverse log : (0,∞) → R. �

A Further Representation of the Exponential Function

In Exercise II.4.3 we saw that, for rational arguments, the exponential function is
given by

er = lim
n→∞

(
1 +

r

n

)n

.

This result can be generalized to arbitrary complex numbers.

6.23 Theorem For all z ∈ C,

ez = lim
n→∞

(
1 +

z

n

)n

.

Proof Let z ∈ C. From Exercise I.8.1 we have

an − bn = (a − b)
n−1∑
k=0

akbn−k−1 , a, b ∈ C ,

and so

ez − (1 + z/n)n = (ez/n)n − (1 + z/n)n

=
[
ez/n − (1 + z/n)

] n−1∑
k=0

(ez/n)k(1 + z/n)n−1−k .
(6.15)



296 III Continuous Functions

From Example 2.25(b) we know that

rn :=
[ez/n − 1

z/n
− 1

]
→ 0 , n → ∞ . (6.16)

To estimate

Ln :=
n−1∑
k=0

(ez/n)k(1 + z/n)n−1−k , n ∈ N× , (6.17)

we use the inequalities

|ew| = eRe w ≤ e|w| , |1 + w| ≤ 1 + |w| ≤ e|w|

to get

|Ln| ≤
n−1∑
k=0

(e|z|/n)k(e|z|/n)n−1−k = n(e|z|/n)n−1 ≤ ne|z| , n ∈ N× . (6.18)

Combining (6.15), (6.17) and (6.18) we get∣∣∣ez −
(
1 +

z

n

)n∣∣∣ =
∣∣∣ z
n

rnLn

∣∣∣ ≤ ∣∣∣ z
n

∣∣∣ |rn|ne|z| = |z| e|z| |rn| ,

which, with (6.16), proves the claim. �

Exercises

1 Show that the functions cis : R → C and cos, sin : R → R are Lipschitz continuous
with Lipschitz constant 1. (Hint: See Example 2.25(b).)

2 For z ∈ C and m ∈ N, prove de Moivre’s formula,

(cos z + i sin z)m = cos(mz) + i sin(mz) .

3 Prove the following trigonometric identities:

(a) cos2(z/2) = (1 + cos z)/2, sin2(z/2) = (1 − cos z)/2, z ∈ C .

(b) tan(z/2) = (1 − cos z)/ sin z = sin z/(1 + cos z), z ∈ C\(πZ).

4 The hyperbolic cosine and hyperbolic sine functions are defined by

cosh(z) :=
ez + e−z

2
and sinh(z) :=

ez − e−z

2
, z ∈ C .

For w, z ∈ C, show the following:

(a) cosh2 z − sinh2 z = 1.

(b) cosh(z + w) = cosh z cosh w + sinh z sinh w.

(c) sinh(z + w) = sinh z cosh w + cosh z sinh w.

(d) cosh z = cos iz, sinh z = −i sin iz.

(e) cosh z =
∞∑

k=0

z2k

(2k)!
, sinh z =

∞∑
k=0

z2k+1

(2k + 1)!
.
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5 The hyperbolic tangent and hyperbolic cotangent functions are defined by

tanh z :=
sinh(z)

cosh(z)
, z ∈ C\πi(Z+1/2) , and coth z :=

cosh(z)

sinh(z)
, z ∈ C\πiZ .

The functions cosh, sinh, tanh and coth have real values for real arguments. Sketch the
graphs of these real valued functions.

Show the following:

(a) The functions

cosh , sinh , tanh : C\πi(Z + 1/2) → C , coth : C× → C\πiZ

are continuous.

(b) limx→±∞ tanh(x) = ±1, limx→±0 coth(x) = ±∞.

(c) cosh : [0,∞) → R is strictly increasing with cosh
(
[0,∞)

)
= [1,∞).

(d) sinh : R → R is strictly increasing and bijective.

(e) tanh : R → (−1, 1) is strictly increasing and bijective.

(f) coth : (0,∞) → R is strictly decreasing with coth
(
(0,∞)

)
= (1,∞).

(g) tanh : R → (−1, 1) is Lipschitz continuous with Lipschitz constant 1.

6 Determine the following limits:

(a) lim
x→0+

xx , (b) lim
x→0+

x1/x , (c) lim
z→0

log(1 + z)

z
.

(Hint: (c) See Example 2.25(b).)

7 For x, y > 0, prove the inequality

log x + log y

2
≤ log

(x + y

2

)
.

8 Determine the following limits:

(a) lim
z→0

sin z

z
, (b) lim

z→0

az − 1

z
, a ∈ C× .

9 Show that the functions

arg : C\(−∞, 0] → (−π, π) , log : C\(−∞, 0] → R + i(−π, π) ,

are continuous. (Hint: (i) arg = arg ◦ ν with ν(z) := z/|z| for all z ∈ C×.

(ii) arg
∣∣ (S1

∖
{−1}

)
=
[
cis

∣∣ (−π, π)
]−1

. (iii) Use Exercise 3.3(b) for intervals of the
form [−a, a] with a ∈ (0, π).)

10 Prove the following rules for the principal value of the power function:

zazb = za+b , zawa = (zw)a , z, w ∈ C× , a, b ∈ C .

11 Calculate ii and and its principal value.
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12 Let x ∈ R, n ∈ N× and zn,k := ei xk/n ∈ S1 for all k = 0, 1, . . . , n. Set

Ln :=
n∑

k=1

|zn,k − zn,k−1| ,

the length of the polygonal path with vertices zn,0, zn,1, . . . , zn,n. Show that

Ln = 2n
∣∣sin(x/(2n)

)∣∣ and lim
n→∞

Ln = |x| .

Remark For large n ∈ N and x ∈ [0, 2π], the image of [0, x] under the function cis is
approximated by the polygonal path with vertices zn,0, zn,1, . . . , zn,n. Thus Ln is an
approximation of the length of the arc of the circle between 1 and cis(x) = ei x. This
exercise shows that the function cis : R → S1 ‘wraps’ the line R around S1 in such a way
that length is preserved.

13 Investigate the behavior of the function C → C, z �→ z2. In particular, calculate the
images of the hyperbolas x2 − y2 = const, xy = const, as well as the lines x = const,
y = const for z = x + iy.

14 Determine all solutions in C of the following equations:

(a) z4 =
(√

2/2
)
(1 + i).

(b) z5 = i.

(c) z3 + 6z + 2 = 0.

(d) z3 + (1 − 2i)z2 − (1 + 2i)z − 1 = 0.

(Hint: For the cubic equations in (c) and (d), use Exercise I.11.15.)

15 For x ∈ R and n ∈ N, let

fn(x) := lim
k→∞

(
cos(n! πx)

)2k
.

Determine limn→∞ fn(x). (Hint: Consider separately the case x ∈ R\Q, and use the fact
that | cos(mπ)| = 1 if and only if m ∈ Z.)

16 Prove that cosh 1 is irrational. (Hint: Exercise II.7.10.)



Chapter IV

Differentiation in One Variable

In Chapter II we explored the limit concept, one of the most fundamental and
essential notions of analysis. We developed methods for calculating limits and pre-
sented many of its important applications. In Chapter III we considered in detail
the topological foundations of analysis and the concept of continuity. In doing so
we saw, in particular, the connection between continuity and the limit concept.
In the last section of the previous chapter, by applying much of our accumulated
understanding, we investigated several of the most important functions in mathe-
matics.

Even though we seem to know a lot about the exponential function and its
relatives, the cosine and sine functions, our understanding is, in fact, rudimentary
and is limited largely to the global aspects of these functions. In this chapter
we consider primarily the local properties of functions. In doing so, we encounter
again a common theme of analysis, which, expressed simply, is the approximation
of complicated ‘continuous’ behavior by simple (often discrete) structures. This
approximation idea is, of course, at the foundation of the limit concept, and it
appears throughout all of ‘continuous’ mathematics.

Guided at first by our intuitions, we consider the graphs of real valued func-
tions of a real variable. One conceptually simple local approximation of a compli-
cated appearing graph at a particular point is a tangent line. This is a line which
passes through the point and which nearby ‘fits’ the graph as closely as possible.
Then, near the point (as though seen through an arbitrarily powerful microscope),
the function is almost indistinguishable from this linear approximation. We show
that it is possible to describe the local properties of rather general functions using
such linear approximations.

This notion of linear approximations is remarkably fruitful and not restricted
to the intuitive one dimensional case. In fact, it is the foundation for practically
all local investigations in analysis. We will see that finding a linear approximation
is the same as differentiation. Indeed, differentiation, which is covered in the first
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three sections of this chapter, is nothing more than an efficient calculus of linear
approximations. The importance of this idea is seen in its many beautiful and often
surprising applications, some of which appear in the last section of this chapter.

In the first section we introduce the concept of differentiability and show its
connection to linear approximations. We also derive the basic rules for calculating
derivatives.

In Section 2, the geometric idea behind differentiation comes fully into play.
By studying the tangent lines to a graph, we determine the local behavior of the
corresponding function. The utility of this technique is made clear, in particular,
in the study of convex functions. As a first simple application, we prove some of
the fundamental inequalities of analysis.

Section 3 is dedicated to approximations of higher order. Instead of approxi-
mating a given function locally using a line, that is, by a polynomial of degree one,
one looks for approximations by polynomials of higher degree. Of course, by doing
so one gets further local information about the function. Such information is, in
particular, useful to determine the nature of extrema.

In the last section we consider the approximate determination of the zeros of
real functions. We prove the Banach fixed point theorem whose practical and the-
oretical importance cannot be overstated, and we use it to prove the convergence
of Newton’s method.

In the entire chapter, we limit ourselves to the study of functions from the real
or complex numbers to arbitrary Banach spaces. The differentiation of functions
of two or more variables is discussed in Chapter VII.
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1 Differentiability

As already mentioned in the introduction to this chapter, our motivation for the
development of differentiation is the desire to describe the local behavior of func-
tions using linear approximations. Thus we are lead to the tangent line problem:
Given a point on the graph of a real function, determine the tangent line to the
graph at that point.

�

����
�

�

Tangent line problem

�

����
�

�

Extreme value problem

�

����
�

�

Osculating circle problem

The problem of finding the extreme values of the function or an osculating circle at
a point, that is, a circle which best fits the graph, is closely related to the tangent
line problem, and thus also to differentiation.

In the following, X ⊆ K is a set, a ∈ X is a limit point of X and E = (E, ‖·‖)
is a normed vector space over K.

The Derivative

A function f : X → E is called differentiable at a if the limit

f ′(a) := lim
x→a

f(x) − f(a)
x − a

exists in E. When this occurs, f ′(a) ∈ E is called the derivative of f at a. Besides
the symbol f ′(a), many other notations for the derivative are used:

ḟ(a) , ∂f(a) , Df(a) ,
df

dx
(a) .

Before we systematically investigate differentiable functions, we provide some
useful reformulations of the definition.

1.1 Theorem For f : X → E, the following are equivalent:

(i) f is differentiable at a.
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(ii) There is some ma ∈ E such that

lim
x→a

f(x) − f(a) − ma(x − a)
x − a

= 0 .

(iii) There are ma ∈ E and a function r : X → E which is continuous at a such
that r(a) = 0 and

f(x) = f(a) + ma(x − a) + r(x)(x − a) , x ∈ X .

In cases (ii) and (iii), ma = f ′(a).

Proof The implication ‘(i)=⇒(ii)’ is clear by setting ma := f ′(a).
‘(ii)=⇒(iii)’ Define

r(x) :=

⎧⎨⎩
0 , x = a ,

f(x) − f(a) − ma(x − a)
x − a

, x �= a .

Then, by Remark III.2.23(b) and (ii), r has the claimed properties.
‘(iii)=⇒(i)’ This is also clear. �

1.2 Corollary If f : X → E is differentiable at a, then f is continuous at a.

Proof This follows immediately from the implication ‘(i)=⇒(iii)’ of Theorem 1.1. �

The converse of Corollary 1.2 is false: There are functions which are contin-
uous but not differentiable (see Example 1.13(k)).

Linear Approximation

Let f : X → E be differentiable at a. Then the function

g : K → E , x �→ f(a) + f ′(a)(x − a)

is affine and g(a) = f(a). Moreover, it follows from Theorem 1.1 that

lim
x→a

‖f(x) − g(x)‖
|x − a| = 0 .

Thus f and g coincide at the point a and the ‘error’ ‖f(x) − g(x)‖ approaches
zero more quickly than |x − a| as x → a. This observation suggests the following
definition: The function f : X → E is called approximately linear at a if there is
an affine function g : K → E such that

f(a) = g(a) and lim
x→a

‖f(x) − g(x)‖
|x − a| = 0 .

The following corollary shows that this property and differentiability are, in fact,
identical.
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1.3 Corollary A function f : X → E is differentiable at a if and only if it is
approximately linear at a. In this case, the approximating affine function g is
unique and given by

g : K → E , x �→ f(a) + f ′(a)(x − a) .

Proof ‘=⇒’ This follows directly from Theorem 1.1.
‘⇐=’ Let g : K → E be an affine function which approximates f at a. By

Proposition I.12.8, there are unique elements b,m ∈ E such that g(x) = b + mx
for all x ∈ K. Since g(a) = f(a), we have, in fact, g(x) = f(a) + m(x − a) for all
x ∈ K. The claim then follows from Theorem 1.1. �

1.4 Remarks (a) Suppose that the function f : X → E is differentiable at a.
As above, define g(x) := f(a) + f ′(a)(x − a) for all x ∈ K. Then the graph of g
is an affine line through

(
a, f(a)

)
which approximates the graph of f near the

point
(
a, f(a)

)
. This line is called the tangent line to f at

(
a, f(a)

)
. In the case

K = R, this definition agrees with our intuitions from elementary geometry.

����

����
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� � �

� � �
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� � �
�
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The expression
f(y) − f(a)

y − a
, y �= a ,

is called a difference quotient of f . The graph of the affine function

h(x) := f(a) +
f(y) − f(a)

y − a
(x − a) , x ∈ K ,

is called the secant line through
(
a, f(a)

)
and

(
y, f(y)

)
. In the case K = R = E,

the differentiability of f at a means that, as y → a, the slope
(
f(y) − f(a)

)/
(y − a)

of the secant line through
(
a, f(a)

)
and

(
y, f(y)

)
converges to the slope f ′(a) of

the tangent line at
(
a, f(a)

)
.

(b) Let X = J ⊆ R be an interval and E = R3. Suppose that f(t) gives the position
of a point in space at time t ∈ J . Then |f(t) − f(t0)|/|t − t0| is the absolute value of
the ‘average speed’ between times t0 and t, and ḟ(t0) represents the instantaneous
velocity of the point at the time t0.
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(c) (i) Suppose that K = E = R and f : X ⊆ R → R is a function which is differ-
entiable at a. Consider f as a function from C to C, that is, set

fC : X ⊆ C → C , fC(x) := f(x) , x ∈ X .

Then fC is also differentiable at a and f ′
C(a) = f ′(a).

(ii) Now suppose that K = E = C and f : X ⊆ C → C is a function which
is differentiable at a ∈ Y := X ∩ R. Suppose also that a is a limit point of Y and
f(Y ) ⊆ R. Then f |Y : Y → R is differentiable at a and (f |Y )′(a) = f ′(a) ∈ R.

Proof This follows directly from the definition, the differentiability of f , and the fact

that R is closed in C. �

Rules for Differentiation

1.5 Proposition Let E1, . . . , En be normed vector spaces and E := E1 × · · · × En.
Then f = (f1, . . . , fn) : X → E is differentiable at a if and only if each component
function fj : X → Ej is differentiable at a. In this case,

∂f(a) =
(
∂f1(a), . . . , ∂fn(a)

)
.

Thus vectors can be differentiated componentwise.

Proof For the difference quotient we have

f(x) − f(a)
x − a

=
(f1(x) − f1(a)

x − a
, . . . ,

fn(x) − fn(a)
x − a

)
, x �= a .

Thus the claim follows from Example II.1.8(e). �

In the next theorem we collect further rules for differentiation which make
the calculation of the derivatives of functions rather easy.

1.6 Theorem

(i) (linearity) Let f, g : X → E be differentiable at a and α, β ∈ K. Then the
function αf + βg is also differentiable at a and

(αf + βg)′(a) = αf ′(a) + βg′(a) .

In other words, the set of functions which are differentiable at a forms a
subspace V of EX , and the function V → E, f �→ f ′(a) is linear.

(ii) (product rule) Let f, g : X → K be differentiable at a. Then the function
f · g is also differentiable at a and

(f · g)′(a) = f ′(a)g(a) + f(a)g′(a) .

The set of functions which are differentiable at a forms a subalgebra of KX .
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(iii) (quotient rule) Let f, g : X → K be differentiable at a with g(a) �= 0. Then
the function f/g is also differentiable at a and(f

g

)′
(a) =

f ′(a)g(a) − f(a)g′(a)[
g(a)

]2 .

Proof All of these claims follow directly from the rules for convergent sequences
which we proved in Section II.2.

For (i) this is particularly clear. For the proof of the product rule (ii), we
write the difference quotient of f · g in the form

f(x)g(x) − f(a)g(a)
x − a

=
f(x) − f(a)

x − a
g(x) + f(a)

g(x) − g(a)
x − a

, x �= a .

By Corollary 1.2, g is continuous at a, and so the claim follows from Proposi-
tions II.2.2 and II.2.4, as well as Theorem III.1.4.

For (iii) we have g(a) �= 0, and so, by Example III.1.3(d), there is a neigh-
borhood U of a in X such that g(x) �= 0 for all x ∈ U . Then, for each x ∈ U \{a}
we have(f(x)

g(x)
− f(a)

g(a)

)
(x − a)−1 =

1
g(x)g(a)

[f(x) − f(a)
x − a

g(a) − f(a)
g(x) − g(a)

x − a

]
,

from which the claim follows. �

The Chain Rule

It is often possible to express a complicated function as a composition of simpler
functions. The following rule describes how such compositions can be differenti-
ated.

1.7 Theorem (chain rule) Suppose that f : X → K is differentiable at a, and
f(a) is a limit point of Y with f(X) ⊆ Y ⊆ K. If g : Y → E is differentiable
at f(a), then g ◦ f is differentiable at a and

(g ◦ f)′(a) = g′
(
f(a)

)
f ′(a) .

Proof By hypothesis and Theorem 1.1, there is a function r : X → K which is
continuous at a such that r(a) = 0 and

f(x) = f(a) + f ′(a)(x − a) + r(x)(x − a) , x ∈ X . (1.1)

Similarly, there is a function s : Y → E which is continuous at b := f(a) such that
s(b) = 0 and

g(y) = g(b) + g′(b)(y − b) + s(y)(y − b) , y ∈ Y . (1.2)
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Now let x ∈ X and set y := f(x) in (1.2). Then, using (1.1),

(g ◦ f)(x) = g
(
f(a)

)
+ g′

(
f(a)

)(
f(x) − f(a)

)
+ s

(
f(x)

)(
f(x) − f(a)

)
= (g ◦ f)(a) + g′

(
f(a)

)
f ′(a)(x − a) + t(x)(x − a) ,

where t(x) := g′
(
f(a)

)
r(x) + s

(
f(x)

)(
f ′(a) + r(x)

)
for all x ∈ X. By hypothesis,

Corollary 1.2 and Theorem III.1.8, t : X → E is continuous at a. Moreover,

t(a) = g′
(
f(a)

)
r(a) + s(b)

(
f ′(a) + r(a)

)
= 0 .

The claim now follows from Theorem 1.1. �

Inverse Functions

Using the chain rule we can derive a criterion for the differentiability of inverse
functions and calculate their derivatives.

1.8 Theorem (differentiability of inverse functions) Let f : X → K be injective
and differentiable at a. In addition, suppose that f−1 : f(X) → X is continuous
at b := f(a). Then f−1 is differentiable at b if and only if f ′(a) is nonzero. In this
case,

(f−1)′(b) =
1

f ′(a)
, b = f(a) .

Proof ‘=⇒’ Applying the chain rule to the identity f−1 ◦ f = idX we get

1 = (idX)′(a) = (f−1)′
(
f(a)

)
f ′(a) ,

and hence, (f−1)′(b) = 1/f ′(a).

‘⇐=’ We first confirm that b is a limit point of Y := f(X). By hypothesis, a is
a limit point of X, and so, by Proposition III.2.9, there is a sequence (xk) in X\{a}
such that limxk = a. Since f is continuous, we have lim f(xk) = f(a). Since f is
injective, we also have f(xk) �= f(a) for all k ∈ N, which shows that b = f(a) is a
limit point of Y .

Now let (yk) be a sequence in Y such that yk �= b for all k ∈ N and lim yk = b.
Set xk := f−1(yk). Then xk �= a and limxk = a, since f−1 is continuous at b.
Because

0 �= f ′(a) = lim
k

f(xk) − f(a)
xk − a

,

there is some K such that

0 �= f(xk) − f(a)
xk − a

=
yk − b

f−1(yk) − f−1(b)
, k ≥ K .
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Hence, for the difference quotient of f−1, we have

f−1(yk) − f−1(b)
yk − b

=
xk − a

f(xk) − f(a)
= 1

/f(xk) − f(a)
xk − a

, k ≥ K ,

and the claim follows by taking the limit k → ∞. �

1.9 Corollary Let I be an interval and f : I → R strictly monotone and contin-
uous. Suppose that f is differentiable at a ∈ I. Then f−1 is differentiable at f(a)
if and only if f ′(a) is nonzero and, in this case, (f−1)′

(
f(a)

)
= 1/f ′(a).

Proof By Theorem III.5.7, f is injective and f−1 is continuous on the interval
J := f(I). Hence the claim follows from Theorem 1.8. �

Differentiable Functions

So far we have considered the following situation: X is an arbitrary subset of K
and a ∈ X is a limit point of X. Under these conditions, we have studied the
differentiability of f : X → E at a. The obvious next question is whether f is
differentiable at every point of X. For this question to make sense it is necessary
that each point of X is a limit point of X.

Let M be a metric space. A subset A ⊆ M is called perfect if each a ∈ A is
a limit point of A.1

1.10 Examples (a) Any nonempty open subset of a normed vector space is perfect.

(b) A convex subset of a normed vector space (in particular, an interval in R) is
perfect if and only if it contains more than one point. �

Let X ⊆ K be perfect. Then f : X → E is called differentiable on X if f is
differentiable at each point of X. The function

f ′ : X → E , x �→ f ′(x)

is called the derivative of f . It is also denoted by ḟ , ∂f , Df and df/dx.

Higher Derivatives

If f : X → E is differentiable, then it is natural to ask whether the derivative f ′

is itself differentiable. When this occurs f is said to be twice differentiable and we

1This definition agrees with the definition in Section 1.10 in the case that M = R and A is
an interval (see Example 1.10(b)).
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call ∂2f := f ′′ := ∂(∂f) the second derivative of f . Repeating this process we can
define further higher derivatives of f . Specifically, we set

∂0f := f (0) := f , ∂1f(a) := f (1)(a) := f ′(a) ,

∂n+1f(a) := f (n+1)(a) := ∂(∂nf)(a)

for all n ∈ N. The element ∂nf(a) ∈ E is called the nth derivative of f at a. The
function f is called n-times differentiable on X if the nth derivative exists at each
a ∈ X. If f is n-times differentiable and the nth derivative

∂nf : X → E , x �→ ∂nf(x)

is continuous, then f is n-times continuously differentiable.

The space of n-times continuously differentiable functions from X to E is de-
noted by Cn(X,E). In particular, C0(X,E) = C(X,E) is the space of continuous
E-valued functions on X already introduced in Section III.1. Finally

C∞(X,E) :=
⋂
n∈N

Cn(X,E)

is the space of infinitely differentiable or smooth functions from X to E. We write

Cn(X) := Cn(X, K) , n ∈ N̄ ,

when no misunderstanding is possible.

1.11 Remarks Let n ∈ N.

(a) For the (n + 1)th derivative at a to be defined, a must be a limit point of the
domain of the nth derivative. This is the case, in particular, if the nth derivative
exists on some neighborhood of a.

(b) If a function f : X → E is (n + 1)-times differentiable at a ∈ X, then, by
Corollary 1.2, for each j ∈ {0, 1, . . . , n}, the jth derivative of f is continuous at a.

(c) It is not difficult to see that the inclusions,

C∞(X,E) ⊆ Cn+1(X,E) ⊆ Cn(X,E) ⊆ C(X,E) , n ∈ N ,

hold. �

We collect in the next theorem some of the most important rules which hold
in the space of n-times continuously differentiable functions Cn(X,E).
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1.12 Theorem Let X ⊆ K be perfect, k ∈ N and n ∈ N̄ = N ∪ {∞}.
(i) (linearity) For all f, g ∈ Ck(X,E) and α, β ∈ K,

αf + βg ∈ Ck(X,E) and ∂k(αf + βg) = α∂kf + β∂kg .

Hence Cn(X,E) is a subspace of C(X,E) and the differentiation operator

∂ : Cn+1(X,E) → Cn(X,E) , f �→ ∂f

is linear.

(ii) (Leibniz’ rule) Let f, g ∈ Ck(X). Then f · g is in Ck(X) and

∂k(fg) =
k∑

j=0

(k

j

)
(∂jf)∂k−jg . (1.3)

Hence Cn(X) is a subalgebra of KX .

Proof (i) The first statement follows from Theorem 1.6 and Proposition III.1.5.

(ii) Because of Theorem 1.6 and Proposition III.1.5, it suffices to confirm
Leibniz’ rule (1.3). This we do using induction on k. The case k = 0 is proved in
Proposition III.1.5. For the induction step k → k + 1, we use the equation

(k + 1
j

)
=
( k

j − 1

)
+
(k

j

)
, k ∈ N , 1 ≤ j ≤ k ,

from Exercise I.5.5. The induction hypothesis, the product rule and (i) imply

∂k+1(fg) = ∂
( k∑

j=0

(k

j

)
(∂jf)∂k−jg

)

=
k∑

j=0

(k

j

)[
(∂j+1f)∂k−jg + (∂jf)∂k−j+1g

]
= (∂k+1f)g + f∂k+1g +

k∑
j=1

[( k

j − 1

)
+
(k

j

)]
(∂jf)∂k−j+1g

=
k+1∑
j=0

(k + 1
j

)
(∂jf)∂k+1−jg .

Thus the induction is complete. �



310 IV Differentiation in One Variable

1.13 Examples (a) Let a be a limit point of X ⊆ R. Then f : X → C is differen-
tiable at a if and only if Re f and Im f are differentiable at a. In this case,

f ′(a) = (Re f)′(a) + i(Im f)′(a) .

Proof This follows from Proposition 1.5. �

(b) Let p =
∑n

k=0 akXk be a polynomial.2 Then p is smooth and

p′(x) =
n∑

k=1

kakxk−1 , x ∈ C .

Proof Let 1 := 1X0 be the unity element in the algebra K[X], which, by our conven-
tions, is the same as the constant function defined by 1(x) = 1 for all x ∈ K. Then clearly

1 ∈ C∞(K) and ∂1 = 0 . (1.4)

By induction, we now show that

Xn ∈ C∞(K) and ∂(Xn) = nXn−1 , n ∈ N× . (1.5)

The case n = 1 is true since, trivially, ∂X = 1, and by (1.4), 1 ∈ C∞(K). For the induc-
tion step n → n + 1, we use the product rule:

∂(Xn+1) = ∂(XnX) = ∂(Xn)X + Xn∂X = nXn−1X + Xn1 = (n + 1)Xn .

Hence (1.5) is true. For an arbitrary polynomial
∑n

k=0 akXk, the claim now follows from

Theorem 1.12(i). �

(c) A rational function is smooth on its domain.

Proof This follows from (b), Theorem 1.6 and Corollary III.1.6. �

(d) The exponential function is in C∞(K) and satisfies ∂(exp) = exp.
Proof It suffices to prove the formula ∂(exp) = exp. For z ∈ C, the difference quotient
is given by

ez+h − ez

h
= ez eh − 1

h
, h ∈ C× ,

and so the claim follows from Example III.2.25(b). �

(e) For the logarithm, we have

log ∈ C∞(
C\(−∞, 0], C

)
, (log)′(z) = 1/z , z ∈ C\(−∞, 0] .

Proof From (III.6.11) we have log =
[
exp

∣∣R + i(−π, π]
]−1

, and the logarithm is contin-
uous on R + i(−π, π) (see Exercise III.6.9). For each z ∈ C\(−∞, 0], there is a unique x
in R + i(−π, π) such that z = ex. From Theorem 1.8 and (d) we then have

(log)′(z) =
1

(exp)′(x)
=

1

exp(x)
=

1

z
,

and the claim follows from (c). �

2By the convention at the end of Section I.8, we consider polynomials to be also functions.
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(f ) Let a ∈ C\(−∞, 0]. Then3

[z �→ az] ∈ C∞(C) and (az)′ = az log a , z ∈ C .

Proof Since az = ez log a for all z ∈ C,

(az)′ = (ez log a)′ = (log a)ez log a = az log a

follows from the chain rule and (d). Since [z �→ az] : C → C is continuous (why?), an easy

induction shows that [z �→ az] ∈ C∞(C). �

(g) Let a ∈ C. Then, for the power function, we have

[z �→ za] ∈ C∞(
C\(−∞, 0], C

)
and (za)′ = aza−1 .

Proof As in (f), we have za = ea log z for all z ∈ C\(−∞, 0], and so, from the chain rule
and (e), we get

(za)′ = (ea log z)′ =
a

z
ea log z =

a

z
za = aza−1 ,

where in the last step we have also used (III.6.13). �

(h) cis ∈ C∞(R, C) and cis′(t) = i cis(t) for t ∈ R.

Proof From (d) and the chain rule we get cis′(t) = (ei t)′ = iei t = i cis(t) for all t ∈ R. �

(i) cos and sin are in C∞(C) with cos′ = − sin and sin′ = cos.
Proof By (III.6.3), cos and sin can be written using the exponential function:

cos z =
ei z + e−i z

2
, sin z =

ei z − e−i z

2i
, z ∈ C .

Using (d) and the chain rule we get

cos′ z = i
ei z − e−i z

2
= − sin z , sin′ z = i

ei z + e−i z

2i
= cos z ,

and so cos and sin are smooth. �

(j) The tangent and cotangent functions are smooth on their domains and

tan′ =
1

cos2
= 1 + tan2 , cot′ =

−1
sin2 = −1 − cot2 .

Proof The quotient rule and (i) yield

tan′ z =
( sin

cos

)′
(z) =

cos2 z + sin2 z

cos2 z
=

1

cos2 z
= 1 + tan2 z , z ∈ C\(π/2 + πZ) .

The proof for the cotangent function is similar. �

(k) The function f : R → R, x �→ |x| is continuous, but not differentiable, at 0.

Proof Set hn := (−1)n/(n + 1) for all n ∈ N. Then (hn) is a null sequence such that(
f(hn) − f(0)

)
h−1

n = (−1)n for all n ∈ N. Thus f cannot be differentiable at 0. �

3To avoid introducing a new symbol for the function z �→ az , we write somewhat imprecisely
(az)′ for [z �→ az ]′(z). This simplified notation will be used in similar situations since it does not
lead to misunderstanding.
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(l) Consider the function

f(x) :=

⎧⎨⎩ x2 sin
1
x

, x ∈ R× ,

0 , x = 0 .

Then f is differentiable on R, but the
derivative f ′ is not continuous at 0.
That is, f /∈ C1(R).

Proof For the difference quotient of f

at 0 we have

f(x) − f(0)
x

= x sin
1
x

, x �= 0 ,

and so f ′(0) = 0 by Proposition II.2.4. For all x ∈ R×, f ′(x) = 2x sin x−1 − cos x−1 and
hence

f ′
( 1

2πn

)
=

1

πn
sin(2πn) − cos(2πn) = −1 , n ∈ N× .

Thus f ′ is not continuous at 0. �

(m) There are functions which are continuous on R, but nowhere differentiable.

Proof Let f0 be the function from Exercise III.1.1. For n > 0, define the function fn

by fn(x) := 4−nf0(4
nx) for all x ∈ R. Clearly, fn is piecewise affine with slope ±1 and

periodic with period 4−n. From Exercise III.5.6 we know that the function F :=
∑∞

n=0 fn

is continuous on R.

Let a ∈ R. Then, for each n ∈ N, there is some hn ∈ {±4−(n+1)} such that, for
k ≤ n, fk is affine between a and a + hn. Thus

[
fk(a + hn) − fk(a)

]/
hn = ±1 for all

0 ≤ k ≤ n. For k > n, we have fk(a + hn) = fk(a), since, in this case, fk has period hn.
This implies

F (a + hn) − F (a)

hn
=

n∑
k=0

fk(a + hn) − fk(a)

hn
=

n∑
k=0

±1 ,

and hence F is not differentiable at a. �

(n) C∞(X,E) ⊂ Cn+1(X,E) ⊂ Cn(X,E) ⊂ C(X,E), n ∈ N×.

Proof In view of Remark 1.11(c), it suffices to show that these inclusions are proper.
We consider only the case X := R, E := R and leave the general case to the reader. For
each n ∈ N, define fn : R → R by

fn(x) :=

{
xn+2 sin(x−1) , x 
= 0 ,

0 , x = 0 .

Then a simple induction argument shows that fn ∈ Cn(R)\Cn+1(R). The n = 0 case is

proved in (l). �
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1.14 Remark The reader should note that Remark 1.4(c.ii) applied to Exam-
ples 1.13(b)–(g) and (i), (j) gives the usual rules for the derivatives of the real
polynomial, rational, power, exponential, logarithm and trigonometric functions. �

One-Sided Differentiability

If X ⊆ R, a ∈ X is a limit point of X ∩ [a,∞) and

∂+f(a) := lim
x→a+

f(x) − f(a)
x − a

exists, then f : X → E is right differentiable at a and ∂+f(a) ∈ E is called the
right derivative of f at a.

Similarly, if a is a limit point of (−∞, a] ∩ X and

∂−f(a) := lim
x→a−

f(x) − f(a)
x − a

exists, then f is left differentiable at a and ∂−f(a) is called the left derivative of f
at a. If a is a limit point of both X ∩ [a,∞) and (−∞, a] ∩ X, and f is differentiable
at a, then clearly

∂+f(a) = ∂−f(a) = ∂f(a) .

1.15 Examples (a) For f : R → R, x �→ |x|,

∂+f(0) = 1 , ∂−f(0) = −1 , ∂+f(x) = ∂−f(x) = sign(x) , x �= 0 .

(b) Let a < b and f : [a, b] → E. Then f is differentiable at a (or b) if and only if
f is right (or left) differentiable at a (or b). �

Example 1.15(a) shows that the existence of the right and left derivatives
of a function f : X → E does not imply the existence of the derivative. The next
proposition shows that the missing condition is that the one-sided derivatives must
be equal.

1.16 Proposition Let X ⊆ R and f : X → E be right and left differentiable
at a ∈ X with ∂+f(a) = ∂−f(a). Then f is differentiable at a and ∂f(a) = ∂+f(a).

Proof By hypothesis and Proposition 1.1(iii), there are functions

r+ : X ∩ [a,∞) → E and r− : (−∞, a] ∩ X → E

which are continuous at a and satisfy r+(a) = r−(a) = 0 and

f(x) = f(a) + ∂±f(a)(x − a) + r±(x)(x − a) , x ∈ X , x ≷ a .
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Now set ∂f(a) := ∂+f(a) = ∂−f(a) and

r(x) :=
{

r+(x) , x ∈ X ∩ [a,∞) ,

r−(x) , x ∈ (−∞, a] ∩ X .

Then r : X → E is, by Proposition III.1.12, continuous at a, r(a) = 0 and

f(x) = f(a) + ∂f(a)(x − a) + r(x)(x − a) , x ∈ X .

Thus the claim follows from Proposition 1.1(iii). �

1.17 Example Let

f(x) :=
{

e−1/x , x > 0 ,

0 , x ≤ 0 .

Then f is smooth and all its derivatives
are zero at x = 0.

�

�

�

Proof It suffices to show that all the derivatives of f exist and satisfy

∂nf(x) =

{
p2n(x−1)e−x−1

, x > 0 ,

0 , x ≤ 0 ,
(1.6)

where p2n denotes a polynomial of degree ≤ 2n with real coefficients.

Clearly (1.6) holds for x < 0. In the case x > 0, (1.6) holds for n = 0. If the formula
is true for some n ∈ N, then

∂n+1f(x) = ∂
(
p2n(x−1)e−x−1)

= −∂p2n(x−1)(x−2)e−x−1
+ p2n(x−1)e−x−1

x−2

= p2(n+1)(x
−1)e−x−1

,

with p2(n+1)(X) :=
(
p2n(X) − ∂p2n(X)

)
X2. Because deg(p2n) ≤ 2n, the degree of ∂p2n

is at most 2n − 1 and (I.8.20) gives deg(p2(n+1)) ≤ 2(n + 1). Thus (1.6) holds for all
x > 0.

It remains to consider the case x = 0. Once again we use a proof by induction. The
n = 0 case is trivial. For the induction step n → n + 1, we calculate

∂+(∂nf)(0) = lim
x→0+

∂nf(x) − ∂nf(0)

x − 0
= lim

x→0+

[
x−1p2n(x−1)e−x−1]

,

where we used the induction hypothesis and (1.6) for the second equality. Further, by
Propositions III.6.5(iii) and II.5.2(i), we have

lim
x→0+

[
q(x−1)e−x−1]

= lim
y→∞

q(y)

ey
= 0 (1.7)

for all q ∈ R[X]. Thus ∂nf is right differentiable at 0 and ∂+(∂nf)(0) = 0. Since ∂nf is
obviously left differentiable at 0 with ∂−(∂nf)(0) = 0, it follows from Proposition 1.16
that ∂n+1f(0) = 0. This completes the proof of (1.6). �
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Exercises

1 Calculate the derivative of f : (0,∞) → R when f(x) is

(a) (xx)x , (b) x(xx) , (c) x1/x , (d) log log(1 + x) ,

(e) xsin x , (f) 3
√

x3/5 + sin3(1/x) − tan2(x) , (g)
cos x

2 + sin log x
.

2 For m, n ∈ N, let fm,n : R → R be defined by

fm,n(x) :=

{
xn sin(x−m) , x 
= 0 ,

0 , x = 0 .

For what k ∈ N̄ is fm,n ∈ Ck(R)?

3 Suppose that f, g : K → K satisfy f ′ = f , f(x) 
= 0 for all x ∈ K, and g′ = g. Show
that f and g are in C∞(K, K) and that there is some c ∈ K such that g = cf .

4 Show that f : C → C, z �→ z is nowhere differentiable.

5 At what points is f : C → C, z �→ zz differentiable?

6 Let U be a neighborhood of 0 in K, E a normed vector space and f : U → E.

(a) Suppose that there are numbers K > 0 and α > 1 such that |f(x)| ≤ K |x|α for all
x ∈ U . Show that f is differentiable at 0.

(b) Suppose that f(0) = 0 and there are K > 0 and α ∈ (0, 1) such that |f(x)| ≥ K |x|α
for all x ∈ U . Show that f is not differentiable at 0.

(c) What can be said if |f(x)| = K |x| for all x ∈ U?

7 Calculate ∂±f(x) for the function f : R → R, x �→  x! +
√

x −  x!. Where is f dif-
ferentiable?

8 Suppose that I is a perfect interval and f, g : I → R are differentiable. Prove or dis-
prove that the functions |f |, f ∨ g and f ∧ g are (a) differentiable, (b) one-sided differ-
entiable.

9 Let U be open in K, a ∈ U and f : U → E. Prove or disprove the following:

(a) If f differentiable at a, then

f ′(a) = lim
h→0

f(a + h) − f(a − h)

2h
. (1.8)

(b) If limh→0

[
f(a + h) − f(a − h)

]/
2h exists, then f is differentiable at a and (1.8) holds.

10 Let n ∈ N× and f ∈ Cn(K). Prove that

∂n(xf(x)
)

= x∂nf(x) + n∂(n−1)f(x) .

11 For n ∈ N×, show that

∂n(xn−1e1/x) = (−1)n e1/x

xn+1
, x > 0 .
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12 The Legendre polynomial Pn is defined by

Pn(x) :=
1

2nn!
∂n[(x2 − 1)n] , n ∈ N .

(a) Calculate P0, P1, . . . , P5.

(b) Show that Pn is a polynomial of degree n which has n zeros in (−1, 1).
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2 The Mean Value Theorem and its Applications

Let f : R → R be a differentiable function. If we view f ′ geometrically as the slope
of tangent lines to the graph of f , it is intuitively clear that, with the help of f ′, not
only the local properties, but also the global properties of f can be investigated.
For example, if f has a local extremum at a, then the tangent line at

(
a, f(a)

)
must be horizontal, that is, f ′(a) = 0. If, on the other hand, the derivative f ′ is
positive everywhere, then f has the global property of being increasing.

�

�

�

�
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�

�

�

�

�

In the following, we generalize these ideas and make them more precise.

Extrema

Let X be a metric space and f a real valued function on X. Then f has a local
minimum (or local maximum) at x0 ∈ X if there is a neighborhood U of x0 such
that f(x0) ≤ f(x) (or f(x0) ≥ f(x)) for all x ∈ U . The function f has a global
minimum (or global maximum) at x0 if f(x0) ≤ f(x) (or f(x0) ≥ f(x)) for all
x ∈ X. Finally, we say that f has a local (or global) extremum at x0 if f has a
local (or global) minimum or maximum at x0.

2.1 Theorem (necessary condition for local extrema) Suppose that X ⊆ R and
f : X → R has a local extremum at a ∈ X̊. If f is differentiable at a, then f ′(a) = 0.

Proof Suppose that f has a local minimum at a. Then there is an open interval I
with a ∈ I ⊆ X and f(x) ≥ f(a) for all x ∈ I. Thus

f(x) − f(a)
x − a

{ ≥ 0 , x ∈ I ∩ (a,∞) ,

≤ 0 , x ∈ (−∞, a) ∩ I .

In the limit x → a, this implies 0 ≤ ∂+f(a) = ∂−f(a) ≤ 0, and so f ′(a) = 0. If
f has a local maximum at a, then −f has a local minimum at a. Consequently,
f ′(a) = 0 in this case too. �

If X ⊆ K and f : X → E is differentiable at a ∈ X with f ′(a) = 0, then a is
called a critical point of f . Thus Theorem 2.1 says that if f has a local extremum
at a ∈ X̊ and is differentiable at a, then a is a critical point of f .
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2.2 Remarks Let f : [a, b] → R with −∞ < a < b < ∞.

(a) If f is differentiable at a and has a local minimum (or maximum) at a, then
f ′(a) ≥ 0 (or f ′(a) ≤ 0). Similarly, if f is differentiable at b and has a local mini-
mum (or maximum) at b, then f ′(b) ≤ 0 (or f ′(b) ≥ 0).

Proof This follows directly from the proof of Theorem 2.1. �

�

�

� �

�

�

� �

�
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(b) Let f be continuous on [a, b] and differentiable on (a, b). Then

max
x∈[a,b]

f(x) = f(a) ∨ f(b) ∨ max
{

f(x) ; x ∈ (a, b), f ′(x) = 0
}

,

that is, f attains its maximum either at an end point of [a, b] or at a critical point
in (a, b). Similarly

min
x∈[a,b]

f(x) = f(a) ∧ f(b) ∧ min
{

f(x) ; x ∈ (a, b), f ′(x) = 0
}

.

Proof By the extreme value theorem (Corollary III.3.8), there is some x0 ∈ [a, b] such

that f(x0) ≥ f(x) for x ∈ [a, b]. If x0 is not an end point of [a, b], then, by Theorem 2.1,

x0 is a critical point of f . The second claim can be proved similarly. �

(c) If x0 ∈ (a, b) is a critical point of f it does not follow that f has an extremum
at x0.

Proof Consider the cubic polynomial f(x) := x3 at x0 = 0. �

The Mean Value Theorem

In the next two theorems a and b are real numbers such that a < b.

2.3 Theorem (Rolle’s theorem) Suppose that f ∈ C
(
[a, b], R

)
is differentiable

on (a, b). If f(a) = f(b), then there is some ξ ∈ (a, b) such that f ′(ξ) = 0.

Proof If f is constant on the interval [a, b], then the claim is clear. Indeed, in
this case, f ′ = 0. If f is not constant on [a, b], then f has an extremum in (a, b)
and the claim follows from Remark 2.2(b). �
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2.4 Theorem (mean value theorem) If f ∈ C
(
[a, b], R

)
is differentiable on (a, b),

then there is some ξ ∈ (a, b) such that

f(b) = f(a) + f ′(ξ)(b − a) .

Proof Set

g(x) := f(x) − f(b) − f(a)
b − a

x , x ∈ [a, b] .

Then g : [a, b] → R satisfies the hypotheses of Rolle’s theorem. Thus there is some
ξ ∈ (a, b) such that

0 = g′(ξ) = f ′(ξ) − f(b) − f(a)
b − a

,

which proves the claim. �

Geometrically, the mean value theorem says that there is (at least) one point
ξ ∈ (a, b) such that the tangent line t to the graph of f at

(
ξ, f(ξ)

)
is parallel to

the secant line s through
(
a, f(a)

)
and

(
b, f(b)

)
, that is, the slopes of these two

lines are equal:

f ′(ξ) =
f(b) − f(a)

b − a
.
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Rolle’s theorem
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Mean value theorem

Monotonicity and Differentiability

2.5 Theorem (a characterization of monotone functions) Suppose that I is a
perfect interval and f ∈ C(I, R) is differentiable on I̊.

(i) f is increasing (or decreasing) if and only if f ′(x) ≥ 0 (or f ′(x) ≤ 0) for all
x ∈ I̊.

(ii) If f ′(x) > 0 (or f ′(x) < 0) for all x ∈ I̊, then f is strictly increasing (or
strictly decreasing).
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Proof (i) ‘=⇒’ If f is increasing, then

f(y) − f(x)
y − x

≥ 0 , x, y ∈ I̊ , x �= y .

Taking the limit y → x we get f ′(x) ≥ 0 for all x ∈ I̊. The case of f decreasing is
proved similarly.

‘⇐=’ Let x, y ∈ I with x < y. By the mean value theorem, there is some
ξ ∈ (x, y) such that

f(y) = f(x) + f ′(ξ)(y − x) . (2.1)

If f ′(z) ≥ 0 for all z ∈ I̊, then, in particular, f ′(ξ) ≥ 0, so it follows from (2.1) that
f(y) ≥ f(x). Thus f is increasing. Similarly, if f ′(z) ≤ 0 for all z ∈ I̊, then f is
decreasing.

Claim (ii) follows directly from (2.1). �

2.6 Remarks (a) (a characterization of constant functions) With the hypotheses
of Theorem 2.5, f is constant if and only if f ′ = 0.

Proof This follows from Theorem 2.5(i). �

(b) The converse of Theorem 2.5(ii) is false. The function f(x) := x3 is strictly
increasing but its derivative is zero at 0. Moreover, in (a), it is essential that the
domain be an interval (why?). �

As a further application of Rolle’s theorem we prove a simple criterion for
the injectivity of real differentiable functions.

2.7 Proposition Suppose that I is a perfect interval and f ∈ C(I, R) is differen-
tiable on I̊. If f ′ has no zero in I̊, then f is injective.

Proof If f is not injective then there are x, y ∈ I such that x < y and f(x) = f(y).
Then, by Rolle’s theorem, f ′ has a zero between x and y. �

2.8 Theorem Suppose that I is a perfect interval and f : I → R is differentiable
with f ′(x) �= 0 for all x ∈ I.

(i) f is strictly monotone.

(ii) J := f(I) is a perfect interval.

(iii) f−1 : J → R is differentiable and (f−1)′
(
f(x)

)
= 1/f ′(x) for all x ∈ I.

Proof First we verify (ii). By Corollary 1.2 and Proposition 2.7, f is continuous
and injective. So the intermediate value theorem and Example 1.10(b) imply that
J is a perfect interval.
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To prove (i), we suppose that f is not strictly monotone. Since, by Re-
mark 2.6(a), f is not constant on any perfect subinterval, there are x < y < z
such that f(x) > f(y) < f(z) or f(x) < f(y) > f(z). By the intermediate value
and the extreme value theorems, f has an extremum at some ξ ∈ (x, z). By Theo-
rem 2.1, we have f ′(ξ) = 0, which contradicts our supposition. Finally, Claim (iii)
follows from (i) and Corollaries 1.2 and 1.9. �

2.9 Remarks (a) The function cis : R → C has period 2π and so is certainly not
injective. Nonetheless, cis′(t) = iei t �= 0 for all t ∈ R. This shows that Proposi-
tion 2.7 does not hold for complex valued (or vector valued) functions.

(b) If the hypothesis of Theorem 2.8 is satisfied, then it follows from (i) and
Theorem 2.5 that either

f ′(x) > 0 , x ∈ I , or f ′(x) < 0 , x ∈ I . (2.2)

Note that (2.2) does not follow from f ′(x) �= 0 for all x ∈ I and the intermediate
value theorem since f ′ may not be continuous. �

2.10 Applications For the trigonometric functions we have

cos′ x = − sin x �= 0 ,

sin′ x = cos x �= 0 ,

cot′ x = −1/ sin2 x �= 0 ,

tan′ x = 1/ cos2 x �= 0 ,

x ∈ (0, π) ,

x ∈ (−π/2, π/2) .

Hence, by Theorem 2.8, the restrictions of these functions to the given intervals
are injective and have differentiable inverse functions, the inverse trigonometric
functions. The usual notation for these inverse functions is

arcsin :=
(
sin

∣∣(−π/2, π/2)
)−1

arccos :=
(
cos

∣∣(0, π)
)−1

arctan :=
(
tan

∣∣(−π/2, π/2)
)−1

arccot :=
(
cot

∣∣(0, π)
)−1

:

:

:

:

(−1, 1) → (−π/2, π/2) ,

(−1, 1) → (0, π) ,

R → (−π/2, π/2) ,

R → (0, π) .

To calculate the derivatives of the inverse trigonometric functions we use Theo-
rem 2.8(iii). For the arcsine function this gives

arcsin′ x =
1

sin′ y
=

1
cos y

=
1√

1 − sin2 y
=

1√
1 − x2

, x ∈ (−1, 1) ,

where we have set y := arcsin x and used x = sin y. Similarly, for the arctangent
function,

arctan′ x =
1

tan′ y
=

1
1 + tan2 y

=
1

1 + x2
, x ∈ R ,

where y ∈ (−π/2, π/2) is determined by x = tan y.
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The derivatives of the arccosine and arccotangent functions can be calculated
the same way and, summarizing, we have

arcsin′ x =
1√

1 − x2
,

arctan′ x =
1

1 + x2
,

arccos′ x =
−1√
1 − x2

,

arccot′ x =
−1

1 + x2
,

x ∈ (−1, 1) ,

x ∈ R .

(2.3)

In particular, (2.3) shows that the inverse trigonometric functions are smooth.

�� �
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Convexity and Differentiability

We have already seen that monotonicity is a very useful concept for the investi-
gation of real functions. It is therefore not surprising that differentiable functions
with monotone derivatives have ‘particularly nice’ properties.

Let C be a convex subset of a vector space V . Then f : C → R is convex if

f
(
(1 − t)x + ty

)
≤ (1 − t)f(x) + tf(y) , x, y ∈ C , t ∈ (0, 1) ,

and strictly convex if

f
(
(1 − t)x + ty

)
< (1 − t)f(x) + tf(y) , x, y ∈ C , x �= y , t ∈ (0, 1) .

Finally we say f is concave (or strictly concave) if −f is convex (or strictly convex).
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2.11 Remarks (a) Clearly, f is concave (or strictly concave) if and only if

f
(
(1 − t)x + ty

)
≥ (1 − t)f(x) + tf(y) ,

(or
f
(
(1 − t)x + ty

)
> (1 − t)f(x) + tf(y) )

for all x, y ∈ C such that x �= y and for all t ∈ (0, 1).

(b) Suppose that I ⊆ R is a perfect interval1 and f : I → R. Then the following
are equivalent:

(i) f is convex.
(ii) For all a, b ∈ I such that a < b,

f(x) ≤ f(a) +
f(b) − f(a)

b − a
(x − a) , a < x < b .

(iii) For all a, b ∈ I such that a < b,

f(x) − f(a)
x − a

≤ f(b) − f(a)
b − a

≤ f(b) − f(x)
b − x

, a < x < b .

(iv) For all a, b ∈ I such that a < b,

f(x) − f(a)
x − a

≤ f(b) − f(x)
b − x

, a < x < b .

If, in (ii)–(iv), the symbol ≤ is replaced throughout by < , then these statements
are equivalent to f being strictly convex. Analogous statements hold for concave
and strictly concave functions.
Proof ‘(i)=⇒(ii)’ Let a, b ∈ I with a < b and x ∈ (a, b). Set t := (x − a)/(b − a). Then
t ∈ (0, 1) and (1 − t)a + tb = x, and so from the convexity of f we get

f(x) ≤
(
1 − x − a

b − a

)
f(a) +

x − a

b − a
f(b) = f(a) +

f(b) − f(a)

b − a
(x − a) .

‘(ii)=⇒(iii)’ The first inequality in (iii) follows directly from (ii). From (ii) we also
have

f(b) − f(x) ≥ f(b) − f(a) − f(b) − f(a)

b − a
(x − a) =

f(b) − f(a)

b − a
(b − x) ,

which implies
f(b) − f(a)

b − a
≤ f(b) − f(x)

b − x
.

‘(iii)=⇒(iv)’ This implication is clear.

1By Remark III.4.9(c), a subset I of R is convex if and only if I is an interval.
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‘(iv)=⇒(i)’ Let a, b ∈ I with a < b and t ∈ (0, 1). Then x := (1 − t)a + tb is in (a, b),
and so

f(x) − f(a)

x − a
≤ f(b) − f(x)

b − x
.

This inequality implies

f
(
(1 − t)a + tb

)
= f(x) ≤ b − x

b − a
f(a) +

x − a

b − a
f(b) = (1 − t)f(a) + tf(b) .

Hence f is convex.

The remaining claims can be proved similarly. �

(c) Viewed geometrically, (ii) of (b) says that the graph of f |(a, b) lies below the
secant line through

(
a, f(a)

)
and

(
b, f(b)

)
.

The inequality (iii) of (b) says
that the slope of the secant line
through

(
a, f(a)

)
and

(
x, f(x)

)
is

smaller than the slope of the secant
line through

(
a, f(a)

)
and

(
b, f(b)

)
,

which is itself smaller than the slope
of the secant line through

(
x, f(x)

)
and

(
b, f(b)

)
. � � �

�

�

2.12 Theorem (a characterization of convex functions) Suppose that I is a perfect
interval and f : I → R is differentiable. Then f is (strictly) convex if and only if
f ′ is (strictly) increasing.

Proof ‘=⇒’ Suppose that f is strictly convex and a, b ∈ I are such that a < b.
Then we can choose a strictly decreasing sequence (xn) in (a, b) and a strictly
increasing sequence (yn) in (a, b) such that limxn = a, lim yn = b and x0 < y0.
From Remark 2.11(b) we have

f(xn) − f(a)
xn − a

<
f(x0) − f(a)

x0 − a
<

f(y0) − f(x0)
y0 − x0

<
f(yn) − f(y0)

yn − y0
<

f(yn) − f(b)
yn − b

.

Taking the limit n → ∞ we get

f ′(a) ≤ f(x0) − f(a)
x0 − a

<
f(y0) − f(x0)

y0 − x0
≤ f ′(b) .

Thus f ′ is strictly increasing.
If f is convex, then the above discussion shows that the inequality a < b

implies f ′(a) ≤ f ′(b). That is, f ′ is increasing.
‘⇐=’ Let a, b, x ∈ I be such that a < x < b. By the mean value theorem there

are ξ ∈ (a, x) and η ∈ (x, b) such that

f(x) − f(a)
x − a

= f ′(ξ) and
f(b) − f(x)

b − x
= f ′(η) .

The claim then follows from Remark 2.11(b) and the (strict) monotonicity of f ′. �
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2.13 Corollary Suppose that I is a perfect interval and f : I → R is twice differ-
entiable.

(i) f is convex if and only if f ′′(x) ≥ 0 for all x ∈ I.

(ii) If f ′′(x) > 0 for all x ∈ I, then f is strictly convex.

Proof This follows directly from Theorems 2.5 and 2.12. �

2.14 Examples (a) exp : R → R is strictly increasing and strictly convex.

(b) log : (0,∞) → R is strictly increasing and strictly concave.

(c) For α ∈ R, let fα : (0,∞) → R, x �→ xα be the
power function. Then fα is

strictly increasing and strictly convex if α > 1 ,

strictly increasing and strictly concave if 0 < α < 1 ,

strictly decreasing and strictly convex if α < 0 .

Proof All the claims follow from Theorem 2.5, Corol-

lary 2.13 and the relationships
�

�
� � �
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(α) exp = exp′ = exp′′ > 0,

(β) log′(x) = x−1 > 0, log′′(x) = −x−2 < 0 for all x ∈ (0,∞),

(γ) f ′
α = αfα−1, f ′′

α = α(α − 1)fα−2, fβ(x) > 0 for all x ∈ (0,∞) and β ∈ R. �

The Inequalities of Young, Hölder and Minkowski

The concavity of the logarithm function and the monotonicity of the exponential
function make possible an elegant proof of one of the fundamental inequalities of
analysis, the Young inequality. For this proof, it is useful to introduce the following
notation: For p ∈ (1,∞), we say that p′ := p/(p − 1) is the Hölder conjugate of p.
It is determined by the equation2

1
p

+
1
p′

= 1 . (2.4)

2.15 Theorem (Young inequality) For p ∈ (1,∞),

ξη ≤ 1
p

ξp +
1
p′

ηp′
, ξ, η ∈ R+ .

2From (2.4) it follows, in particular, that (p′)′ = p.
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Proof It suffices to consider only the case ξ, η ∈ (0,∞). The concavity of the
logarithm function and (2.4) imply the inequality

log
(ξp

p
+

ηp′

p′
)
≥ 1

p
log ξp +

1
p′

log ηp′
= log ξ + log η = log ξη .

Since the exponential function is increasing and exp log x = x for all x, the claimed
inequality follows. �

2.16 Applications (a) (inequality of the geometric and arithmetic means3) For
n ∈ N× and xj ∈ R+, 1 ≤ j ≤ n,

n

√√√√ n∏
j=1

xj ≤ 1
n

n∑
j=1

xj . (2.5)

Proof We can suppose that all the xj are positive. For n = 1, (2.5) is clearly
true. Now suppose that (2.5) holds for some n ∈ N×. Then

n+1

√√√√n+1∏
j=1

xj ≤
( 1

n

n∑
j=1

xj

)n/(n+1)

(xn+1)1/(n+1) .

To the right side of this inequality we apply the Young inequality with

ξ :=
( 1

n

n∑
j=1

xj

)n/(n+1)

, η := (xn+1)1/(n+1) , p := 1 +
1
n

.

Then

ξη ≤ 1
p

ξp +
1
p′

ηp′
=

1
n + 1

n∑
j=1

xj +
1

n + 1
xn+1 =

1
n + 1

n+1∑
j=1

xj ,

which proves the claim. �

(b) (Hölder inequality) For p ∈ (1,∞) and x = (x1, . . . , xn) ∈ Kn, define

|x|p :=
( n∑

j=1

|xj |p
)1/p

.

Then4
n∑

j=1

|xjyj | ≤ |x|p |y|p′ , x, y ∈ Kn .

3See Exercise I.10.10.
4In the case p = p′ = 2 this reduces to the Cauchy-Schwarz inequality.
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Proof It suffices to consider the case x �= 0 and y �= 0. From the Young inequality
we have

|xj |
|x|p

|yj |
|y|p′

≤ 1
p

|xj |p
|x|pp

+
1
p′

|yj |p
′

|y|p′
p′

, 1 ≤ j ≤ n .

Summing these inequalities over j yields∑n
j=1 |xjyj |
|x|p |y|p′

≤ 1
p

+
1
p′

= 1 ,

and so the claim follows. �

(c) (Minkowski inequality) For all p ∈ (1,∞),

|x + y|p ≤ |x|p + |y|p , x, y ∈ Kn .

Proof From the triangle inequality we have

|x + y|pp =
n∑

j=1

|xj + yj |p−1 |xj + yj |

≤
n∑

j=1

|xj + yj |p−1 |xj | +
n∑

j=1

|xj + yj |p−1 |yj | .

Thus the Hölder inequality implies

|x + y|pp ≤ |x|p
( n∑

j=1

|xj + yj |p
)1/p′

+ |y|p
( n∑

j=1

|xj + yj |p
)1/p′

= (|x|p + |y|p) |x + y|p/p′

p .

If x + y = 0, then the claim is trivially true. Otherwise we can divide both sides of
this inequality by |x + y|p/p′

p to get |x + y|p−p/p′
p ≤ |x|p + |y|p. Since p − p/p′ = 1,

this proves the claim. �

One immediate consequence of these inequalities is that |·|p is a norm on Kn:

2.17 Proposition For each p ∈ [1,∞], |·|p is a norm on Kn.

Proof We have already seen in Section II.3 that |·|1 and |·|∞ are norms on Kn. If
p ∈ (1,∞), then the Minkowski inequality is exactly the triangle inequality for |·|p.
The validity of the remaining norm axioms is clear. �
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The Mean Value Theorem for Vector Valued Functions

For the remainder of this section, a and b are real numbers such that a < b.

Let f : [a, b] → R be differentiable. Then, by the mean value theorem, there
is some ξ ∈ (a, b) such that

f(b) − f(a) = f ′(ξ)(b − a) . (2.6)

Even when ξ ∈ (a, b) is not known, (2.6) provides a relationship between the change
of f on [a, b] and the values of f ′ on the interval. For a differentiable function
from [a, b] into a normed vector space E, (2.6) is, in general, not true, as we know
from Remark 2.9(a).

In applications it is often not necessary to know the exact change of f on [a, b].
Sometimes is suffices to know a suitable bound. For real valued functions, we get
such a bound directly from (2.6):

|f(b) − f(a)| ≤ sup
ξ∈(a,b)

|f ′(ξ)| (b − a) .

The next theorem proves an analogous statement for vector valued functions.

2.18 Theorem (mean value theorem for vector valued functions) Suppose that
E is a normed vector space and f ∈ C

(
[a, b], E

)
is differentiable on (a, b). Then

‖f(b) − f(a)‖ ≤ sup
t∈(a,b)

‖f ′(t)‖ (b − a) .

Proof It suffices to consider the case when f ′ is bounded, and so there is some
α > 0 such that α > ‖f ′(t)‖ for all t ∈ (a, b). Fix ε ∈ (0, b − a) and set

S :=
{

σ ∈ [a + ε, b] ; ‖f(σ) − f(a + ε)‖ ≤ α(σ − a − ε)
}

.

The set S is not empty since a + ε is in S. Because of the continuity of f , S is
closed (see Example III.2.22(c)), and, by the Heine-Borel theorem, is compact.
Hence s := maxS exists and and is in the interval [a + ε, b].

Suppose that s < b. Then, for all t ∈ (s, b),

‖f(t) − f(a + ε)‖ ≤ ‖f(t) − f(s)‖ + α(s − a − ε) . (2.7)

Since f differentiable on [a + ε, b), we have

‖f(t) − f(s)‖
t − s

→ ‖f ′(s)‖ (t → s) .

By the definition of α, there is some δ ∈ (0, b − s) such that

‖f(t) − f(s)‖ ≤ α(t − s) , 0 < t − s < δ .
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Together with (2.7), this implies

‖f(t) − f(a + ε)‖ ≤ α(t − a − ε) , s < t < s + δ ,

which contradicts the maximality of s. Thus we have s = b and hence also

‖f(b) − f(a + ε)‖ ≤ α(b − a − ε)

for each upper bound α of
{
‖f ′(t)‖ ; t ∈ (a, b)

}
, that is,

‖f(b) − f(a + ε)‖ ≤ sup
t∈(a,b)

‖f ′(t)‖ (b − a − ε) .

Since this holds for each ε ∈ (0, b − a), the claim follows by taking the limit ε → 0
and using the continuity of f . �

2.19 Corollary Suppose that I is a compact perfect interval, E is a normed vector
space, and f ∈ C(I, E) is differentiable on I̊. If f ′ is bounded on I̊, then f is Lip-
schitz continuous. In particular, any function in C1(I, E) is Lipschitz continuous.

Proof The first claim follows directly from Theorem 2.18. If f ∈ C1(I, E), then,
by Corollary III.3.7, the derivative f ′ is bounded on I. �

The Second Mean Value Theorem

The following is often called the second mean value theorem.

2.20 Proposition Suppose that f, g ∈ C
(
[a, b], R

)
are differentiable on (a, b), and

g′(x) �= 0 for all x ∈ (a, b). Then there is some ξ in (a, b) such that

f(b) − f(a)
g(b) − g(a)

=
f ′(ξ)
g′(ξ)

.

Proof Rolle’s theorem implies g(a) �= g(b), and so

h(x) := f(x) − f(b) − f(a)
g(b) − g(a)

(
g(x) − g(a)

)
is well defined for all x ∈ [a, b]. Moreover, h is continuous on [a, b], differentiable
on (a, b) and satisfies h(a) = h(b). By Rolle’s theorem, there is some ξ ∈ (a, b) such
that h′(ξ) = 0. Since

h′(x) = f ′(x) − f(b) − f(a)
g(b) − g(a)

g′(x) , x ∈ (a, b) ,

the claim follows. �
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L’Hospital’s Rule

As an application of the second mean value theorem, we derive a rule which is
useful for calculating the limit of a quotient of two functions when the limit has
the form ‘0/0’ or ‘∞/∞’.

2.21 Proposition Suppose that f, g : (a, b) → R are differentiable and g(x) �= 0
for all x ∈ (a, b). Suppose also that either

(i) lim
x→a

f(x) = lim
x→a

g(x) = 0
or

(ii) lim
x→a

g(x) = ±∞.

Then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

,

if the limit on the right exists in R̄.

Proof Suppose that α := limx→a f ′(x)/g′(x) < ∞. Then for each pair α0 and α1

such that α < α1 < α0, there is some x1 ∈ (a, b) such that f ′(x)/g′(x) < α1 for
all a < x < x1. By the second mean value theorem, for all x, y ∈ (a, x1) such that
x < y, there is some ξ ∈ (x, y) such that

f(y) − f(x)
g(y) − g(x)

=
f ′(ξ)
g′(ξ)

.

Since ξ < y < x1, it follows that

f(y) − f(x)
g(y) − g(x)

< α1 < α0 , x, y ∈ (a, x1) . (2.8)

Suppose that (i) is satisfied. Then taking the limit x → a in (2.8) yields

f(y)/g(y) ≤ α1 < α0 , a < y < x1 . (2.9)

If instead limx→a g(x) = ∞, then there is, for each y ∈ (a, x1), some x2 ∈ (a, y)
such that g(x) > 1 ∨ g(y) for all a < x < x2. From (2.8) we get

f(x)
g(x)

< α1 − α1
g(y)
g(x)

+
f(y)
g(x)

, a < x < x2 .

As x → a, the right side of this inequality converges to α1. Thus there is some
x3 ∈ (a, x2) such that f(x)/g(x) < α0 for all a < x < x3. Since α0 was chosen
arbitrarily close to α, it follows from this and (2.9) that, in either case,

lim
x→a

f(x)/g(x) ≤ α .
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If α ∈ (−∞,∞], then, by a similar argument,

lim
x→a

f(x)/g(x) ≥ α .

Thus we have proved the claim if either (i) or limx→a g(x) = ∞ holds. The case
limx→a g(x) = −∞ can be proved similarly and is left to the reader. �

2.22 Remark Of course, the corresponding statements for the left limit x → b
also are true. In addition, the proof of Proposition 2.21 remains valid in the cases
a = −∞ and b = ∞. �

2.23 Examples (a) For all m,n ∈ N× and a ∈ R,

lim
x→a

xn − an

xm − am
= lim

x→a

nxn−1

mxm−1
=

n

m
an−m .

(b) Let n ≥ 2 and ak ∈ [0,∞) for 1 ≤ k ≤ n. Then, from Proposition 2.21, we have

lim
x→∞

(
n
√

xn + a1xn−1 + · · · + an − x
)

= lim
y→0+

n
√

1 + a1y + · · · + anyn − 1
y

= lim
y→0+

1
n

a1 + 2a2y + · · · + nanyn−1

(1 + a1y + · · · + anyn)1−1/n

=
a1

n
.

(c) For all a ∈ R×,

lim
x→0

1 − cos(ax)
1 − cos x

= a2 .

Proof Using l’Hospital’s rule twice we get

lim
x→0

1 − cos(ax)

1 − cos x
= lim

x→0

a sin(ax)

sin x
= lim

x→0

a2 cos(ax)

cos x
= a2 ,

and so the claim is proved. �

Exercises

1 Let f : R → R be defined by

f(x) :=

{
e−1/x2

, x 
= 0 ,

0 , x = 0 .

Show that f is in C∞(R), that f has an isolated5 global minimum at x = 0, and that
f (k)(0) = 0 for k ∈ N.

5A function f has an isolated minimum at x0 if there is a neighborhood U of x0 such that
f(x) > f(x0) for all x ∈ U \{x0}.
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2 Let f be the function of Example 1.17 and F (x) := eef
(
f(1) − f(1 − x)

)
, x ∈ R.

Show that

F (x) =

{
0 , x ≤ 0 ,

1 , x ≥ 1 ,

and F is strictly increasing on [0, 1].

3 Let −∞ < a < b < ∞ and f ∈ C
(
[a, b], R

)
be differentiable on (a, b]. Show that, if

limx→a f ′(x) exists, then f is in C1
(
[a, b], R

)
and f ′(a) = limx→a f ′(x). (Hint: Use the

mean value theorem.)

4 Let a > 0 and f ∈ C2
(
[−a, a], R

)
be even. Show that there is some g ∈ C1

(
[0, a2 ], R

)
such that f(x) = g(x2) for all x ∈ [−a, a]. In particular, f ′(0) = 0. (Hint: Exercise 3.)

5 The functions

cosh−1 : [1,∞) → R+ and sinh−1 : R → R

are called the inverse hyperbolic cosine and inverse hyperbolic sine functions.

(a) Show that cosh−1 and sinh−1 are well defined and that

cosh−1(x) = log
(
x +

√
x2 − 1

)
, x ≥ 1 ,

sinh−1(x) = log
(
x +

√
x2 + 1

)
, x ∈ R .

(b) Calculate the first two derivatives of these functions.

(c) Discuss the convexity and concavity of cosh, sinh, cosh−1 and sinh−1. Sketch the
graphs of these functions.

6 Let n ∈ N× and f(x) := 1 + x + x2/2! + · · · + xn/n! for all x ∈ R. Show that the
equation f(x) = 0 has exactly one real solution if n is odd, and no real solutions if n
is even.

7 Suppose that −∞ ≤ a < b ≤ ∞ and f : (a, b) → R is continuous. A point x0 ∈ (a, b)
is called an inflection point of f if there are a0, b0 such that a ≤ a0 < xo < b0 ≤ b and
f |(a0, x0) is convex and f |(x0, b0) is concave, or f |(a0, x0) is concave and f |(x0, b0) is
convex.

(a) Let f : R → R be defined by

f(x) :=

{ √
x , x ≥ 0 ,

−
√
−x , x < 0 .

Show that f has an inflection point at 0.

(b) Suppose that f : (a, b) → R is twice differentiable and has an inflection point at x0.
Show that f ′′(x0) = 0.

(c) Show that the function f : R → R, x �→ x4 has no inflection points.

(d) Suppose that f ∈ C3
(
(a, b), R

)
, f ′′(x0) = 0 and f ′′′(x0) 
= 0. Show that f has an

inflection point at x0.
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8 Determine all the inflection points of f when f(x) is given by

(a) x2 − 1/x , x > 0 , (b) sin x + cos x , x ∈ R , (c) xx , x > 0 .

9 Show that f : (0,∞) → R, x �→ (1 + 1/x)x is strictly increasing.

10 Suppose that f ∈ C
(
[a, b], R

)
is differentiable on (a, b) and satisfies f(a) ≥ 0 and

f ′(x) ≥ 0, x ∈ (a, b). Prove that f(x) ≥ 0 for all x ∈ [a, b].

11 Show that

1 − 1/x ≤ log x ≤ x − 1 , x > 0 .

12 Suppose that I is a perfect interval and f, g : I → R is convex. Prove or disprove the
following:

(a) f ∨ g is convex.

(b) αf + βg is convex for α, β ∈ R.

(c) fg is convex.

13 Suppose that I is a perfect interval, f ∈ C(I, R) is convex, and g : f(I) → R is convex
and increasing. Show that g ◦ f : I → R is also convex. Find conditions on f and g which
ensure that g ◦ f is strictly convex.

14 Suppose that −∞ < a < b < ∞ and f : [a, b] → R is convex. Prove or disprove the
following:

(a) For each x ∈ (a, b), the limits ∂±f(x) exist and ∂−f(x) ≤ ∂+f(x).

(b) f |(a, b) is continuous.

(c) f is continuous.

15 Let I be a perfect interval, a ∈ I and n ∈ N. Suppose that ϕ, ψ ∈ Cn(I, R) are such
that

ϕ(k)(a) = ψ(k)(a) = 0 , 0 ≤ k ≤ n ,

ϕ(n+1) and ψ(n+1) exist on I̊, and

ψ(k)(x) 
= 0 , x ∈ I̊\{a} , 0 ≤ k ≤ n + 1 .

Show that, for each x ∈ I\{a}, there is some ξ ∈ (x ∧ a, x ∨ a) such that

ϕ(x)

ψ(x)
=

ϕ(n+1)(ξ)

ψ(n+1)(ξ)
.

16 Suppose that I is an interval, f ∈ Cn−1(I, R) and f (n) exists on I̊ for some n ≥ 2.
Let x0 < x1 < · · · < xn be zeros of f . Show that there is some ξ ∈ (x0, xn) such that
f (n)(ξ) = 0 (generalized Rolle’s theorem).

17 Calculate the following limits:

(a) lim
x→∞

(1+2x)1/3x , (b) lim
x→1

1 + cos πx

x2 − 2x + 1
, (c) lim

x→0

log cos 3x

log cos 2x
, (d) lim

x→0

( 1

sin2 x
− 1

x2

)
.
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18 Suppose that (xk) and (yk) are sequences in KN, 1 < p < ∞, and p′ is the Hölder
conjugate of p. Prove the Hölder inequality for series,∣∣∣ ∞∑

k=0

xkyk

∣∣∣ ≤ ∞∑
k=0

|xkyk| ≤
( ∞∑

k=0

|xk|p
)1/p( ∞∑

k=0

|yk|p
′)1/p′

,

and the Minkowski inequality for series,( ∞∑
k=0

|xk + yk|p
)1/p

≤
( ∞∑

k=0

|xk|p
)1/p

+
( ∞∑

k=0

|yk|p
)1/p

.

19 For x = (xk) ∈ KN, define

‖x‖p :=

{ (∑∞
k=0 |xk|p

)1/p
, 1 ≤ p < ∞ ,

supk∈N |xk| , p = ∞ ,

and
�p := {x ∈ KN ; ‖x‖p < ∞} , 1 ≤ p ≤ ∞ .

Show the following:

(a) �p := (�p, ‖·‖p) is a normed subspace of KN.

(b) �∞ = B(N, K).

(c) For 1 ≤ p ≤ q ≤ ∞, we have �p ⊆ �q and ‖x‖q ≤ ‖x‖p, x ∈ �p.

20 Suppose that I is a perfect interval and f : I → R is convex. Show that

f(λ1x1 + · · · + λnxn) ≤ λ1f(x1) + · · · + λnf(xn)

for all x1, . . . , xn ∈ I and λ1, . . . , λn ∈ R+ satisfying λ1 + · · · + λn = 1.

21 Suppose that I is an interval and f : I → R is convex. Show that, if x ∈ I and

h > 0 satisfy x + 2h ∈ I, then �2
hf(x) ≥ 0. Here �h is the divided difference operator of

length h (see Section I.12). (Hint: Think geometrically.)
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3 Taylor’s Theorem

In this chapter we have already seen that, for a function f , being differentiable at
a point a and being approximately linear at a are the same property. In addition,
using the mean value theorem, we showed how f ′ determines certain local and
global properties of f .

This suggests an obvious question: Can any smooth function f : D → E be
approximated by a polynomial near a point a ∈ D? If so, what does this approxi-
mation say about the local and global properties of f? What can we say about f
if we know sufficiently many, or even all, of its derivatives at a?

The Landau Symbol

Let X and E be normed vector spaces, D a nonempty subset of X and f : D → E.
In order to describe the behavior of f at a point a ∈ D, we use the Landau symbol o.
If α ≥ 0, we say ‘f has a zero of order α at a’ and write

f(x) = o(‖x − a‖α) (x → a) ,

if

lim
x→a

f(x)
‖x − a‖α

= 0 .

3.1 Remarks (a) A function f has a zero of order α at a if and only if, for each
ε > 0, there is a neighborhood U of a in D such that

‖f(x)‖ ≤ ε ‖x − a‖α
, x ∈ U .

Proof This follows from Remark III.2.23(a). �

(b) Suppose that X = K and r : D → E is continuous at a ∈ D. Then

f : D → E , x �→
(
r(x) − r(a)

)
(x − a)

has a zero of order 1 at a, that is, f(x) = o(|x − a|) (x → a).

(c) Let X = K. Then f : D → E is differentiable at a ∈ D if and only if there is
some (unique) ma ∈ E such that

f(x) − f(a) − ma(x − a) = o(|x − a|) (x → a) .

Proof This is a consequence of (b) and Theorem 1.1(iii) �

(d) The function f : (0,∞) → R, x �→ e−1/x has a zero of infinite order at 0,
that is,

f(x) = o(|x|α) (x → 0) , α > 0 .
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Proof Let α > 0. Then

lim
x→0

e−1/x/xα = lim
y→∞

yαe−y = 0

by Proposition III.6.5(iii). �

The function g : D → E approximates the function f : D → E with order α
at a if

f(x) = g(x) + o(‖x − a‖α) (x → a) ,

that is, if f − g has a zero of order α at a.
As well as the symbol o, we will occasionally use the Landau symbol O. If

a ∈ D and α ≥ 0, then we write

f(x) = O(‖x − a‖α) (x → a) ,

if there are r > 0 and K > 0 such that

‖f(x)‖ ≤ K ‖x − a‖α
, x ∈ B(a, r) ∩ D .

In this case we say that ‘f increases with order at most α at a’. In particular,
f(x) = O(1) (x → a) implies that f is bounded in some neighborhood of a.

For the remainder of this section, E := (E, ‖·‖) is a Banach space, D is a
perfect subset of K and f is a function from D to E.

Taylor’s Formula

We first investigate a necessary condition so that a ‘polynomial’ p =
∑n

k=0 ckXk

with coefficients1 ck in E can be chosen so that p approximates the function f
with order n at a ∈ D.

Consider first the special case when f =
∑n

k=0 bkXk is itself a polynomial
with coefficients in E. From the binomial theorem we get

f(x) =
n∑

k=0

bk(x − a + a)k =
n∑

k=0

bk

k∑
j=0

(k

j

)
(x − a)jak−j , x ∈ K .

Thus f can be written as a polynomial in x − a in the form

f(x) =
n∑

k=0

ck(x − a)k , x ∈ K ,

1A polynomial with coefficients in E is a formal expression of the form
∑n

k=0 ckXk with
ck ∈ E. If the ‘indeterminate’ X is replaced by a field element x ∈ K, we get a well determined el-
ement p(x) :=

∑n
k=0 ckxk ∈ E. Thus the ‘polynomial function’ K → E, x �→ p(x) is well defined.

The set of polynomials with coefficients in E does not, in general, form a ring! See Section I.8.
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where

ck :=
n∑

�=k

b�

( �

k

)
a�−k , k = 0, . . . , n .

Clearly we have

f(a) =
n∑

�=0

b�a
� = c0 ,

f ′′(a) =
n∑

�=2

b��(� − 1)a�−2 = 2c2 ,

f ′(a) =
n∑

�=1

b��a
�−1 = c1 ,

f ′′′(a) =
n∑

�=3

b��(� − 1)(� − 2)a�−3 = 6c3 .

A simple induction argument shows that f (k)(a) = k! ck for k = 0, . . . , n and so

f(x) =
n∑

k=0

f (k)(a)
k!

(x − a)k , x ∈ K . (3.1)

Thus we have a simple expression for the coefficients of f when it is written as a
polynomial in x − a (see Proposition I.8.16).

The following fundamental theorem shows that any function f ∈ Cn(D,E)
has a polynomial approximation with order n at any point a ∈ D.

3.2 Theorem (Taylor’s theorem) Let D be convex and n ∈ N×. Then, for each
f ∈ Cn(D,E) and a ∈ D, there is a function Rn(f, a) ∈ C(D,E) such that

f(x) =
n∑

k=0

f (k)(a)
k!

(x − a)k + Rn(f, a)(x) , x ∈ D .

The remainder function Rn(f, a) satisfies

‖Rn(f, a)(x)‖ ≤ 1
(n − 1)!

sup
0<t<1

∥∥f (n)
(
a + t(x − a)

)
− f (n)(a)

∥∥ |x − a|n

for all x ∈ D.

Proof For f ∈ Cn(D,E) and a ∈ D, define

Rn(f, a)(x) := f(x) −
n∑

k=0

f (k)(a)
k!

(x − a)k , x ∈ D .

Then it suffices to prove the claimed bound on Rn(f, a). For t ∈ [0, 1] and a fixed
x ∈ D, set

h(t) := f(x) −
n−1∑
k=0

f (k)
(
a + t(x − a)

)
k!

(x − a)k(1 − t)k − f (n)(a)
n!

(x − a)n(1 − t)n .
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Then h(0) = Rn(f, a)(x) and h(1) = 0, and also

h′(t) =
[
f (n)(a) − f (n)

(
a + t(x − a)

)] (1 − t)n−1

(n − 1)!
(x − a)n , t ∈ (0, 1) .

The mean value theorem for vector valued functions (Theorem 2.18) implies

‖Rn(f, a)(x)‖ = ‖h(1) − h(0)‖ ≤ sup
0<t<1

‖h′(t)‖

≤ sup
0<t<1

∥∥f (n)
(
a + t(x − a)

)
− f (n)(a)

∥∥
(n − 1)!

|x − a|n ,

which was to be proved. �

3.3 Corollary (qualitative version of Taylor’s theorem) With the hypotheses of
Theorem 3.2,

f(x) =
n∑

k=0

f (k)(a)
k!

(x − a)k + o(|x − a|n) (x → a) .

Taylor Polynomials and Taylor Series

For n ∈ N, f ∈ Cn(D,E) and a ∈ D,

Tn(f, a) :=
n∑

k=0

f (k)(a)
k!

(X − a)k

is a polynomial2 of degree ≤ n with coefficients in E, the nth Taylor polynomial
of f at a, and

Rn(f, a) := f − Tn(f, a)

is the nth remainder function of f at a. Corollary 3.3 shows that the Taylor
polynomial Tn(f, a) approximates the function f with order higher than n at a.

Now let E := K and f ∈ C∞(D) := C∞(D, K). Then the formal expression

T (f, a) :=
∑

k

f (k)(a)
k!

(X − a)k

is called the Taylor series of f at a, and by the radius of convergence of T (f, a)
we mean the radius of convergence of the power series

∞∑
k=0

f (k)(a)
k!

Xk .

2In agreement with the conventions of Section I.8, we identify polynomials with coefficients
in E with the corresponding E-valued polynomial functions.
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If T (f, a) has positive radius of convergence ρ, then

T (f, a) : B(a, ρ) → K , x �→
∞∑

k=0

f (k)(a)
k!

(x − a)k (3.2)

is a well defined function.
Just as for other power series, we identify the Taylor series T (f, a) with the

function (3.2). Note that this identification is meaningful only on B(a, ρ).

3.4 Remarks Let D be open in K and a ∈ D.

(a) The Taylor polynomial Tn(f, a) is the nth ‘partial sum’ of the Taylor se-
ries T (f, a). If the radius of convergence of the Taylor series is positive, then f is
approximated by Tn(f, a) with order n at a. This does not mean that f equals its
Taylor series in some neighborhood U of a.

Proof The function f from Example 1.17 is smooth and satisfies f (k)(0) = 0 for k ∈ N.

Consequently T (f, 0) = 0 
= f . �

(b) Suppose that the Taylor se-
ries T (f, a) for a function f has
positive radius of convergence ρ.
Then the function f is equal to
its Taylor series in some neighbor-
hood U ⊆ B(a, ρ) ∩ D of a if and
only if limn→∞ Rn(f, a)(x) = 0 for
all x ∈ U . �

�

�

� ��� ��

�

3.5 Example (series representation of the logarithm) For |z| < 1/2,

log(1 + z) =
∞∑

k=1

(−1)k−1

k
zk = z − z2

2
+

z3

3
− z4

4
+ − · · ·

Proof Let f(z) := log(1 + z) for z ∈ C\{−1}. Then, by induction,

f (n)(z) = (−1)n−1 (n − 1)!

(1 + z)n
, n ∈ N× , z ∈ C\(−∞,−1] .

From Theorem 3.2 we get the formula

log(1 + z) =
n∑

k=1

(−1)k−1

k
zk + Rn(f, 0)(z) , n ∈ N× , z ∈ C\(−∞,−1] ,

where the remainder function Rn(f, 0) satisfies

|Rn(f, 0)(z)| ≤ sup
0<t<1

∣∣∣ 1

(1 + tz)n
− 1

∣∣∣ |z|n , n ∈ N× , z ∈ C\(−∞,−1] .
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For |z| ≤ 1/2 and t ∈ [0, 1], we have the inequality |1 + tz| ≥ 1 − |z| ≥ 1/2, and hence∣∣∣ 1

(1 + tz)n
− 1

∣∣∣ ≤ 1

(1 − |z|)n
+ 1 ≤ 2n + 1 ≤ 2n+1 , n ∈ N× .

Thus
|Rn(f, 0)(z)| ≤ 2(2 |z|)n → 0 (n → ∞)

for all |z| < 1/2, and the claim follows. �

3.6 Remark For ak := (−1)k−1/k, k ∈ N×,

lim
k→∞

|ak+1|
|ak|

= lim
k→∞

k

k + 1
= 1 .

So the power series
∑

(−1)k−1Xk/k has radius of convergence 1. Thus the ques-
tion arises whether this series equals the function z �→ log(1 + z) on all of BC.
For complex z, we answer this question in Section V.3. For the real case, see
Application 3.9(d). �

The Remainder Function in the Real Case

With the help of the second mean value theorem we can derive a further estimate
of the remainder function Rn(f, a) for the case K = R and E = R.

3.7 Theorem (Schlömilch remainder formula) Let I be a perfect interval, a ∈ I,
p > 0 and n ∈ N. Suppose that f ∈ Cn(I, R) and f (n+1) exists on I̊. Then, for each
x ∈ I\{a}, there is some ξ := ξ(x) ∈ (x ∧ a, x ∨ a) such that

Rn(f, a)(x) =
f (n+1)(ξ)

pn!

(x − ξ

x − a

)n−p+1

(x − a)n+1 .

Proof Fix x ∈ I and set J := (x ∧ a, x ∨ a). Define

g(t) :=
n∑

k=0

f (k)(t)
k!

(x − t)k , h(t) := (x − t)p , t ∈ J .

Obviously g, h ∈ C(J, R) and both functions are differentiable on J with

g′(t) = f (n+1)(t)
(x − t)n

n!
, h′(t) = −p(x − t)p−1 , t ∈ J .

By the second mean value theorem (Proposition 2.20), there is some ξ in J such
that

g(x) − g(a) =
g′(ξ)
h′(ξ)

(
h(x) − h(a)

)
.

Since Rn(f, a)(x) = g(x) − g(a) and h(x) − h(a) = −(x − a)p, the claim follows. �
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3.8 Corollary (Lagrange and Cauchy remainder formulas) With the hypotheses
of Theorem 3.7,

Rn(f, a)(x) =
f (n+1)(ξ)
(n + 1)!

(x − a)n+1 (Lagrange)

and

Rn(f, a)(x) =
f (n+1)(ξ)

n!

(x − ξ

x − a

)n

(x − a)n+1 (Cauchy) .

Proof Set p = n + 1 and p = 1 respectively in Theorem 3.7. �

3.9 Applications (a) (sufficient condition for local extrema) Let I be a perfect
interval and f ∈ Cn(I, R) for some n ≥ 1. Suppose that there is some a ∈ I̊ such
that

f ′(a) = f ′′(a) = · · · = f (n−1)(a) = 0 and f (n)(a) �= 0 .

(i) If n is odd, then f has no extremum at a.

(ii) If n is even, then f has a local minimum at a if f (n)(a) > 0, and f has a local
maximum at a if f (n)(a) < 0.

Proof The hypotheses and Taylor’s theorem (Corollary 3.3) imply

f(x) = f(a) +
[f (n)(a)

n!
+

o(|x − a|n)
(x − a)n

]
(x − a)n (x → a) . (3.3)

Set γ := |f (n)(a)|/(2n!) > 0. Then, by Remark 3.1, there is some δ > 0 such that∣∣o(|x − a|n)
∣∣

|x − a|n ≤ γ , x ∈ I ∩ (a − δ, a + δ) . (3.4)

We now distinguish the following cases:
(α) Let n be odd and f (n)(a) > 0. Then, from (3.3) and (3.4), we have

f(x) ≥ f(a) + γ(x − a)n , x ∈ (a, a + δ) ∩ I ,

and
f(x) ≤ f(a) − γ(a − x)n , x ∈ (a − δ, a) ∩ I .

Thus f cannot have an extremum at a.
(β) If n is odd and f (n)(a) < 0, then, from (3.3) and (3.4), we have

f(x) ≤ f(a) − γ(x − a)n , x ∈ (a, a + δ) ∩ I ,

and
f(x) ≥ f(a) + γ(a − x)n , x ∈ (a − δ, a) ∩ I .

So, in this case too, f cannot have an extremum at a.
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(γ) Let n be even and f (n)(a) > 0. Then

f(x) ≥ f(a) + γ(x − a)n , x ∈ (a − δ, a + δ) ∩ I .

Hence f has a local minimum at a.
(δ) Finally, if n is even and f (n)(a) < 0, then

f(x) ≤ f(a) − γ(x − a)n , x ∈ (a − δ, a + δ) ∩ I ,

that is, f has a local maximum at a. �

Remark The above conditions are sufficient, but not necessary. For example, the
function

f(x) :=
{

e−1/x , x > 0 ,

0 , x ≤ 0 ,

has a global minimum at 0, even though, by Example 1.17, f is smooth with
f (n)(0) = 0 for all n ∈ N. �

(b) (a characterization of the exponential function3) Suppose that a, b ∈ C, the
function f : C → C is differentiable, and

f ′(z) = bf(z) , z ∈ C , f(0) = a . (3.5)

Then f(z) = aebz for all z ∈ C.

Proof From f ′ = bf and Corollary 1.2 we see that f ∈ C∞(C) and f (k) = bkf
for all k ∈ N. If, in addition, f(0) = a, then∑

k

f (k)(0)
k!

Xk = f(0)
∑

k

bk

k!
Xk = a

∑
k

bk

k!
Xk .

Since this power series has infinite radius of convergence by Proposition II.9.4, we
have

T (f, 0)(z) = aebz , z ∈ C .

To complete the proof, we need to prove that this Taylor series equals f on C,
that is, we must show that the remainder converges to 0. For z ∈ C, we estimate
Rn(f, 0)(z) using Theorem 3.2 as follows:

|Rn(f, 0)(z)| ≤ sup
0<t<1

∣∣f (n)(tz) − f (n)(0)
∣∣ |z|n
(n − 1)!

=
|b|n |z|n
(n − 1)!

sup
0<t<1

|f(tz) − a|

≤ M |bz| |bz|n−1

(n − 1)!
,

where M > 0 has been chosen so that |f(w) − a| ≤ M for all w ∈ B̄(0, |z|). From
Example II.4.2(c), it now follows that Rn(f, 0)(z) → 0 for all n → ∞. �

3This says that z �→ aebz is the unique solution of the differential equation f ′ = bf satisfying
the initial condition f(0) = a. Differential equations are studied in detail in Chapter IX.
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(c) (a characterization of the exponential function by its functional equation)
If f : C → C satisfies

f(z + w) = f(z)f(w) , z, w ∈ C , (3.6)

and

lim
z→0

f(z) − 1
z

= b for some b ∈ C , (3.7)

then f(z) = ebz for all z ∈ C.

Proof From (3.6), we have f(0) = f(0)2, and so f(0) ∈ {0, 1}. But, if f(0) = 0,
then, by (3.6), f(z) = f(z)f(0) = 0 for all z ∈ C, that is, f = 0. This contradicts
(3.7), and so we must have f(0) = 1.

For each z ∈ C, (3.6) implies

f(z + h) − f(z)
h

= f(z)
f(h) − 1

h
, h ∈ C× .

Thus, by (3.7), f is differentiable and satisfies f ′ = bf . The claim now follows
from (b). �

(d) (Taylor series for the real logarithm function) For all x ∈ (−1, 1],4

log(1 + x) =
∞∑

k=1

(−1)k−1

k
xk = x − x2

2
+

x3

3
− x4

4
+ − · · ·

In particular, the alternating harmonic series has the value log 2.

Proof As in the proof of Example 3.5, let f(x) := log(1 + x) for x > −1. Then

f (n+1)(x) = (−1)n n!
(1 + x)n+1

, x > −1 ,

and

log(1 + x) =
n∑

k=1

(−1)k−1

k
xk + Rn(f, 0)(x) , x > −1 .

To estimate the remainder on [0, 1] we use the Lagrange formula (Corollary 3.8)
and find, for each x ∈ [0, 1], some ξn ∈ (0, x) such that

|Rn(f, 0)(x)| =
∣∣∣ xn+1

(n + 1)(1 + ξn)n+1

∣∣∣ ≤ 1
n + 1

, n ∈ N .

Thus the Taylor series equals log(1 + x) on [0, 1].

4See also Example 3.5.
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For the case x ∈ (−1, 0), we use the Cauchy formula for Rn(f, 0) (Corol-
lary 3.8). Thus, for each n ∈ N, there is some ηn ∈ (x, 0) such that

|Rn(f, 0)(x)| ≤
∣∣∣ 1
1 + ηn

∣∣∣ ∣∣∣x − ηn

1 + ηn

∣∣∣n .

For η ∈ (x, 0), we have η − x = η + 1 − (x + 1) and so∣∣∣x − η

1 + η

∣∣∣ =
η − x

1 + η
= 1 − 1 + x

1 + η
< −x < 1 .

Thus limn Rn(f, 0)(x) = 0 for all x ∈ (−1, 0). The second claim is obtained by
setting x = 1 in the Taylor series. �

(e) (a characterization of convex functions)
Let I be a perfect interval and f ∈ C2(I, R).
Then f is convex if and only if the graph of f
is above all of its tangent lines, that is, if

f(y) ≥ f(x) + f ′(x)(y − x)

for all x, y ∈ I.

Proof Let x, y ∈ I. Then, by Theorem 3.2 and the Lagrange formula for R1(f, x),
there is some ξ ∈ I such that

f(y) = f(x) + f ′(x)(y − x) +
f ′′(ξ)

2
(y − x)2 .

Since we know from Corollary 2.13 that f is convex if and only if f ′′(ξ) ≥ 0 for all
ξ ∈ I, this proves the claim. �

Polynomial Interpolation

Let −∞ < a ≤ x0 < x1 < · · · < xm ≤ b < ∞ and f : [a, b] → R. In Proposition I.12.9 we
showed that there is a unique interpolation polynomial p = pm[f ; x0, . . . , xm] of de-
gree ≤ m such that f(xj) = p(xj) for all 1 ≤ j ≤ m. We are now in a position to estimate
the error function

rm[f ; x0, . . . , xm] := f − pm[f ; x0, . . . , xm]

on the interval I := [a, b], assuming that f is sufficiently smooth.

3.10 Proposition Let m ∈ N and f ∈ Cm(I) be such that f (m+1) exists on I̊. Then there
is some ξ := ξ(x, x0, . . . , xm) ∈ (x ∧ x0, x ∨ xm) such that

rm[f ; x0, . . . , xm](x) =
1

(m + 1)!
f (m+1)(ξ)

m∏
j=0

(x − xj) , x ∈ I .
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Proof The claim is clearly true if x is equal to one of the xj . So we suppose that x 
= xj

for all 0 ≤ j ≤ m and define

g(x) :=
f(x) − pm[f ; x0, . . . , xm](x)∏m

j=0(x − xj)
(3.8)

and

ϕ(t) := f(t) − pm[f ; x0, . . . , xm](t) − g(x)
m∏

j=0

(t − xj) , t ∈ I .

Then ϕ is in Cm(I), ϕ(m+1) exists on I̊ and

ϕ(m+1)(t) = f (m+1)(t) − (m + 1)! g(x) , t ∈ I̊ . (3.9)

Moreover, ϕ has the m + 2 distinct zeros, x, x0, . . . , xm. By the generalized Rolle’s the-
orem (Exercise 2.16), there is some ξ ∈ (x ∧ x0, x ∨ xm) such that ϕ(m+1)(ξ) = 0. Thus,
by (3.9), g(x) = f (m+1)(ξ)/(m + 1)!. The claim now follows from (3.8). �

3.11 Corollary For f ∈ Cm+1(I, R),∣∣rm[f ; x0, . . . , xm](x)
∣∣ ≤ ‖f (m+1)‖∞

(m + 1)!

m∏
j=0

|x − xj | , x ∈ I .

Higher Order Difference Quotients

By Remark I.12.10(b), we can also express the interpolation polynomial pm[f ; x0, . . . , xm]
in the Newtonian form

pm[f ; x0, . . . , xm] =
m∑

j=0

f [x0, . . . , xj ]

j−1∏
k=0

(X − xk) . (3.10)

Here f [x0, . . . , xn] are the divided differences of f . These can be calculated recursively
using the formula

f [x0, . . . , xn] =
f [x0, . . . , xn−1] − f [x1, . . . , xn]

x0 − xn
, 1 ≤ n ≤ m , (3.11)

(see Exercise I.12.10). From (3.11) (with n = 1) and the mean value theorem, it follows
that f [x0, x1] = f ′(ξ) for some suitable ξ ∈ (x0, x1). The next proposition shows that a
similar result holds for divided differences of higher order.

3.12 Proposition Suppose that f ∈ Cm(I, R) and f (m+1) exists on I̊. Then there is some
ξ ∈ (x ∧ x0, x ∨ xm), depending on x, x0, . . . , xm, such that

f [x0, . . . , xm, x] =
1

(m + 1)!
f (m+1)(ξ) , x ∈ I , x 
= xj , 0 ≤ j ≤ m .

Proof From (3.10) (with m replaced by m + 1), we have

pm+1[f ; x0, . . . , xm+1] = pm[f ; x0, . . . , xm] + f [x0, . . . , xm+1]
m∏

j=0

(X − xj) .
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Evaluation at x = xm+1 yields

f(xm+1) = pm[f ; x0, . . . , xm](xm+1) + f [x0, . . . , xm+1]

m∏
j=0

(xm+1 − xj) .

Replacing xm+1 in this equation by x yields

f(x) − pm[f ; x0, . . . , xm](x) = f [x0, . . . , xm, x]

m∏
j=0

(x − xj) . (3.12)

By construction, this equation holds for all xm < x ≤ b, and it is clearly true for x = xm.
Exercise I.12.10(b) shows that the divided differences are symmetric functions of their
arguments and so equation (3.12) holds, in fact, for all x ∈ I.

The left side of (3.12) is the error function rm[f ; x0, . . . , xm], so it follows from
Proposition 3.10 that

1

(m + 1)!
f (m+1)(ξ)

m∏
j=0

(x − xj) = f [x0, . . . , xm, x]
m∏

j=0

(x − xj) , x ∈ I ,

for some ξ := ξ(x, x0, . . . , xm) ∈ (x ∧ x0, x ∨ xm). �

3.13 Corollary Let f ∈ Cm+1(I, R). Then, for all x ∈ I,

lim
(x0,...,xm)→(x,...,x)

f [x0, . . . , xm, x] =
1

(m + 1)!
f (m+1)(x) ,

so long as the limit is taken so that no xj ever equals x.

This corollary shows that the higher order divided differences can be used to ap-
proximate higher order derivatives in the same way that the usual difference quotient
approximates the first derivative.

A particularly simple situation occurs if the points x0, x1, . . . , xn are equally spaced,
that is,

xj := x0 + jh , 0 ≤ j ≤ n ,

for some h > 0.

3.14 Proposition Suppose that f ∈ Cn−1(I, R), f (n) exists on I̊ and 0 < h ≤ (b − a)/n.
Then there is some ξ ∈ (a, a + nh) such that

�n
hf(a) = f (n)(ξ) .

Proof From (3.10), the uniqueness of the interpolation polynomial (Proposition I.12.9)
and (I.12.15) we have

1

n!
�n

hf(a) = f [x0, x1, . . . , xn] , x0 := a . (3.13)

The claim then follows from Proposition 3.12. �
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3.15 Corollary For all f ∈ Cn(I, R),

lim
h→0+

�n
hf(x) = f (n)(x) , x ∈ I .

Proof This follows directly from (3.13) and Corollary 3.13. �

3.16 Remarks (a) Let f ∈ Cn(I, R). By Proposition I.12.13, the Newton interpolation
polynomial for f with equally spaced points xj := x0 + jh ∈ I, 0 ≤ j ≤ n, with h > 0,
has the form

Nn[f ; x0; h] =
n∑

j=0

�j
hf(x0)

j!

j−1∏
k=0

(X − xk) .

From Corollary 3.15, we get

lim
h→0+

Nn[f ; x0; h] =
n∑

j=0

f (j)(x0)

j!
(X − x0)

j = Tn(f, x0) .

This shows that, in the limit h → 0+, the Newton interpolation polynomial becomes the
Taylor polynomial.

(b) Corollaries 3.13 and 3.15 are the theoretical foundation of numerical differentiation.
For details and further development see, for example, [WS79] and [IK66], as well the
literature on numerical analysis. �

Exercises

1 Suppose that α, β, R > 0 and p ∈ C2
(
[0, R), R

)
satisfy

p(x) ≥ α , (1 + β)
[
p′(x)

]2 ≤ p′′(x)p(x) , x ≥ 0 .

Show that R < ∞ and p(x) → ∞ as x → R−.
(Hint: The function p−β is concave. Use a tangent line to p−β to provide a lower bound
for p (see Application 3.9(e)).

2 Let a, b ∈ C, ω ∈ R, and f : C → C be a twice differentiable function which satisfies

f(z) + ω2f ′′(z) = 0 , z ∈ C , f(0) = a , f ′(0) = ωb . (3.14)

(a) Show that f is in C∞(C) and that f is uniquely determined by (3.14). Determine f .

(b) What is f if (3.14) is replaced by

f(z) = ω2f ′′(z) , z ∈ C , f(0) = a , f ′(0) = ωb ?

3 Determine the Taylor series of f : C → C at the point 1 when
(a) f(z) = 3z3 − 7z2 + 2z + 4, (b) f(z) = ez.

4 Calculate the nth Taylor polynomial at 0 of log
(
(1 + x)/(1 − x)

)
, x ∈ (−1, 1).
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5 Determine the domains, the extrema and the inflection points of the following real
functions:
(a) x3/(x − 1)2, (b) esin x, (c) xne−x2

, (d) x2/ log x, (e) 3
√

(x − 1)2(x + 1),

(f)
(
log(3x)

)2/
x.

6 For a > 1, show that

1

1 + x
− 1

1 + ax
≤

√
a − 1√
a + 1

, x ≥ 1 .

7 Suppose that s ∈ R and n ∈ N. Show that, for each x > −1, there is some τ ∈ (0, 1)
such that

(1 + x)s =
n∑

k=0

( s

k

)
xk +

( s

n + 1

) xn+1

(1 + τx)n+1−s
. (3.15)

Here (α

k

)
:=

⎧⎨⎩
α(α − 1) · · · · · (α − k + 1)

k!
, k ∈ N× ,

1 , k = 0 ,

denotes the (general) binomial coefficient5 for α ∈ C.

8 Use (3.15) to approximate 5
√

30. Estimate the error. (Hint: 5
√

30 = 2 5
√

1 − (1/16).)

9 Prove the following Taylor series expansion for the general power function:6

(1 + x)s =
∞∑

k=0

( s

k

)
xk , x ∈ (−1, 1) .

(Hint: To estimate the remainder, distinguish the cases x ∈ (0, 1) and x ∈ (−1, 0) (see
Application 3.9(d)).

10 Let X ⊆ K be perfect and f ∈ Cn(X, K) for some n ∈ N×. A number x0 ∈ X is called
a zero of multiplicity n of f if f(x0) = · · · = f (n−1)(x0) = 0 and f (n)(x0) 
= 0. Show that,
if X is convex, then f has a zero of multiplicity ≥ n at x0 if and only if there is some
g ∈ C(X, K) such that f(x) = (x − x0)

ng(x) for all x ∈ X.

11 Let p = Xn + an−1X
n−1 + · · · + a0 be a polynomial with coefficients in R. Prove or

disprove that the function p + exp has a zero of multiplicity ≤ n in R.

12 Prove the following:

(a) For each n ∈ N, Tn(x) := cos(n arccos x), x ∈ R, is a polynomial of degree n and

Tn(x) = xn +
(n

2

)
xn−2(x2 − 1) +

(n

4

)
xn−4(x2 − 1)2 + · · · .

Tn is called the Chebyschev polynomial of degree n.

(b) These polynomials satisfy the recursion formula

Tn+1 = 2XTn − Tn−1 , n ∈ N× .

(c) For each n ∈ N×, Tn = 2n−1Xn + pn for some polynomial pn with deg(pn) < n.

5See Section V.3.
6See also Theorem V.3.10.
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(d) Tn has a simple zero, that is, a zero of multiplicity 1, at each of the points

xk := cos
(2k − 1)π

2n
, k = 1, 2, . . . , n .

(e) Tn has an extremum at each of the points

yk := cos
kπ

n
, k = 0, 1, . . . , n ,

in [−1, 1], and Tn(yk) = (−1)k.
(Hint: (a) For α ∈ [0, π] and x := cos α, cos nα + i sin nα =

(
x + i

√
1 − x2

)n
.

(b) Addition theorem for the cosine function.)

13 Define the normalized Chebyschev polynomials by T̃n := 21−nTn for n ∈ N× and
T̃0 := T0. For n ∈ N, let Pn be the set of all polynomials Xn + a1X

n−1 + · · · + an with
a1, . . . , an ∈ R. Let ‖·‖∞ be the maximum norm on [−1, 1]. Prove the following:7

(a) In the set Pn, the normalized Chebyschev polynomial of degree n is the best approx-
imation of zero on the interval [−1, 1], that is, for each n ∈ N,∥∥T̃n

∥∥
∞ ≤ ‖p‖∞ , p ∈ Pn .

(b) For −∞ < a < b < ∞,

max
a≤x≤b

|p(x)| ≥ 21−2n(b − a)n , p ∈ Pn .

(c) Let x0, . . . , xn be the zeros of Tn+1. Suppose that f ∈ Cn+1
(
[−1, 1], R

)
and pn is the

interpolation polynomial of degree ≤ n such that f(xj) = p(xj) for j = 0, 1, . . . , n. Then

‖rn[f ; x0, . . . , xn]‖∞ ≤ ‖f (n+1)‖∞
2n(n + 1)!

.

Show that this bound on the error is optimal.

7Statement (a) is often called Chebyschev’s theorem.
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4 Iterative Procedures

We have already derived various theorems about the zeros of functions. The most
prominent of these are the fundamental theorem of algebra, the intermediate value
theorem and Rolle’s theorem. These important and deep results have in common
that they predict the existence of zeros, but say nothing about how to find these
zeros. So we know, for example, that the real function

x �→ x5e|x| − 1
π

x2 sin
(
log(x2)

)
+ 1998

has at least one zero (why?), but we have, so far, no algorithm for finding this
zero.1

In this section we develop methods to find zeros of functions and to solve
equations — at least approximately. The central result of this section, the Banach
fixed point theorem, is, in fact, of considerable importance beyond the needs of
this section, as we will see in later chapters.

Fixed Points and Contractions

Let f : X → Y be a function between sets X and Y with X ⊆ Y . An element
a ∈ X such that f(a) = a is called a fixed point of f .

4.1 Remarks (a) Suppose that E is a vector space, X ⊆ E and f : X → E. Set
g(x) := f(x) + x for all x ∈ X. Then a ∈ X is a zero of f if and only if a is a fixed
point of g. Thus determining the zeros of f is the same as determining the fixed
points of g.

(b) Given a function f : X → E, there are, in general, many possibilities for the
function g as in (a). Suppose, for example, that E = R and 0 is the unique zero of
the function h : R → R. Set g(x) = h

(
f(x)

)
+ x for x ∈ X. Then a ∈ X is a zero

of f if and only if a is a fixed point of g.

(c) Let X be a metric space and a a fixed point of f : X → Y . Suppose that
x0 ∈ X and that the sequence (xk) can be defined recursively by the ‘iteration’
xk+1 := f(xk). This means, of course, that f(xk) is in X for each k. If xk → a,
then we say that ‘a can be calculated by the method of successive approximations’,
or ‘the method of successive approximations converges to a’.

The following graphs illustrate this method in the simplest cases. They show,
in particular, that, even if f has only one fixed point, the sequence generated using
this method may fail to converge.

1See Exercise 9.
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Consider, for example, the function f : [0, 1] → [0, 1] defined by f(x) := 1 − x.
It has exactly one fixed point, namely a = 1/2. For the sequence (xk) defined by
xk+1 := f(xk) for all k ∈ N, we have x2k = x0 and x2k+1 = 1 − x0 for all k ∈ N.
Thus (xk) diverges if x0 �= 1/2. �

A function f : X → Y between two metric spaces X and Y is called a con-
traction if there is some q ∈ (0, 1) such that

d
(
f(x), f(x′)

)
≤ qd(x, x′) , x, x′ ∈ X .

In this case, q is called a contraction constant of f .

4.2 Remarks (a) A function f : X → Y is a contraction if and only if f is Lipschitz
continuous with Lipschitz constant less than 1.

(b) Let E be a normed vector space and X ⊆ K convex and perfect. Suppose
that f : X → E is differentiable and supX ‖f ′(x)‖ < 1. Then it follows from the
mean value theorem for vector valued functions (Theorem 2.18) that f is a con-
traction. �

The Banach Fixed Point Theorem

The following theorem is the main result of this section and has innumerable
applications, especially in applied mathematics.

4.3 Theorem (contraction theorem, Banach fixed point theorem) Suppose that X
is a complete metric space and f : X → X is a contraction.

(i) f has a unique fixed point a.

(ii) For any initial value x0, the method of successive approximations converges
to a.
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(iii) If q is a contraction constant for f , then

d(xk, a) ≤ qk

1 − q
d(x1, x0) , k ∈ N .

Proof (a) (uniqueness) If a, b ∈ X are two distinct fixed points of f , then

d(a, b) = d
(
f(a), f(b)

)
≤ qd(a, b) < d(a, b) ,

which is not possible.
(b) (existence and convergence) Let x0 ∈ X. Define the sequence (xk) re-

cursively by xk+1 := f(xk) for all k ∈ N. Then

d(xn+1, xn) = d
(
f(xn), f(xn−1)

)
≤ qd(xn, xn−1) , n ∈ N× ,

and, by induction,
d(xn+1, xn) ≤ qn−kd(xk+1, xk) (4.1)

for all n > k ≥ 0. This inequality implies

d(xn, xk) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · · + d(xk+1, xk)

≤ (qn−k−1 + qn−k−2 + · · · + 1)d(xk+1, xk)

=
1 − qn−k

1 − q
d(xk+1, xk)

(4.2)

for n > k ≥ 0. Since, by (4.1), d(xk+1, xk) ≤ qkd(x1, x0), it follows from (4.2) that

d(xn, xk) ≤ qk − qn

1 − q
d(x1, x0) ≤ qk

1 − q
d(x1, x0) , n > k ≥ 0 . (4.3)

This shows that (xk) is a Cauchy sequence. Since X is a complete metric space,
there is some a ∈ X such that limxk = a. By the continuity of f and the definition
of the sequence (xk), a is a fixed point of f .

(c) (error estimate) Since the sequence (xn) converges to a, we can take
the limit n → ∞ in (4.3) to get the claimed estimate of the error (see Exam-
ple III.1.3(l)). �

4.4 Remarks (a) As well as the a priori error estimate of Theorem 4.3(iii) we
have the a posteriori bound

d(xk, a) ≤ q

1 − q
d(xk, xk−1) , k ∈ N .

Proof Taking the limit n → ∞ in (4.2) yields

d(xk, a) ≤ 1
1 − q

d(xk+1, xk) ≤ q

1 − q
d(xk, xk−1) ,

where we have also used (4.1). �
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(b) Suppose that f : X → X is a contraction with contraction constant q and a is
a fixed point of f . Then, for the method of successive approximations, we have a
further error estimate:

d(xk+1, a) = d
(
f(xk), f(a)

)
≤ qd(xk, a) , k ∈ N .

Thus one says that this iterative process converges linearly.
In general, one says that a sequence (xn) converges with order α to a if α ≥ 1

and there are constants n0 and c such that

d(xn+1, a) ≤ c
[
d(xn, a)

]α
, n ≥ n0 .

If α = 1, that is, the convergence is linear, we also require that c < 1. In general,
a sequence converges faster the higher its order of convergence. For example, for
quadratic convergence, if d(xn0 , a) < 1 and c ≤ 1, then each step doubles the num-
ber of correct decimal places in the approximation. In practice, c is often larger
than 1 and so this effect is partly diminished.

(c) In applications the following situation often occurs: Suppose that E is a Ba-
nach space, X is a closed subset of E and f : X → E is a contraction such that
f(X) ⊆ X. Then, since X is a complete metric space (see Exercise II.6.4), all the
statements of the contraction theorem hold for f .

(d) The hypothesis of (b), that f(X) ⊆ X, can be weakened. If there is some
initial value x0 ∈ X such that the iteration xk+1 = f(xk) can be carried out for
all k, then the claims of the contraction theorem hold for this particular x0. �

With the help of the previous remark we can derive a useful ‘local version’
of the Banach fixed point theorem.

4.5 Proposition Let E be a Banach space and X := B̄E(x0, r) with x0 ∈ E and
r > 0. Suppose that f : X → E is a contraction with contraction constant q which
satisfies ‖f(x0) − x0‖ ≤ (1 − q)r. Then f has a unique fixed point and the method
of successive approximations converges if x0 is the initial value.

Proof Since X is a closed subset of a Banach space, X is a complete met-
ric space. Thus, by Remark 4.4(d), it suffices to show that xk+1 = f(xk) re-
mains in X at each iteration. For x1 = f(x0) this holds because of the hypothesis
‖f(x0) − x0‖ = ‖x1 − x0‖ ≤ (1 − q)r.

Suppose that x1, . . . , xk ∈ X. From (4.3) it follows that

‖xk+1 − x0‖ ≤ 1 − qk+1

1 − q
‖x1 − x0‖ ≤ (1 − qk+1)r < r .

Consequently, xk+1 is also in X and the iteration xk+1 = f(xk) is defined for
all k. �
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4.6 Examples (a) Consider the problem of finding the solution ξ of the equation
tanx = x in the interval π/2 < ξ < 3π/2. Set I := (π/2, 3π/2) and f(x) := tanx
for x ∈ I so that f ′(x) = 1 + f2(x). It follows from the mean value theorem that
f is not a contraction on any neighborhood of ξ.

To use the contraction theorem we consider instead the inverse function of f ,
that is, the function

g :
[
tan

∣∣(π/2, 3π/2)
]−1 : R → (π/2, 3π/2) .

Since the tangent function is strictly increas-
ing on (π/2, 3π/2), the function g is well de-
fined and g(x) = arctan(x) + π. Moreover the
fixed point problems for f and g are equiva-
lent, that is, for all a ∈ (π/2, 3π/2),

a = tan a ⇐⇒ a = arctan(a) + π .
��� �

Since g′(x) = 1/(1 + x2) (see (IV.2.3)), the contraction theorem applies to g. From
the graph we see that ξ > π. Set X := [π,∞) ⊆ R so that g(X) ⊆ [π, 3π/2) ⊆ X.
Because |g′(x)| ≤ 1/(1 + π2) < 1 for all x ∈ X, g is a contraction on X. Thus it
follows from Theorem 4.3 that there is a unique ξ ∈ [π, 3π/2) such that ξ = g(ξ),
and that, with initial value x0 := π, the method of successive approximations con-
verges to ξ.

(b) Let −∞ < a < b < ∞ and f ∈ C1
(
[a, b], R

)
be a contraction. Suppose that

the iterative procedure xk+1 = f(xk) for x0 ∈ [a, b] defines an infinite sequence.
By Remark 4.4(d), there is a unique ξ ∈ [a, b] such that xk → ξ. The convergence
is monotone if f ′(x) > 0 for all x ∈ [a, b], and alternating, that is, ξ is between
each pair xk and xk+1, if f ′(x) < 0 for all x ∈ [a, b].

� �� �� �� �� � �

�

Monotone convergence

� �� �� �� �� �

�

Alternating convergence
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Proof By the mean value theorem, for each k ∈ N, there is some ηk ∈ (a, b) such that

xk+1 − xk = f(xk) − f(xk−1) = f ′(ηk)(xk − xk−1) .

If f ′(ηk) ≥ 0 for all k ∈ N×, then

sign(xk+1 − xk) ∈
{
sign(xk − xk−1), 0

}
, k ∈ N× ,

and so (xk) is a monotone sequence. If f ′(ηk) ≤ 0 for all k ∈ N×, then

sign(xk+1 − xk) ∈
{
− sign(xk − xk−1), 0

}
, k ∈ N× ,

that is, the convergence is alternating. �

Example 4.6(a) shows most importantly that, for concrete applications, it
is important to analyze the problem theoretically first and, if needed, to put the
problem in a new form so that the method of successive approximations can be
used effectively.

Newton’s Method

In the remainder of this section, we consider the following situation:

Let −∞ < a < b < ∞ and f ∈ C2
(
[a, b], R

)
be such that

f ′(x) �= 0 for all x ∈ [a, b]. We suppose further that there
is some ξ ∈ (a, b) such that f(ξ) = 0.

(4.4)

Using linear approximations of f , we will develop a method to approximate
the zero ξ of f . Geometrically, ξ is the intersection of the graph of f and the x-axis.

� � �� �� �� �

�
��

��

Starting with an initial approximation x0 of ξ, we replace the graph of f by
its tangent line t0 at the point

(
x0, f(x0)

)
. By hypothesis (4.4), f ′ is nonzero

on [a, b], and so the tangent line t0 intersects the x-axis at a point x1 which is a
new approximation of ξ. The tangent line at the point

(
x0, f(x0)

)
is given by the

equation
x �→ f(x0) + f ′(x0)(x − x0) ,
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and so x1 can be calculated from the equation f(x0) + f ′(x0)(x1 − x0) = 0:

x1 = x0 − f(x0)
f ′(x0)

.

Iteration of this procedure is called Newton’s method:

xn+1 = xn − f(xn)
f ′(xn)

, n ∈ N , x0 ∈ [a, b] .

The hypotheses in (4.4) do not suffice to ensure the convergence xn → ξ, as the
following graph illustrates:

�� �� �� ��

�

Define g : [a, b] → R by

g(x) := x − f(x)/f ′(x) . (4.5)

Then ξ is clearly a fixed point of g, and Newton’s method is simply the method of
successive approximations for the function g. This suggests applying the Banach
fixed point theorem, and indeed, this theorem is at the center of the proof of the
following convergence result for Newton’s method.

4.7 Theorem There is some δ > 0 such that Newton’s method converges to ξ for
any x0 in the interval [ξ − δ, ξ + δ]. In other words: Newton’s method converges if
the initial value is sufficiently close to the zero ξ.

Proof (i) By the extreme value theorem (Corollary III.3.8), there are constants
M1,M2,m > 0 such that

m ≤ |f ′(x)| ≤ M1 , |f ′′(x)| ≤ M2 , x ∈ [a, b] . (4.6)

For the function g defined in (4.5), we have g′ = ff ′′/[f ′]2, and so

|g′(x)| ≤ M2

m2
|f(x)| , x ∈ [a, b] .

Since f(ξ) = 0, the absolute value of f can be estimated using the mean value
theorem as follows:

|f(x)| = |f(x) − f(ξ)| ≤ M1 |x − ξ| , x ∈ [a, b] . (4.7)
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Thus
|g′(x)| ≤ M1M2

m2
|x − ξ| , x ∈ [a, b] .

(ii) Choose δ1 > 0 such that

I := [ξ − δ1, ξ + δ1] ⊆ [a, b] and
M1M2

m2
δ1 ≤ 1

2
.

Then g is a contraction on I with the contraction constant 1/2. Now set r := δ1/2
and choose δ > 0 such that M1δ/m ≤ r/2. Because M1 ≥ m, we have δ ≤ δ1/4.
Thus, for each x0 ∈ [ξ − δ, ξ + δ] and x ∈ [x0 − r, x0 + r], we have

|x − ξ| ≤ |x − x0| + |x0 − ξ| ≤ r + δ ≤ δ1

2
+

δ1

4
< δ1 .

This shows the inclusion B̄(x0, r) ⊆ I for each x0 ∈ [ξ − δ, ξ + δ]. Thus g is a con-
traction on B̄(x0, r) with contraction constant 1/2.

Finally, it follows from (4.6) and (4.7) that

|x0 − g(x0)| =
∣∣∣ f(x0)
f ′(x0)

∣∣∣ ≤ M1

m
|x0 − ξ| ≤ M1δ

m
≤ r

2
.

Hence g satisfies the hypotheses of Proposition 4.5, and there is a unique fixed
point η of g in [ξ − δ, ξ + δ]. Since η is a zero of f , and, by Rolle’s theorem, f has
only one zero in [a, b], we have η = ξ. The claimed convergence property now
follows from the Banach fixed point theorem. �

4.8 Remarks (a) Newton’s method converges quadratically, that is, there is some
c > 0 such that

|xn+1 − ξ| ≤ c |xn − ξ|2 , n ∈ N .

Proof For each n ∈ N, the Lagrange remainder formula for the Taylor series ensures the
existence of some ηn ∈ (ξ ∧ xn, ξ ∨ xn) such that

0 = f(ξ) = f(xn) + f ′(xn)(ξ − xn) +
1

2
f ′′(ηn)(ξ − xn)2 .

Thus from Newton’s method, we have

ξ − xn+1 = ξ − xn +
f(xn)

f ′(xn)
= −1

2

f ′′(ηn)

f ′(xn)
(ξ − xn)2 .

With the notation of (4.6) and c := M2/(2m), the claim now follows. �

(b) Newton’s method converges monotonically if f is convex and f(x0) is positive
(or if f is concave and f(x0) is negative).

Proof This follows directly from Application 3.9(e) and the characterization of convex

and concave functions in Theorem 2.12. �
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4.9 Example (calculating roots) For a > 0 and n ≥ 2, we consider how n
√

a can be
determined using Newton’s method. Setting f(x) = xn − a for all x ≥ 0 we have
the iteration

xk+1 = xk − xn
k − a

nxn−1
k

=
(
1 − 1

n

)
xk +

a

nxn−1
k

, k ∈ N . (4.8)

Let x0 > max{1, a}. Since f(x0) = xn
0 − a > 0 and f is convex, by Remark 4.8(b),

(xk) converges monotonically to n
√

a. In the special case n = 2, (4.8) becomes

xk+1 =
1
2

(
xk +

a

xk

)
, k ∈ N , x0 = max{1, a} ,

which is the Babylonian algorithm of Exercise II.4.4. �

Exercises

1 Let X be a complete metric space and, for f : X → X, let fn denote the nth iterate
of f , that is, f0 := idX and fn := f ◦ fn−1, n ∈ N×. Suppose that, for each n ∈ N, there
is some qn ≥ 0 such that

d
(
fn(x), fn(y)

)
≤ qnd(x, y) , x, y ∈ X .

Show that, if (qn) is a null sequence, then f has a fixed point in X.

2 Let X and Λ be metric spaces with X complete, and f ∈ C(X × Λ, X). Suppose that
there is some α ∈ [0, 1) and, for each λ ∈ Λ, some q(λ) ∈ [0, α] such that

d
(
f(x, λ), f(y, λ)

)
≤ q(λ)d(x, y) , x, y ∈ X .

By the Banach fixed point theorem, for each λ ∈ Λ, f(·, λ) has a unique fixed point x(λ)
in X. Prove that

[
λ �→ x(λ)

]
∈ C(Λ, X).

3 Verify that the function f : R → R, x �→ ex−1 − e1−x has a unique fixed point x∗.
Calculate x∗ approximately.

4 Using Newton’s method, approximate the real zeros of X3 − 2X − 5.

5 Determine numerically the least positive solutions of the following equations:

x tan x = 1 , x3 + e−x = 2 , x − cos2 x = 0 , 2 cos x = x2 .

6 By Exercise 2.6, the function f(x) = 1 + x + x2/2! + · · · + xn/n! , x ∈ R, has a unique
zero for odd n ∈ N×. Determine these zeros approximately.

7 Suppose that −∞ < a < b < ∞ and f : [a, b] → R is a differentiable convex function
such that either

f(a) < 0 < f(b) or f(a) > 0 > f(b) .

Show that the recursively defined sequence

xn+1 := xn − f(xn)

f ′(x0)
, n ∈ N× , (4.9)

converges to the zero of f in [a, b] for any initial value x0 such that f(x0) > 0.2 For which
initial values does this method converge if f is concave?

2The iterative procedure given in (4.9) is called the simplified Newton’s method.
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8 Suppose that −∞ < a < b < ∞ and f ∈ C
(
[a, b], R

)
satisfies f(a) < 0 < f(b). Set

a0 := a, b0 := b and recursively define

cn+1 := an − bn − an

f(bn) − f(an)
f(an) , n ∈ N , (4.10)

and

an+1 :=

{
cn+1 , f(cn+1) ≤ 0 ,

an otherwise ,
, bn+1 :=

{
bn , f(cn+1) ≤ 0 ,

cn+1 otherwise .
(4.11)

Show that (cn) converges to some zero of f . What is the graphical interpretation of
this procedure (called the regula falsi or the method of false position)? How should the
formulas be modified if f(a) > 0 > f(b)?

9 Determine approximately a zero of

x5e|x| − 1

π
x2 sin

(
log(x2)

)
+ 1998 .

10 Let I be a compact perfect interval and f ∈ C1(I, I) a contraction such that f ′(x) 
= 0
for all x ∈ I. Let x0 ∈ I and denote by x∗ := lim fn(x0) the unique fixed point of f in I.
Finally, suppose that x0 
= x∗. Prove the following:

(a) fn(x0) 
= x∗ for each n ∈ N×.

(b) lim
n→∞

fn+1(x0) − x∗

fn(x0) − x∗ = f ′(x∗).



Chapter V

Sequences of Functions

In this chapter, approximations are once again the center of our interest. Just as
in Chapter II, we study sequences and series. The difference is that we consider
here the more complex situation of sequences whose terms are functions. In this
circumstance there are two viewpoints: We can consider such sequences locally,
that is, at each point, or globally. In the second case it is natural to consider the
terms of the sequence as elements of a function space so that we are again in the
situation of Chapter II. If the functions in the sequence are all bounded, then we
have a sequence in the Banach space of bounded functions, and we can apply all
the results about sequences and series which we developed in the second chapter.
This approach is particularly fruitful, allows short and elegant proofs, and, for the
first time, demonstrates the advantages of the abstract framework in which we
developed the fundamentals of analysis.

In the first section we analyze the various concepts of convergence which ap-
pear in the study of sequences of functions. The most important of these is uniform
convergence which is simply convergence in the space of bounded functions. The
main result of this section is the Weierstrass majorant criterion which is nothing
more than the majorant criterion from the second chapter applied to the Banach
space of bounded functions.

Section 2 is devoted to the connections between continuity, differentiability
and convergence for sequences of functions. To our supply of concrete Banach
spaces, we add one extremely important and natural example: the space of con-
tinuous functions on a compact metric space.

In the following section we continue our earlier investigations into power se-
ries and study those functions, the analytic functions, which can be represented
locally by power series. In particular, we analyze Taylor series again and derive
several classical power series representations. A deeper penetration into the beau-
tiful and important theory of analytic functions must be postponed until we have
the concept of the integral.
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The last section considers the approximation of continuous functions by poly-
nomials. Whereas the Taylor polynomial provides a local approximation, here we
are interested in uniform approximations. The main result is the Stone-Weierstrass
theorem. In addition, we take a first look at the behavior of periodic functions, and
prove that the Banach algebra of continuous 2π-periodic functions is isomorphic
to the Banach algebra of continuous functions on the unit circle. Directly from
this fact we get the Weierstrass approximation theorem for periodic functions.
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1 Uniform Convergence

For sequences of functions, several different kinds of convergence are possible de-
pending on whether we are interested in the pointwise behavior, or the ‘global’
behavior, of the functions involved. In this section, we introduce both pointwise
and uniform convergence and study the relations between them. The results we
derive in this section form the foundation on which all deeper investigations into
analysis are built.

Throughout this section, X is a set and E := (E, |·|) is a Banach space over K.

Pointwise Convergence

An E-valued sequence of functions on X is simply a sequence (fn) in EX . If the
choice of X and E is clear from the context (or irrelevant) we say simply that (fn)
is a sequence of functions.

The sequence of functions (fn) converges pointwise to f ∈ EX if, for each
x ∈ X, the sequence

(
fn(x)

)
converges to f(x) in E. In this circumstance we write

fn −−→
pointw

f or fn → f (pointw) and call f the (pointwise) limit or the (pointwise)

limit function of (fn).

1.1 Remarks (a) Suppose that (fn) converges pointwise. Then the limit function
is unique.

Proof This follows directly from Corollary II.1.13. �

(b) The following are equivalent:

(i) fn → f (pointw).

(ii) For each x ∈ X and ε > 0, there is a natural number N = N(x, ε) such that
|fn(x) − f(x)| < ε for n ≥ N .

(iii) For each x ∈ X,
(
fn(x)

)
is a Cauchy sequence in E.

Proof The implications ‘(i)=⇒(ii)=⇒(iii)’ are clear. The claim ‘(iii)=⇒(i)’ holds because

E is complete. �

(c) The above definitions are also meaningful if E is replaced by an arbitrary
metric space. �

1.2 Examples (a) Let X := [0, 1], E := R and fn(x) := xn+1. Then (fn) converges
pointwise to the function f : [0, 1] → R defined by

f(x) :=
{

0 , x ∈ [0, 1) ,

1 , x = 1 .
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(b) Let X := [0, 1], E := R and1

fn(x) :=

⎧⎪⎨⎪⎩
2nx , x ∈

[
0, 1/2n

]
,

2 − 2nx , x ∈
[
1/2n, 1/n

]
,

0 , x ∈ (1/n, 1] .

Then converges (fn) pointwise to 0.

(c) Let X := R, E := R and

fn(x) :=
{

1/(n + 1) , x ∈ [n, n + 1) ,

0 otherwise .

In this case too, (fn) converges pointwise to 0. �

�

��

��

�

Example (a)

�

��

���� ��� �

Example (b)

�

��

��

��

� � �

Example (c)

In Example 1.2(a), we see that, even though all terms of the sequence are
infinitely differentiable, the limit function is not even continuous. Thus, for many
purposes, pointwise convergence is too weak, and we need to define a stronger kind
of convergence which ensures that the properties of the functions in the sequence
are shared by the limit function.

Uniform Convergence

A sequence of functions (fn) converges uniformly to f if, for each ε > 0, there is
some N = N(ε) ∈ N such that

|fn(x) − f(x)| < ε , n ≥ N , x ∈ X . (1.1)

In this case we write fn −→
unf

f or fn → f (unf).

1Here, and in similar situations, 1/ab means 1/(ab) and not (1/a)b = b/a.
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The essential difference between pointwise and uniform convergence is that,
for uniform convergence, N depends on ε but not on x ∈ X, whereas, for pointwise
convergence, for a given ε, N(ε, x) varies, in general, from point to point. For
uniform convergence, the inequality (1.1) holds uniformly with respect to x ∈ X.

1.3 Remarks and Examples (a) Any uniformly convergent sequence of functions
converges pointwise, that is, fn → f (unf) implies fn → f (pointw).

(b) The converse of (a) is false, that is, there are pointwise convergent sequences
of functions which do not converge uniformly.

Proof Let (fn) be the sequence of Example 1.2(b). Set xn := 1/2n for all n ∈ N×. Then

|fn(xn) − f(xn)| = 1. Thus (fn) cannot converge uniformly. �

(c) The sequence of functions (fn) of Example 1.2(c) converges uniformly to 0.

(d) Let X := (0,∞), E := R and fn(x) := 1/nx for all n ∈ N×.
(i) fn → 0 (pointw).
(ii) For each a > 0, (fn) converges uniformly to 0 on [a,∞).
(iii) The sequence of functions (fn) does not converge uniformly to 0.
Proof The first claim is clear.

(ii) Let a > 0. Then

|fn(x)| = 1/nx ≤ 1/na , n ∈ N× , x ≥ a .

Thus (fn) converges uniformly to 0 on [a,∞).

(iii) For ε > 0 and x > 0 we have |fn(x)| = 1/nx < ε if and only if n > 1/xε. Hence

(fn) cannot converge uniformly to 0 on (0,∞). �

(e) The following are equivalent:
(i) fn → f (unf).
(ii) (fn − f) → 0 in B(X,E).
(iii) ‖fn − f‖∞ → 0 in R.
Note that it is possible for fn to converge uniformly to f even if fn and f are not
in B(X,E). For example, let X := R, E := R, fn(x) := x + 1/n for all n ∈ N× and
f(x) := x. Then (fn) converges uniformly to f , but neither f nor fn is in B(R, R).

(f ) If fn and f are in B(X,E), then (fn) converges uniformly to f if and only if
(fn) converges to f in B(X,E). �

1.4 Proposition (Cauchy criterion for uniform convergence) The following are
equivalent:

(i) The sequence of functions (fn) converges uniformly.

(ii) For each ε > 0, there is some N := N(ε) ∈ N such that

‖fn − fm‖∞ < ε , n,m ≥ N .
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Proof ‘(i)=⇒(ii)’ By hypothesis, there is some f ∈ EX such that fn → f (unf).
Thus, by Remark 1.3(e), (fn − f) converges to 0 in the space B(X,E). The claim
now follows from the triangle inequality

‖fn − fm‖∞ ≤ ‖fn − f‖∞ + ‖f − fm‖∞ .

‘(ii)=⇒(i)’ For each ε > 0, there is some N = N(ε) such that ‖fn − fm‖∞ < ε

for all m,n ≥ N . Setting ε := 1 and f̂ := fN(1), we see that, for all n ≥ N(1),
fn − f̂ is in B(X,E). Thus (fn − f̂) is a Cauchy sequence in B(X,E). By The-
orem II.6.6, B(X,E) is complete and so there is some f̃ ∈ B(X,E) such that
(fn − f̂) → f̃ in B(X,E). By Remark 1.3(e), the sequence (fn) converges uni-
formly to f̃ + f̂ . �

Series of Functions

Let (fk) be an E-valued sequence of functions on X, that is, a sequence in EX .
Then

sn :=
n∑

k=0

fk ∈ EX , n ∈ N ,

and so we have a well defined sequence (sn) in EX . As in Section II.7, this sequence
is denoted

∑
fk or

∑
k fk and is called a series of E-valued functions on X, or

simply a series of functions (on X). In addition, sn is called the nth partial sum
and fk is called the kth summand of this series.

The series
∑

fk is called

pointwise convergent :⇐⇒ ∑
fk(x) converges in E for each x ∈ X,

absolutely convergent :⇐⇒
∑

|fk(x)| < ∞ for each x ∈ X,

uniformly convergent :⇐⇒ (sn) converges uniformly,

norm convergent :⇐⇒
∑

‖fk‖∞ < ∞.

1.5 Remarks (a) Let
∑

fk be a pointwise convergent E-valued series of functions
on X. Then

X → E , x �→
∞∑

k=0

fk(x)

defines a function called the (pointwise) sum or (pointwise) limit function of the
series

∑
fk.

(b) Let (fk) be a sequence in B(X,E). Then we can consider the series
∑

fk as a
series in B(X,E) or as an E-valued series of functions on X. The norm convergence
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of the series of functions is then nothing other than the absolute convergence2 of
the series

∑
fk in the Banach space B(X,E).

(c) These convergence concepts are related as follows:3

(i)
∑

fk absolutely convergent =⇒
∑

fk pointwise convergent.

(ii)
∑

fk uniformly convergent /⇐=
/=⇒
∑

fk absolutely convergent.

(iii)
∑

fk norm convergent =⇒
/⇐=
∑

fk absolutely and uniformly convergent.

Proof The first claim follows from Proposition II.8.1.

(ii) Set X := R, E := R and fk(x) := (−1)k/k for all k ∈ N×. Then
∑

fk converges
uniformly but not absolutely (see Remark II.8.2(a)).

To verify the second claim, consider X := (0, 1), E := R and fk(x) := xk, k ∈ N.
Then

∑
fk is absolutely convergent and has the limit function

s(x) =
∞∑

k=0

fk(x) = 1/(1 − x) , x ∈ (0, 1) .

Since

s(x) − sn(x) =
∞∑

k=n+1

xk = xn+1/(1 − x) , x ∈ (0, 1) , n ∈ N ,

we have

s(x) − sn(x) < ε ⇐⇒ xn+1

1 − x
< ε

for all ε, x ∈ (0, 1). Because the right inequality is not satisfied for x sufficiently near 1,
the sequence of partial sums (sn) does not converge uniformly.

(iii) Let
∑

fk be norm convergent. Then, for each x ∈ X, we have the inequal-
ity

∑ |fk(x)| ≤ ∑ ‖fk‖∞ < ∞. Hence
∑

fk is absolutely convergent. Further, it follows
from (b) and Proposition II.8.1 that the series

∑
fk converges in B(X, E). Thus the

uniform convergence of
∑

fk follows from Remark 1.3(f).

Finally, let (fk) be the sequence of functions of Example 1.2(c). Then
∑

fk con-

verges absolutely and uniformly, but because
∑ ‖fk‖∞ =

∑
1/(k + 1) = ∞,

∑
fk is not

norm convergent. �

The Weierstrass Majorant Criterion

A particularly simple situation occurs for a series of functions in the Banach space
B(X,E) since it is then possible to apply directly the results of Chapter II. For
example, we get the following easy and important convergence theorem.

2It is important to distinguish the (pointwise) absolute convergence of a series of func-
tions

∑
fk and the absolute convergence of

∑
fk in the Banach space B(X, E). For this reason,

the latter is called ‘norm convergence’.
3(A /=⇒ B) := ¬(A =⇒ B).
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1.6 Theorem (Weierstrass majorant criterion) Suppose that fk ∈ B(X,E) for all
k ∈ N. If there is a convergent series

∑
αk in R such that ‖fk‖∞ ≤ αk for almost

all k ∈ N, then
∑

fk is norm convergent. In particular,
∑

fk converges absolutely
and uniformly.

Proof Since ‖fk‖∞ < ∞ for all k ∈ N, we can consider the series
∑

fk to be in
the Banach space B(X,E). Then the claim follows directly from the majorant
criterion (Theorem II.8.3) and Remark 1.5(c). �

1.7 Examples (a) The series of functions
∑

k cos(kx)/k2 is norm convergent on R.

Proof For x ∈ R and k ∈ N×,

| cos(kx)/k2| ≤ 1/k2 .

Hence the claim follows from Theorem 1.6 and Example II.7.1(b). �

(b) For each α > 1, the series4
∑

k 1/kz is norm convergent on

Xα := { z ∈ C ; Re z ≥ α } .

Proof Clearly

|1/kz| = 1
/
kRe z ≤ 1/kα , z ∈ Xα , k ∈ N× .

Since the series
∑

1/kα converges (see Exercise II.7.12), the claim follows from Theo-

rem 1.6. �

(c) For each m ∈ N×, the series
∑

k xm+2e−kx2
is norm convergent on R.

Proof Define fm,k(x) := |xm+2e−kx2 | for all x ∈ R. Then fm,k attains its absolute max-

imum value
[
(m + 2)

/
2ek

](m+2)/2
at the point xM :=

√
(m + 2)/2k. In other words,

‖fm,k‖∞ = cmk−(m+2)/2 where cm :=
[
(m + 2)

/
2e
](m+2)/2

. By Exercise II.7.12 the se-

ries
∑

k k−(m+2)/2 converges, and so the claim follows once again from Theorem 1.6. �

As an important application of the Weierstrass majorant criterion we prove
that a power series is norm convergent on any compact subset of its disk of con-
vergence.

1.8 Theorem Let
∑

akY k be a power series with positive radius of convergence ρ
and 0 < r < ρ. Then the series5

∑
akY k is norm convergent on rB̄K. In particular,

it converges absolutely and uniformly.

4The function ζ(z) :=
∑

k 1/kz is defined for all { z ∈ C ; Re z > 1 } and is called the (Rie-
mann) zeta function. We study this function in detail in Section VI.6.

5By the conventions of Section I.8, we identify the monomial akY k with the corresponding
‘monomial’ function.
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Proof By Theorem II.9.2, any power series converges absolutely in the interior of
its disk of convergence, and so, setting X := rB̄K and fk(x) := akxk for all x ∈ X
and k ∈ N, we have ∑

‖fk‖∞ =
∑

|ak| rk < ∞ .

The claim now follows from Theorem 1.6. �

Exercises

1 Which of the following sequences of functions (fn) converge uniformly on X := (0, 1)?
(a) fn := n

√
x, (b) fn := 1/(1 + nx), (c) fn := x/(1 + nx).

2 Show that (fn), defined by fn(x) :=
√

(1/n2) + |x|2, converges uniformly on K to the
absolute value function x �→ |x|.

3 Prove or disprove that
∑

xn/n2 and
∑

xn converge uniformly on BC.

4 Prove or disprove that
∑

(−1)n/nx converges pointwise (or uniformly, or absolutely)
on (0, 1].

5 Let X := BK. Investigate the norm convergence of the series
∑

fn for the following
cases:
(a) fn := xn, (b) fn := |x|2

/
(1 + |x|2)n, (c) fn := x(1 − x2)n, (d) fn :=

[
x(1 − x2)

]n
.

6 Verify that each of the series
(a)

∑(
1 − cos(x/n)

)
, (b)

∑
n
(
x/n − sin(x/n)

)
,

converges uniformly on any compact subinterval of R.
(Hint: Approximate the terms of these series using Taylor polynomials of first and second
degree.)

7 Let (fn) and (gn) be uniformly convergent E-valued sequences of functions on X with
limit functions f and g respectively. Show the following:

(a) (fn + gn) converges uniformly to f + g.

(b) If f or g is in B(X, K), then (fngn) converges uniformly to fg.

Show by example that, in (b), the boundedness of one of the limit functions is necessary.

8 Let (fn) be a uniformly convergent sequence of K-valued functions on X with limit
function f . Suppose that there is some α > 0 such that

|fn(x)| ≥ α > 0 , n ∈ N , x ∈ X .

Show that (1/fn) converges uniformly to 1/f .

9 Let (fn) be a uniformly convergent sequence of E-valued functions on X, and F a

Banach space. Suppose that fn(X) ⊆ D for all n ∈ N and g : D → F is uniformly con-

tinuous. Show that (g ◦ fn) is uniformly convergent.
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2 Continuity and Differentiability for Sequences of Functions

In this section we consider convergent sequences of functions whose terms are
continuous or continuously differentiable, and investigate the conditions under
which the limit function ‘inherits’ these same properties.

In the following X := (X, d) is a metric space, E := (E, |·|) is a Banach space
and (fn) is a sequence of E-valued functions on X.

Continuity

Example 1.2(a) shows that the pointwise limit of a sequence of continuous (or
even infinitely differentiable) functions may not be continuous. If the convergence
is uniform however, then the continuity of the limit function is guaranteed, as the
following theorem shows.

2.1 Theorem If (fn) converges uniformly to f and almost all fn are continuous
at a ∈ X, then f is also continuous at a.

Proof Let ε > 0. Because fn converges uniformly to f , there is, by Remark 1.3(e),
some N ∈ N such that ‖fn − f‖∞ < ε/3 for all n ≥ N . Since almost all fn are
continuous at a, we can suppose that fN is continuous at a. Thus there is a
neighborhood U of a in X such that |fN (x) − fN (a)| < ε/3 for all x ∈ U . Then,
for each x ∈ U , we have

|f(x) − f(a)| ≤ |f(x) − fN (x)| + |fN (x) − fN (a)| + |fN (a) − f(a)|
≤ 2 ‖f − fN‖∞ + |fN (x) − fN (a)| < ε ,

which shows the continuity of f at a. �

2.2 Remark Clearly Theorem 2.1 and its proof remain valid if X is replaced by
an arbitrary topological space and E by a metric space. This holds also for any
statement of this section that involves continuity only. �

Locally Uniform Convergence

An inspection of the proof of Theorem 2.1 shows that it remains true if there is
a neighborhood U of a such that (fn) converges uniformly on U . The behavior
of (fn) outside of U is irrelevant for the continuity of f at a, since continuity
is a ‘local’ property. This motivates the definition of a ‘local’ version of uniform
convergence.

A sequence of functions (fn) is called locally uniformly convergent if each
x ∈ X has a neighborhood U such that (fn |U) converges uniformly. A series of
functions

∑
fn is called locally uniformly convergent if the sequence of partial

sums (sn) converges locally uniformly.
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2.3 Remarks (a) Any uniformly convergent sequence of functions is locally uni-
formly convergent.

(b) Any locally uniformly convergent sequence of functions converges pointwise.

(c) If X is compact and (fn) converges locally uniformly, then (fn) converges
uniformly.
Proof By (b), the (pointwise) limit function f of (fn) is well defined. Let ε > 0. Because
(fn) converges locally uniformly, for each x ∈ X, there is an open neighborhood Ux of x
and some N(x) ∈ N such that

|fn(y) − f(y)| < ε , y ∈ Ux , n ≥ N(x) .

The family {Ux ; x ∈ X } is an open cover of the compact space X, and so there are
finitely many points x0, . . . , xm ∈ X such that X is covered by Uxj , 0 ≤ j ≤ m. For
N := max

{
N(x0), . . . , N(xm)

}
, we then have

|fn(x) − f(x)| < ε , x ∈ X , n ≥ N .

This shows that (fn) converges uniformly to f . �

2.4 Theorem (continuity of the limits of sequences of functions) If a sequence of
continuous functions (fn) converges locally uniformly to f , then f is also continu-
ous. In other words, locally uniform limits of continuous functions are continuous.

Proof Since the continuity of f is a local property, the claim follows directly from
Theorem 2.1 �

2.5 Remarks (a) If a sequence of functions (fn) converges pointwise to f and
all fn and f are continuous, then it does not follow, in general, that (fn) converges
locally uniformly to f .

Proof For the sequence of functions (fn) from Example 1.2(b) we have fn ∈ C(R) with

fn −−→
pointw

0. Even so, there is no neighborhood of 0 on which (fn) converges uniformly. �

(b) Theorem 2.4 can be interpreted as a statement about exchanging limits: If the
sequence of functions (fn) converges locally uniformly to f , then, for all a ∈ X,

lim
x→a

lim
n→∞ fn(x) = lim

n→∞ lim
x→a

fn(x) = lim
n→∞ fn(a) = f(a) .

Similarly, for a locally uniformly convergent series of functions we have

lim
x→a

∞∑
k=0

fk(x) =
∞∑

k=0

lim
x→a

fk(x) =
∞∑

k=0

fk(a) , a ∈ X .

These facts can be expressed by saying that ‘locally uniform convergence respects
the taking of limits’.

Proof This is a consequence of the remark following Theorem III.1.4. �
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(c) A power series with positive radius of convergence represents a continuous
function on its disk of convergence.1

Proof By Theorem 1.8, a power series converges locally uniformly on its disk of conver-

gence. Thus the claim follows from Theorem 2.4. �

The Banach Space of Bounded Continuous Functions

A particularly important subspace of the space B(X,E) of bounded E-valued
functions on X is the space

BC(X,E) := B(X,E) ∩ C(X,E)

of bounded continuous functions from X to E. Clearly, BC(X,E) is a subspace
of B(X,E) (and of C(X,E)), and is also a normed space with the supremum norm

‖·‖BC := ‖·‖∞ ,

that is, with the subspace topology induced from B(X,E). The following theorem
shows that BC(X,E) is a Banach space.

2.6 Theorem

(i) BC(X,E) is a closed subspace of B(X,E) and hence a Banach space.

(ii) If X is compact, then

BC(X,E) = C(X,E) ,

and the supremum norm ‖·‖∞ coincides with the maximum norm

f �→ max
x∈X

|f(x)| .

Proof (i) Let (fn) be a sequence in BC(X,E) which converges to f in B(X,E).
Then, by Remark 1.3(e), (fn) converges uniformly to f , and, by Theorem 2.4,
f is continuous, that is, f is in BC(X,E). This shows that BC(X,E) is a closed
subspace of B(X,E) and also that BC(X,E) is complete (see Exercise II.6.4).

(ii) If X is compact, then, from the extreme value theorem (Corollary III.3.8),
we have C(X,E) ⊆ B(X,E) and

max
x∈X

|f(x)| = sup
x∈X

|f(x)| = ‖f‖∞ ,

which proves the claim. �

1We show in the next section that such functions are, in fact, infinitely differentiable.
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2.7 Remark If X is a metric space which is not compact, for example, an open
subset of Kn, then it is not possible to characterize locally uniform convergence in
C(X,E) using a norm. In other words, if X is not compact, then C(X,E) is not
a normed vector space. For a proof of this fact, we must refer the reader to the
functional analysis literature. �

Differentiability

We now investigate the conditions under which the pointwise limit of a sequence
of differentiable functions is itself differentiable.

2.8 Theorem (differentiability of the limits of sequences of functions) Let X be
an open (or convex) perfect subset of K and fn ∈ C1(X,E) for all n ∈ N. Suppose
that there are f, g ∈ EX such that

(i) (fn) converges pointwise to f , and

(ii) (f ′
n) converges locally uniformly to g.

Then f is in C1(X,E), and f ′ = g. In addition, (fn) converges locally uniformly
to f .

Proof Let a ∈ X. Then there is some r > 0 such that (f ′
n) converges uniformly

to g on Br := BK(a, r) ∩ X. If X is open we can choose r > 0 so that B(a, r) is
contained in X. Hence with either of our assumptions, Br is convex and perfect.
Thus, for each x ∈ Br, we can apply the mean value theorem (Theorem IV.2.18) to
the function

[0, 1] → E , t �→ fn

(
a + t(x − a)

)
− tf ′

n(a)(x − a)

to get

|fn(x) − fn(a) − f ′
n(a)(x − a)| ≤ sup

0<t<1

∣∣f ′
n

(
a + t(x − a)

)
− f ′

n(a)
∣∣ |x − a| .

Taking the limit n → ∞ we get

|f(x) − f(a) − g(a)(x − a)| ≤ sup
0<t<1

∣∣g(a + t(x − a)
)
− g(a)

∣∣ |x − a| (2.1)

for each x ∈ Br. Theorem 2.4 shows that g is in C(X,E), so it follows from (2.1)
that

f(x) − f(a) − g(a)(x − a) = o(|x − a|) (x → a) .

Hence f is differentiable at a and f ′(a) = g(a). Since this holds for all a ∈ X, we
have shown that f ∈ C1(X,E).

It remains to prove that (fn) converges locally uniformly to f . Applying the
mean value theorem to the function

[0, 1] → E , t �→ (fn − f)
(
a + t(x − a)

)
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we get the inequality

|fn(x) − f(x)| ≤
∣∣fn(x) − f(x) −

(
fn(a) − f(a)

)∣∣ + |fn(a) − f(a)|
≤ r sup

0<t<1

∣∣f ′
n

(
a + t(x − a)

)
− f ′(a + t(x − a)

)∣∣ + |fn(a) − f(a)|

≤ r ‖f ′
n − f ′‖∞,Br

+ |fn(a) − f(a)|

for each x ∈ Br. The right side of this inequality is independent of x ∈ Br and
converges to 0 as n → ∞ because of (ii) and the fact that f ′ = g. Thus (fn)
converges uniformly to f on Br. �

2.9 Corollary (differentiability of the limit of a series of functions) Suppose that
X ⊆ K is open (or convex) and perfect, and (fn) is a sequence in C1(X,E) for
which

∑
fn converges pointwise and

∑
f ′

n converges locally uniformly. Then the
sum

∑∞
n=0 fn is in C1(X,E) and( ∞∑

n=0

fn

)′
=

∞∑
n=0

f ′
n .

In addition,
∑

fn converges locally uniformly.

Proof This follows directly from Theorem 2.8. �

2.10 Remarks (a) Let (fn) be a sequence in C1(X,E) which converges uniformly
to f . Even if f is continuously differentiable, (f ′

n) does not, in general, converge
pointwise to f ′.
Proof Let X := R, E := R and fn(x) := (1/n) sin(nx) for all n ∈ N×. Because

|fn(x)| = | sin(nx)|/n ≤ 1/n , x ∈ X ,

(fn) converges uniformly to 0. Since lim f ′
n(0) = 1, the sequence

(
f ′

n(0)
)

does not converge

to the derivative of the limit function at the point 0. �

(b) Let (fn) be a sequence in C1(X,E) such that
∑

fn converges uniformly. Then,
in general,

∑
f ′

n does not converge even pointwise.
Proof Suppose that X := R, E := R, and fn(x) := (1/n2) sin(nx) for all n ∈ N×. Then
‖fn‖∞ = 1/n2 and so, by the Weierstrass majorant criterion, the series

∑
fn converges

uniformly. Since f ′
n(x) = (1/n) cos(nx),

∑
f ′

n(0) does not converge. �

Exercises

1 Prove the following:

(a) If (fn) converges uniformly and each fn is uniformly continuous, then the limit func-
tion is also uniformly continuous.

(b) BUC(X, E) :=
({

f ∈ BC(X, E) ; f is uniformly continuous
}
, ‖·‖∞

)
is a Banach

space.

(c) If X is compact, then BUC(X, E) = C(X, E).
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2 Consider a double sequence (xjk) in E such that

(i) (xjk)k∈N converges for each j ∈ N.

(ii) For each ε > 0, there is some N ∈ N such that

|xmk − xnk| < ε , m, n ≥ N , k ∈ N .

Show that (xjk)j∈N converges for each k ∈ N. Show that the sequences (limk xjk)j∈N and
(limj xjk)k∈N converge and

lim
j

(lim
k

xjk) = lim
k

(lim
j

xjk) .

3 Suppose that X is compact and (fn) is a pointwise convergent sequence of real valued
continuous functions on X. Prove that, if the limit function is continuous and (fn) is
monotone, then (fn) converges uniformly (Dini’s theorem).
(Hint: If (fn) is increasing, then

0 ≤ f(y) − fNx(y) =
(
f(y) − f(x)

)
+
(
f(x) − fNx(x)

)
+
(
fNx(x) − fNx(y)

)
for all x, y ∈ X and Nx ∈ N.)

4 Show by example that, in Dini’s theorem, the continuity of the limit function and the
monotone convergence are necessary hypotheses.

5 Let (fn) be a sequence of monotone functions on a compact interval I which converges
pointwise to a continuous function f . Show that f is monotone and that (fn) converges
uniformly to f .

6 Consider a sequence of real valued functions (fn) on X satisfying the following con-
ditions:

(i) For each x ∈ X,
(
fn(x)

)
is decreasing.

(ii) (fn) converges uniformly to 0.

Show that
∑

(−1)nfn converges uniformly.

7 Let (fn) be a sequence of real valued functions on X, and (gn) a sequence of K-valued
functions on X which satisfy the following conditions:

(i) For each x ∈ X,
(
fn(x)

)
is decreasing.

(ii) (fn) converges uniformly to 0.

(iii) supn

∥∥∑n
k=0 gk

∥∥
∞ < ∞.

Show that
∑

gnfn converges uniformly.

(Hint: Setting αk :=
∑k

j=0 gj we have

n∑
k=m+1

gkfk =

n−1∑
k=m

αk(fk − fk+1) + αnfn − αmfm

for all m < n. For a given ε > 0 and M := supk ‖αk‖∞, there is some N ∈ N such that
‖fn‖∞ < ε/2M for all n ≥ N . It follows that∣∣∣ n∑

k=m+1

gk(x)fk(x)
∣∣∣ ≤ M

n−1∑
k=m

(fk − fk+1)(x) + M(fn + fm)(x) < ε

for all x ∈ X and n > m ≥ N . Now use Proposition 1.4.)
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8 With the help of the previous exercise, show that, for each α ∈ (0, π), the series∑
k ei kx/k converges uniformly on [α, 2π − α].

(Hint: We have

|ei x − 1| ≥
√

2(1 − cos α) , x ∈ [α, 2π − α] ,

and so ∣∣∣ n∑
k=0

ei kx
∣∣∣ =

|ei nx − 1|
|ei x − 1| ≤

√
2/(1 − cos α)

for all x ∈ [α, 2π − α].)

9 Suppose that A : E → E is linear and α ≥ 0 satisfies ‖Ax‖ ≤ α ‖x‖ for all x ∈ E. Fix
x0 ∈ E and define

u(z) :=
∞∑

k=0

zk

k!
Akx0 , z ∈ K .

Here Ak denotes the kth iterate of A. Show that u ∈ C∞(K, E) and determine ∂nu for
all n ∈ N×.
(Hint: The series

∑
(zk/k! )Akx0 has ‖x0‖ e|z| α as a convergent majorant. We also have∑

A(zk/k! )Akx0 = Au(z).)

10 Let X be open in K, n ∈ N× and

BCn(X, E) :=
({

f ∈ Cn(X, E) ; ∂jf ∈ B(X, E), j = 0, . . . , n
}
, ‖·‖BCn

)
with ‖f‖BCn := max1≤j≤n ‖∂jf‖∞. Prove the following:

(a) BCn(X, E) is not a closed subspace of BC(X, E).

(b) BCn(X, E) is a Banach space.

11 Let −∞ < a < b < ∞ and fn ∈ C1
(
[a, b], E

)
for all n ∈ N. Suppose that the se-

quence (f ′
n) converges uniformly and there is some x0 ∈ [a, b] for which

(
fn(x0)

)
n∈N

converges. Prove that (fn) converges uniformly. (Hint: Use Theorem IV.2.18.)
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3 Analytic Functions

In this section we study power series again. These are, of course, series of functions
having a particularly simple form. We know already that a power series converges
locally uniformly on its disk of convergence. We show in this section that such a
series can be differentiated ‘termwise’ and that the result is again a power series
with the same radius of convergence as the original series. It follows directly from
this that a power series represents a smooth function on its disk of convergence.

These observations lead us to the study of analytic functions, functions which
can be represented locally by power series. These functions have a very rich ‘inter-
nal’ structure whose beauty and importance we explore further in later chapters.

Differentiability of Power Series

Let a =
∑

k akXk ∈ K[[X]] be a power series with radius of convergence ρ = ρa > 0,
and a the function on ρBK represented by a. When no misunderstanding is possible,
we write B for BK.

3.1 Theorem (differentiability of power series) Let a =
∑

k akXk be a power
series. Then a is continuously differentiable on ρB. The ‘termwise differentiated’
series

∑
k≥1 kakXk−1 has radius of convergence ρ and

a′(x) =
( ∞∑

k=0

akxk
)′

=
∞∑

k=1

kakxk−1 , x ∈ ρB .

Proof Let ρ′ be the radius of convergence of the power series
∑

kakXk−1. From
Hadamard’s formula (II.9.3), Example II.4.2(d) and Exercise II.5.2(d) we have

ρ′ =
1

lim k
√

k |ak|
=

1
lim k

√
k lim k

√
|ak|

=
1

lim k
√

|ak|
= ρ .

By Theorem 1.8, the power series
∑

k≥1 kakXk−1 converges locally uniformly
on ρB, so the claim follows from Corollary 2.9 �

3.2 Corollary If a =
∑

akXk is a power series with positive radius of conver-
gence ρ, then a ∈ C∞(ρB, K) and a = T (a, 0). In other words,

∑
akXk is the

Taylor series of a at 0 and ak = a(k)(0)/k! .

Proof By induction, it follows from Theorem 3.1, that a is smooth on ρB and
that, for all x ∈ ρB,

a(k)(x) =
∞∑

n=k

n(n − 1) · · · (n − k + 1)anxn−k , k ∈ N .

Hence a(k)(0) = k! ak for all k ∈ N and we have proved the claim. �
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Analyticity

Let D be open in K. A function f : D → K is called analytic (on D) if, for each
x0 ∈ D, there is some r = r(x0) > 0 such that B(x0, r) ⊆ D and a power series∑

k akXk with radius of convergence ρ ≥ r, such that

f(x) =
∞∑

k=0

ak(x − x0)k , x ∈ B(x0, r) .

In this case, we say that
∑

k ak(X − x0)k is the power series expansion for f at x0.
The set of all analytic functions on D is denoted by Cω(D, K), or by Cω(D) if
no misunderstanding is possible. Further, f ∈ Cω(D) is called real (or complex)
analytic if K = R (or K = C).

3.3 Examples (a) Polynomial functions are analytic on K.

Proof This follows from (IV.3.1). �

(b) The function K× → K×, x �→ 1/x is analytic.
Proof Let x0 ∈ K×. Then, by Example II.7.4, for each x ∈ B(x0, |x0|), we have

1

x
=

1

x0

1

1 + (x − x0)/x0
=

1

x0

∞∑
k=0

(−1)k
(x − x0

x0

)k

=
∞∑

k=0

(−1)k

xk+1
0

(x − x0)
k .

This proves that x �→ 1/x is analytic on K×. �

3.4 Remarks Let D be open in K and f ∈ KD.

(a) If f is analytic, then the power series expansion of f at x0 is unique.

Proof This follows from Corollary II.9.9. �

(b) f is analytic if and only if f is in C∞(D) and each x0 ∈ D has a neighborhood U
in D such that

f(x) = T (f, x0)(x) , x ∈ U ,

that is, at each x0 ∈ D, f ∈ C∞(D) can be represented locally by its Taylor series.

Proof This follows directly from Corollary 3.2. �

(c) Analyticity is a local property, that is, f is analytic on D if and only if each
x0 ∈ D has a neighborhood U such that f |U ∈ Cω(U).

(d) By Example IV.1.17, the function f : R → R defined by

f(x) :=
{

e−1/x , x > 0 ,

0 , x ≤ 0 ,

satisfies f ∈ C∞(R) and f(x) �= T (f, 0)(x) = 0 for all x > 0. Hence there is no
neighborhood of 0 on which the function f is represented by its Taylor series
and f is not analytic.
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(e) Cω(D, K) is a subalgebra of C∞(D, K) and 1 ∈ Cω(D, K).

Proof From Theorem IV.1.12 we know that C∞(D, K) is a K-algebra, and so the claim

follows from Proposition II.9.7. �

Next we prove that a power series represents an analytic function on its disk
of convergence. In view of Remark 3.4(b) and Corollary 3.2, it suffices to show
that a power series is locally representable by its Taylor series.

3.5 Proposition Suppose that a =
∑

akXk is a power series with radius of con-
vergence ρ > 0. Then a ∈ Cω(ρB, K) and

a(x) = T (a, x0)(x) , x0 ∈ ρB , x ∈ B(x0, ρ − |x0|) .

A power series represents an analytic function on its disk of convergence.

Proof (i) As in the proof of Corollary 3.2, we have

a(k)(x0) =
∞∑

n=k

n(n − 1) · · · (n − k + 1)anxn−k
0 = k!

∞∑
n=k

(n

k

)
anxn−k

0

for all x0 ∈ ρB. Noting that
(

n
k

)
= 0 for all k > n, we have

T (a, x0) =
∞∑

k=0

( ∞∑
n=0

(n

k

)
anxn−k

0

)
(X − x0)k . (3.1)

(ii) With r := ρ − |x0| > 0 and

bn,k(x) :=
(n

k

)
anxn−k

0 (x − x0)k , n, k ∈ N , x ∈ B(x0, r) ,

it follows from the binomial theorem (Theorem I.8.4) that

m∑
n,k=0

|bn,k(x)| =
m∑

n=0

|an| (|x0| + |x − x0|)n , m ∈ N , x ∈ B(x0, r) . (3.2)

For x ∈ ρB, we have |x0| + |x − x0| < ρ, and so, since the power series a converges
absolutely on ρB,

M(x) :=
∞∑

n=0

|an| (|x0| + |x − x0|)n < ∞ .

Together with (3.2), we now have

sup
m∈N

m∑
n,k=0

|bn,k(x)| ≤ M(x) , x ∈ B(x0, r) .
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This implies that the double series
∑

n,k

(
n
k

)
anxn−k

0 (x − x0)k is summable for each
x ∈ B(x0, r). From Theorem II.8.10(ii) and (3.1) we now get

T (a, x0)(x) =
∞∑

k=0

∞∑
n=0

(n

k

)
anxn−k

0 (x − x0)k

=
∞∑

n=0

( n∑
k=0

(n

k

)
xn−k

0 (x − x0)k
)
an =

∞∑
n=0

anxn = a(x)

for all x ∈ B(x0, r), where we set
(

n
k

)
= 0 for all k > n and have used once again

the binomial theorem. Because of Corollary 3.2 and Remark 3.4(b), this completes
the proof. �

3.6 Corollary

(i) The functions exp, cos and sin are analytic on K.

(ii) If f ∈ Cω(D, K), then f ′ ∈ Cω(D, K).

Proof The first claim follows directly from Proposition 3.5. Because of Theo-
rem 3.1, (ii) also follows from Proposition 3.5. �

Antiderivatives of Analytic Functions

Suppose that D is open in K, E is a normed vector space and f : D → E. Then
F : D → E is called an antiderivative of f if F is differentiable and F ′ = f .

A nonempty open and connected subset of a metric space is called a domain.

3.7 Remarks (a) Let D ⊆ K be a domain and f : D → E. If F1, F2 ∈ ED are
antiderivatives of f , then F2 − F1 is constant. That is, antiderivatives are unique
up to an additive constant.

Proof (i) Let F := F2 − F1. Then F is differentiable with F ′ = 0. We need to show
that F is constant. Fix x0 ∈ D and define Y :=

{
x ∈ D ; F (x) = F (x0)

}
. This set is

nonempty since it contains x0.

(ii) We claim that Y is open in D. Let y ∈ Y . Since D is open, there is some r > 0
such that B(y, r) ⊆ D. For x ∈ B(y, r), define ϕ(t) := F

(
y + t(x − y)

)
, t ∈ [0, 1]. Then

ϕ : [0, 1] → E is differentiable, and since F ′ = 0, its derivative satisfies

ϕ′(t) = F ′(y + t(x − y)
)
(x − y) = 0 , t ∈ [0, 1] .

By Remark IV.2.6(a), ϕ is a constant and so F (x) = ϕ(1) = ϕ(0) = F (y) = F (x0). This
means that B(y, r) is contained in Y and Y is open in D.

(iii) The function F is differentiable and hence continuous. Since Y is the fiber of F
at the point F (x0), that is, Y = F−1

(
F (x0)

)
, Y is closed in D (see Example III.2.22(a)).

(iv) Since D is connected, it follows from Remark III.4.3 that Y = D, that is, F is

constant. �
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(b) Let a =
∑

akXk be a power series with radius of convergence ρ > 0. Then a has
an antiderivative on ρB represented by the power series

∑(
ak

/
(k + 1)

)
Xk+1, and

this antiderivative is unique up to an additive constant.

Proof Since ρB is connected it suffices, by (a), to show that the given power series

represents an antiderivative of a on ρB. This follows directly from Theorem 3.1. �

3.8 Proposition If f ∈ Cω(D, K) has an antiderivative F , then F is also analytic.

Proof Let x0 ∈ D. Then there is some r > 0 such that

f(x) =
∞∑

k=0

f (k)(x0)
k!

(x − x0)k , x ∈ B(x0, r) ⊆ D .

By Remark 3.7(b), there is some a ∈ K such that

F (x) = a +
∞∑

k=0

f (k)(x0)
(k + 1)!

(x − x0)k+1 , x ∈ B(x0, r) . (3.3)

It follows from Proposition 3.5, that F is analytic on B(x0, r). Since analyticity is
a local property, the claim follows. �

The Power Series Expansion of the Logarithm

In the next theorem we strengthen the results of Example IV.3.5 and Applica-
tion IV.3.9(d).

3.9 Theorem The logarithm function is analytic on C\(−∞, 0] and, for all z ∈ BC,

log(1 + z) =
∞∑

k=1

(−1)k−1zk/k .

Proof We know from Example IV.1.13(e) that the logarithm function is an an-
tiderivative of z �→ 1/z on C\(−∞, 0]. Thus the first claim follows from Proposi-
tion 3.8 and Example 3.3(b).

From the power series expansion

1
z

=
∞∑

k=0

(−1)k

zk+1
0

(z − z0)k , z0 ∈ C× , z ∈ BC(z0, |z0|) ,

and Remark 3.7(b), it follows that

log z = c +
∞∑

k=0

(−1)k

(k + 1)zk+1
0

(z − z0)k+1 , z, z0 ∈ C\(−∞, 0] , |z − z0| < |z0| ,

for some suitable constant c. By setting z = z0, we find c = log z0, and so with
z0 = 1 we get the claimed power series expansion. �
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The Binomial Series

The (general) binomial coefficient for α ∈ C and n ∈ N is defined by(α

n

)
:=

α(α − 1) · · · · · (α − n + 1)
n!

, n ∈ N× ,
(α

0

)
:= 1 .

This definition clearly agrees with the definition from Section I.5 if α ∈ N. Moreover
the formulas(α

n

)
=
(α − 1

n

)
+
(α − 1

n − 1

)
and α

(α − 1
n

)
= (n + 1)

( α

n + 1

)
(3.4)

hold for all α ∈ C and n ∈ N (see Exercise 7). The power series∑
k

(α

k

)
Xk ∈ C[[X]]

is called the binomial series for the exponent α. If α ∈ N, then
(

α
k

)
= 0 for all

k > α and the binomial series reduces to the polynomial

α∑
k=0

(α

k

)
Xk = (1 + X)α .

In the following theorem we generalize this statement to the case of arbitrary
exponents.

3.10 Theorem Let α ∈ C\N.

(i) The binomial series has radius of convergence 1 and

∞∑
k=0

(α

k

)
zk = (1 + z)α , z ∈ BC . (3.5)

(ii) The power function z �→ zα is analytic on C\(−∞, 0] and

zα =
∞∑

k=0

(α

k

)
zα−k
0 (z − z0)k , z, z0 ∈ C\(−∞, 0] , |z − z0| < |z0| .

(iii) For all z, w ∈ C\(−∞, 0] such that z + w ∈ C\(−∞, 0] and |z| > |w|,

(z + w)α =
∞∑

k=0

(α

k

)
zα−kwk .

(iv) For all α ∈ (0,∞), the binomial series is norm convergent on B̄C.
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Proof In the following, let ak :=
(

α
k

)
.

(i) Since α /∈ N we have lim |ak/ak+1| = limk

(
(k + 1)

/
|α − k|

)
= 1, and so,

by Proposition II.9.4, the binomial series has radius of convergence 1.
Define f(z) :=

∑∞
k=0 akzk for all z ∈ BC. From Theorem 3.1 and (3.4) it

follows that

f ′(z) =
∞∑

k=1

k
(α

k

)
zk−1 =

∞∑
k=0

(k + 1)
( α

k + 1

)
zk = α

∞∑
k=0

(α − 1
k

)
zk ,

and, using the first formula of (3.4),

(1 + z)f ′(z) = α

( ∞∑
k=0

(α − 1
k

)
zk +

∞∑
k=0

(α − 1
k

)
zk+1

)

= α

{
1 +

∞∑
k=1

((α − 1
k

)
+
(α − 1

k − 1

))
zk

}
= αf(z)

for all z ∈ BC. Hence

(1 + z)f ′(z) − αf(z) = 0 , z ∈ BC ,

from which follows[
(1 + z)−αf(z)

]′ = (1 + z)−α−1
[
(1 + z)f ′(z) − αf(z)

]
= 0 , z ∈ BC .

Since BC is a domain, Remark 3.7(a) implies that (1 + z)−αf(z) = c for some con-
stant c ∈ C. Since f(0) = 1, we have c = 1, and so f(z) = (1 + z)α for all z ∈ BC.

(ii) Let z, z0 ∈ C\(−∞, 0] be such that |z − z0| < |z0|. Then, from (3.5), it
follows that

zα =
(
z0 + (z − z0)

)α = zα
0

(
1 +

z − z0

z0

)α

= zα
0

∞∑
k=0

(α

k

) (z − z0)k

zk
0

=
∞∑

k=0

(α

k

)
zα−k
0 (z − z0)k .

In particular, z �→ zα is analytic on C\(−∞, 0].
(iii) Since |w/z| < 1, (3.5) implies

(z + w)α = zα
(
1 +

w

z

)α

= zα
∞∑

k=0

(α

k

)(w

z

)k

=
∞∑

k=0

(α

k

)
zα−kwk .

(iv) Set αk :=
∣∣(α

k

)∣∣ for all k ∈ N. Then

kαk − (k + 1)αk+1 = ααk > 0 , k > α > 0 . (3.6)



384 V Sequences of Functions

Hence the sequence (kαk) is decreasing for all k > α and there is some β ≥ 0 such
that lim kαk = β. This implies

lim
n

n∑
k=0

(
kαk − (k + 1)αk+1

)
= − lim

n

(
(n + 1)αn+1

)
= −β .

From (3.6) we now get∑
k>α

αk =
1
α

∑
k>α

(
kαk − (k + 1)αk+1

)
< ∞ .

Because |akzk| ≤ αk for all |z| ≤ 1, the claim is a consequence of the Weierstrass
majorant criterion (Theorem 1.6). �

3.11 Examples In the following we investigate further the binomial series for the
special values α = 1/2 and α = −1/2.

(a) (The case α = 1/2) First we calculate the binomial coefficients:(1/2
k

)
=

1
k!

1
2

(1
2
− 1

)
· · · · ·

(1
2
− k + 1

)
=

(−1)k−1

k!
1 · 3 · · · · · (2k − 3)

2k

= (−1)k−1 1 · 3 · · · · · (2k − 3)
2 · 4 · · · · · 2k

for all k ≥ 2. From Theorem 3.10 we get the series expansion

√
1 + z = 1 +

z

2
+

∞∑
k=2

(−1)k−1 1 · 3 · · · · · (2k − 3)
2 · 4 · · · · · 2k

zk , z ∈ B̄C . (3.7)

(b) (Calculation of square roots) Write (3.7) in the form

√
1 + z = 1 +

z

2
− z2

∞∑
k=0

(−1)kbkzk , z ∈ B̄C ,

with
b0 := 1/8 , bk+1 := bk(2k + 3)/(2k + 6) , k ∈ N ,

and consider this series on the interval [0, 1]. From the error estimate for alternating
series (Corollary II.7.9) it follows that

1 +
x

2
− x2

( 2n∑
k=0

(−1)kbkxk
)
≤

√
1 + x ≤ 1 +

x

2
− x2

(2n+1∑
k=0

(−1)kbkxk
)

for all n ∈ N and x ∈ [0, 1].
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This provides a further method of calculating numerical approximations of
square roots. For example, for n = 2 and x = 1, we have

1 +
1
2
− 1

8
+

1
16

− 5
128

= 1.39843 . . . ≤
√

2 ≤ 1.39843 . . . +
7

256
= 1.42578 . . .

This method can be used to calculate approximations for the square roots of
numbers in the interval [0, 2].

A simple trick can be used to extend this method to numbers greater than 2:
To determine the square root of a > 2, find m ∈ N such that m2 < a ≤ 2m2 and
set x := (a − m2)/m2. Then x ∈ (0, 1) and a = m2(1 + x). Hence

√
a = m

√
1 + x = m

(
1 +

x

2
− x2

8
+

x3

16
∓ · · ·

)
,

and

m
[
1 +

x

2
− x2

2n∑
k=0

(−1)kbkxk
]
≤

√
a ≤ m

[
1 +

x

2
− x2

2n+1∑
k=0

(−1)kbkxk
]

.

For example,
√

10 has the series expansion
√

10 = 3
(
1 +

1
2 · 9 − 1

8 · 81
+

1
16 · 729

− 5
128 · 6561

± · · ·
)

which yields the inequalities

3
(
1 +

1
18

− 1
648

+
1

11664
− 5

839808

)
= 3.16227637 . . . ≤

√
10

≤ 3.16227637 . . . +
21

15116544
= 3.16227776 . . .

For comparison, the exact decimal expansion of
√

10 begins 3.162277660 . . .

(c) (The case α = −1/2) Here we have(−1/2
k

)
= (−1)k 1 · 3 · · · · · (2k − 1)

2 · 4 · · · · · 2k
, k ≥ 2 .

From Theorem 3.10 we get

1√
1 + z

= 1 − z

2
+

∞∑
k=2

(−1)k 1 · 3 · · · · · (2k − 1)
2 · 4 · · · · · 2k

zk , z ∈ B̄C .

If |z| < 1 then | − z2| < 1 and so we can substitute −z2 for z to get

1√
1 − z2

= 1 +
z2

2
+

∞∑
k=2

1 · 3 · · · · · (2k − 1)
2 · 4 · · · · · 2k

z2k , z ∈ B̄C . (3.8)

In particular, it follows from Proposition 3.5 that the function z �→ 1
/√

1 − z2 is
analytic on BC. �
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For real arguments, (3.8) provides a power series expansion for the arcsine
function.

3.12 Corollary The arcsine function is real analytic on (−1, 1) and

arcsin(x) = x +
∞∑

k=1

1 · 3 · · · · · (2k − 1)
2 · 4 · · · · · 2k

x2k+1

2k + 1
, x ∈ (−1, 1) .

Proof By Remark 3.7(b) and (3.8),

F (x) := x +
x3

2 · 3 +
∞∑

k=2

1 · 3 · · · · · (2k − 1)
2 · 4 · · · · · 2k

x2k+1

2k + 1
, x ∈ (−1, 1) ,

is an antiderivative of f : (−1, 1) → R, x �→ 1
/√

1 − x2. Since the arcsine function
is another antiderivative of f (Application IV.2.10) and F (0) = 0 = arcsin(0), it
follows from Remark 3.4(a) that F = arcsin. Finally, Proposition 3.5 shows that
arcsin is analytic on (−1, 1). �

The Identity Theorem for Analytic Functions

To close this section we prove an important global property of analytic functions:
If an analytic function is zero on an open subset of its domain D, then it is zero
on all of D.

3.13 Theorem (identity theorem for analytic functions) Let D be a domain in K
and f ∈ Cω(D, K). If the set of zeros of f has a limit point in D, then f is zero
on D.

Proof Set

Y :=
{

x ∈ D ; ∃ (xn) in D\{x} such that limxn = x and f(xn) = 0 for n ∈ N
}

.

By supposition, Y is nonempty. Since f is continuous, we have f(y) = 0 for all
y ∈ Y . Hence every limit point of Y is contained in Y , and, by Proposition III.2.11,
Y is closed in D. Let x0 ∈ Y . Since f is analytic, there is some neighborhood V
of x0 in D and a power series

∑
akXk such that f(x) =

∑
ak(x − x0)k for all

x ∈ V . Since x0 is in Y , there is a sequence (yn) in V \{x0} such that yn → x0

and f(yn) = 0 for all n ∈ N. It then follows from the identity theorem for power
series (Corollary II.9.9) that ak = 0 for all k ∈ N, that is, f is zero on V , and also
that V is contained in Y . We have therefore shown that Y is open in D.

Since Y is a nonempty, open and closed subset of the domain D and D is
connected, we have Y = D (see Remark III.4.3). �
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3.14 Remarks (a) Let D be a domain in K and f, g ∈ Cω(D, K). If there is a
sequence (xn) which converges in D such that xn �= xn+1 and f(xn) = g(xn) for
all n ∈ N, then f = g.

Proof The function h := f − g is analytic on D and lim xn is a limit point in D of the

set of zeros of h, so the claim follows from Theorem 3.13. �

(b) If D is open in R, then Cω(D, R) is a proper subalgebra of C∞(D, R).

Proof Since both differentiability and analyticity are local properties, we can suppose

that D is a bounded open interval. It is easy to see that, for all x0 ∈ D and f ∈ Cω(D, R),

the function x �→ f(x − x0) is analytic on x0 + D. Thus it suffices to consider the case

D := (−a, a) for some a > 0. Let f be the restriction to D of the function of Exam-

ple IV.1.17. Then f ∈ C∞(D, R) and f |(−a, 0) = 0, but f 
= 0. Hence it follows from (a)

that f is not analytic. �

(c) A nonzero analytic function may have infinitely many zeros, as the cosine
function shows. Theorem 3.13 simply says that these zeros cannot have a limit
point in the domain of the function.

(d) The proof of (b) shows that, in the real case, the analyticity of f is necessary
in Theorem 3.13. In the complex case, the situation is completely different. We will
see later that the concepts of ‘complex differentiability’ and ‘complex analyticity’
are the same, so that, for each open subset D of C, C1(D, C) and Cω(D, C)
coincide. �

3.15 Remark Suppose that D is open in R and f : D → R is (real) analytic. Then,
for each x ∈ D, there is some rx > 0 such that

f(y) =
∞∑

k=0

f (k)(x)
k!

(y − x)k , y ∈ BR(x, rx) ∩ D .

The set
DC :=

⋃
x∈D

BC(x, rx)

is an open neighborhood of D in C. By Proposition 3.5, for each x ∈ D,

fC,x(z) :=
∞∑

k=0

f (k)(x)
k!

(z − x)k , z ∈ BC(x, rx) ,

defines an analytic function on BC(x, rx). The identity theorem for analytic func-
tions implies that any two such functions, fC,x and fC,y, coincide on the intersection
of their domains. This means that

fC(z) := fC,x(z) , z ∈ BC(x, rx) , x ∈ D ,

defines an analytic function fC : DC → C such that fC ⊇ f . The function fC is
called the analytic continuation of f on DC.
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Now suppose that D is open in C. Set DR := D ∩ R �= ∅. If f ∈ Cω(D, C) and
f(DR) ⊆ R, then f |DR is real analytic.

These considerations show that in our further investigation of analytic func-
tions, we can limit ourselves to the complex case. �

Exercises

1 Let D be open in C with DR := D ∩ R 
= ∅ and f ∈ Cω(D, C). Show the following:

(a) (Re f) |DR and (Im f) |DR are real analytic.

(b) Let f =
∑

ak(X − x0)
k be a power series expansion of f at x0 ∈ DR with radius of

convergence ρ > 0. Set D̃ := DR ∩ (x0 − ρ, x0 + ρ). Then the following are equivalent:

(i) f |D̃ ∈ Cω(D̃, R).

(ii) ak ∈ R for each k ∈ N.

2 Suppose that f ∈ Cω(D, K) has no zeros. Show that 1/f is also analytic.
(Hint: Use the division algorithm of Exercise II.9.9.)

3 Define h : C → C by

h(z) :=

{
(ez − 1)/z , z ∈ C× ,

1 , z = 0 .

Show that h ∈ Cω(C, C) and h(z) 
= 0 if |z| < 1/(e − 1).
(Hint: For analyticity, consider the series

∑
Xk/(k + 1)! . From Remark II.8.2(c), we get

the inequality

|h(z)| =
∣∣∣ez − 1

z

∣∣∣ ≥ 1 −
∞∑

k=1

|z|k
(k + 1)!

for all z ∈ C.)

4 Let h : C → C be as in Exercise 3. By Exercises 2 and 3, the function 1/h is analytic
on B

(
0, 1/(e − 1)

)
, and so there are ρ > 0 and Bk ∈ C such that

1

h
=

∞∑
k=0

Bk

k!
zk , z ∈ ρB .

Calculate B0, . . . , B10 and show that all Bk are rational.

5 Suppose that D is a domain in C and f ∈ Cω(D, C) satisfies one of the following
conditions:

(i) Re f = const.

(ii) Im f = const.

(iii) f ∈ Cω(D, C).

(iv) |f | = const.

Show that f is constant. (Hint: (i) Using a suitable difference quotient, show that
f ′(z) ∈ iR ∩ R. (iii) 2 Re f = f + f and (i). (iv) |f |2 = ff and Exercise 2.)
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6 Let f ∈ Cω(ρB) be represented by
∑

akXk on ρB for some ρ > 0. Suppose that (xn)
is a null sequence in (ρB)\{0}. Show that the following are equivalent:

(i) f is even.

(ii) f(xn) = f(−xn), n ∈ N.

(iii) a2m+1 = 0, m ∈ N.

Formulate an analogous characterization of odd analytic functions on ρB.

7 Prove the formulas (3.4).

8 Show that (α + β

k

)
=

k∑
�=0

(α

�

)( β

k − �

)
for all α, β ∈ C and k ∈ N.

9 Verify that the functions

(a) sinh : C → C, cosh : C → C, tanh : C\iπ(Z + 1/2) → C;

(b) tan : C\π(Z + 1/2) → C, cot : C\πZ → C;

are analytic. (Hint: Use Proposition 3.8.)

10 Show that the functions

ln(cos) , ln(cosh) , x �→ ln2(1 + x)

are analytic in a neighborhood of 0. What are the corresponding power series expansions
at 0? (Hint: First find power series expansions for the derivatives.)

11 Prove that, for x ∈ [−1, 1],

arctan x =
∞∑

k=0

(−1)k x2k+1

2k + 1
= x − x3

3
+

x5

5
− x7

7
+ − · · · ,

and hence (Leibniz formula)

π

4
=

∞∑
k=0

(−1)k

2k + 1
= 1 − 1

3
+

1

5
− 1

7
+ − · · · .

(Hint: arctan′ x = 1/(1 + x2). For x = ±1, convergence follows from the Leibniz criterion

(Theorem II.7.8).)
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4 Polynomial Approximation

An analytic function is represented locally by power series and so, near a given
point x0, it can be approximated with arbitrary precision by polynomials, that is,
the error can be made arbitrarily small by allowing polynomials of sufficiently high
degrees and by limiting the approximation to sufficiently small neighborhoods of
the point x0. Here the approximating polynomial, the Taylor polynomial, is given
explicitly in terms of the values of the function to be approximated and its deriva-
tives at the point x0. In addition, the error in the approximation can be controlled
using the various formulas for the remainder of Taylor series. This fact lies behind
the great importance of Taylor’s theorem, particularly for numerical mathemat-
ics which considers the derivation of efficient algorithms for the approximation of
functions and solutions of equations.

In this section we investigate the problem of the global approximation of
functions by polynomials. The main result of this section, the Stone-Weierstrass
theorem, guarantees the existence of such polynomials for arbitrary continuous
functions on compact subsets of Rn.

Banach Algebras

An algebra A which is also is a Banach space satisfying

‖ab‖ ≤ ‖a‖ ‖b‖ , a, b ∈ A ,

is called a Banach algebra. If A contains a unity element e, we also require that
‖e‖ = 1.

4.1 Examples (a) Let X be a nonempty set. Then B(X, K) is a Banach algebra
with unity element 1.
Proof From Theorem II.6.6 we know that B(X, K) is a Banach space. Moreover

‖fg‖∞ = sup
x∈X

|f(x)g(x)| ≤ sup
x∈X

|f(x)| sup
x∈X

|g(x)| = ‖f‖∞ ‖g‖∞ , f, g ∈ B(X, K) .

This shows that B(X, K) is a subalgebra of KX . For the unity element 1 of KX , we have

1 ∈ B(X, E) and ‖1‖∞ = 1. �

(b) Let X be a metric space. Then BC(X, K) is a closed subalgebra of B(X, K)
which contains 1, and so is a Banach algebra with unity.

Proof By Theorem 2.6, BC(X, K) is a closed subspace of B(X, K), and so is itself a

Banach space. The claim then follows from (a) and Proposition III.1.5. �

(c) Let X be a compact metric space. Then C(X, K) is a Banach algebra with
unity element 1.

Proof In Theorem 2.6 we showed that the Banach spaces C(X, K) and BC(X, K) coin-

cide in this circumstance. �
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(d) In a Banach algebra A, the multiplication operation A × A → A, (a, b) �→ ab
is continuous.
Proof For all (a, b) and (a0, b0) in A × A we have

‖ab − a0b0‖ ≤ ‖a − a0‖ ‖b‖ + ‖a0‖ ‖b − b0‖ ,

from which the claim follows easily (see the proof of Example III.1.3(m)). �

(e) If B is a subalgebra of a Banach algebra A, then B is a Banach algebra.
Proof For a, b ∈ B, there are sequences (an) and (bn) such that an → a and bn → b
in A. From Proposition II.2.2 and Remark II.3.1(c) it follows that

a + λb = lim an + λ lim bn = lim(an + λbn) ∈ B

for all λ ∈ K. Thus B is a closed subspace of A and hence also a Banach space. Because

of (d), we also have anbn → ab, so that ab is in B. Consequently B is a subalgebra of A

and hence a Banach algebra. �

Density and Separability

A subset D of a metric space X is dense in X if D = X. A metric space is called
separable if it contains a countable dense subset.

4.2 Remarks (a) The following are equivalent:
(i) D is dense in X.
(ii) For each x ∈ X and neighborhood U of x, we have U ∩ D �= ∅.
(iii) For each x ∈ X, there is a sequence (dn) in D such that dn → x.

(b) Suppose that X1, . . . , Xm are metric spaces, and, for 1 ≤ j ≤ m, Dj is dense
in Xj . Then D1 × · · · × Dm is dense in X1 × · · · × Xm.

Proof This is a direct consequence of (a) and Example II.1.8(e). �

(c) The definitions of density and separability are clearly valid also for general
topological spaces. Statements (i) and (ii) of (a) are equivalent to each other in
general topological spaces, but not to (iii).

(d) Let X and Y be metric spaces and h : X → Y a homeomorphism. Then D is
dense in X if and only if h(D) is dense in Y .

Proof This follows directly from the characterization (ii) of (a) and the fact that home-

omorphisms map neighborhoods to neighborhoods (see Exercise III.3.3). �

4.3 Examples (a) Q is dense in R. In particular, R is separable.

Proof This follows from Propositions I.10.8 and I.9.4. �

(b) The irrational numbers R\Q form a dense subset of R.

Proof This we proved in Proposition I.10.11. �
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(c) For any subset A of X, A is dense in A.

(d) Q + iQ is dense in C. In particular, C is separable.

Proof This follows from (a) and Remark 4.2(b) (see also Remark II.3.13(e)). �

(e) Any finite dimensional normed vector space is separable. In particular, Kn is
separable.
Proof Let V be a normed vector space over K and (b1, . . . , bn) a basis for V . By (a)
and (d), K is separable. Let D be a countable dense subset of K and

VD :=
{∑n

k=1αkbk ; αk ∈ D
}

.

Then VD is countable and dense in V (see Exercise 6). �

In the following proposition we collect several useful equivalent formulations
of density.

4.4 Proposition Let X be a metric space and D ⊆ X. Then the following are
equivalent:

(i) D is dense in X.

(ii) If A is closed and D ⊆ A ⊆ X, then A = X. Thus X is the unique closed
dense subset of X.

(iii) For each x ∈ X and ε > 0, there is some y ∈ D such that d(x, y) < ε.

(iv) The complement of D has empty interior, that is, (Dc)◦ = ∅.

Proof ‘(i)=⇒(ii)’ Let A be closed with D ⊆ A ⊆ X. From Corollary III.2.13 it
follows that X = D ⊆ A = A, that is, A = X.

‘(ii)=⇒(iii)’ We argue by contradiction. If x ∈ X and ε > 0 are such that
D ∩ B(x, ε) = ∅, then D ⊆

[
B(x, ε)

]c. This contradicts (ii), since
[
B(x, ε)

]c is a
closed subset of X such that

[
B(x, ε)

]c �= X.

‘(iii)=⇒(iv)’ Suppose that (Dc)◦ is not empty. Since (Dc)◦ is open, there are
x ∈ (Dc)◦ and ε > 0 such that B(x, ε) ⊆ (Dc)◦ ⊆ Dc. This implies D ∩ B(x, ε) = ∅,
contradicting (iii).

‘(iv)=⇒(i)’ From Exercise III.2.5, we have V̊ = X
∖

(X\V ) for any subset V
of X. From (iv) it follows that

∅ = (Dc)◦ = X
∖

(Dc)c = X
∖

D ,

that is, D = X. This completes the proof. �

Of course, condition (iii) is also equivalent to condition (ii) of Remark 4.2(a).
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The Stone-Weierstrass Theorem

As preparation for the proof of the Stone-Weierstrass theorem, we prove the fol-
lowing two lemmas.

4.5 Lemma

|t| =
∞∑

k=0

(1/2
k

)
(t2 − 1)k , t ∈ [−1, 1] ,

and this series is norm convergent on [−1, 1].

Proof Set x := t2 − 1 for t ∈ [−1, 1]. Then

|t| =
√

t2 =
√

1 + t2 − 1 =
√

1 + x ,

and so the claim follows from Theorem 3.10. �

4.6 Lemma Let X be a compact metric space and A a closed subalgebra of
C(X, R) containing 1. If f and g are in A, then so are |f |, f ∨ g and f ∧ g.

Proof Let f, g ∈ A. From Exercise I.8.11 we have

f ∨ g =
1
2
(f + g + |f − g|) , f ∧ g =

1
2
(f + g − |f − g|) .

Hence it suffices to prove that, if f is in A, then so is |f |. In addition, we need
only consider the case f �= 0. From Lemma 4.5 we have

∣∣∣|t| − m∑
k=0

(1/2
k

)
(t2 − 1)k

∣∣∣ ≤ ∞∑
k=m+1

∣∣∣(1/2
k

)∣∣∣ , t ∈ [−1, 1] ,

where the right hand side converges to zero as m → ∞. Thus, for each ε > 0, there
is some Pε ∈ R[t] such that∣∣|t| − Pε(t)

∣∣ < ε/‖f‖∞ , t ∈ [−1, 1] .

Setting t := f(x)/‖f‖∞, we get

‖f‖∞
∣∣∣∣∣f(x)

/
‖f‖∞

∣∣− Pε

(
f(x)

/
‖f‖∞

)∣∣∣ < ε , x ∈ X .

Define gε := ‖f‖∞ Pε(f/‖f‖∞). Since A is a subalgebra of C(X, R) containing 1,
gε is in A. We have therefore shown that, for each ε > 0, there is some g ∈ A such
that

∥∥|f | − g
∥∥
∞ < ε. Thus |f | is in A. By hypothesis, A is closed, and so the claim

follows. �



394 V Sequences of Functions

A subset M of C(X, K) separates the points of X if, for each (x, y) ∈ X × X
with x �= y, there is some m ∈ M such that m(x) �= m(y). The set M is called
self adjoint if m ∈ M implies m ∈ M .1

After this preparation we can now prove the main theorem of this section.

4.7 Theorem (Stone-Weierstrass theorem) Let X be a compact metric space and
A a subalgebra of C(X, K) containing 1. If A separates the points of X and is
self adjoint, then A is dense in C(X, K). That is, for each f ∈ C(X, K) and ε > 0,
there is some a ∈ A such that ‖f − a‖∞ < ε.

Proof We prove the cases K = R and K = C separately.

(a) Suppose that f ∈ C(X, R) and ε > 0.

(i) We claim that, for each pair y, z ∈ X, there is some hy,z ∈ A such that

hy,z(y) = f(y) and hy,z(z) = f(z) . (4.1)

Indeed, if y = z, then the constant function hy,z := f(y)1 satisfies (4.1). If y �= z,
then, since A separates the points of X, there is some g ∈ A such that g(y) �= g(z).
Now define

hy,z := f(y)1 +
f(z) − f(y)
g(z) − g(y)

(
g − g(y)1

)
.

Since hy,z is in A with hy,z(y) = f(y) and hy,z(z) = f(z), (4.1) holds.

(ii) For y, z ∈ X, set

Uy,z :=
{

x ∈ X ; hy,z(x) < f(x) + ε
}

, Vy,z :=
{

x ∈ X ; hy,z(x) > f(x)− ε
}

.

Since hy,z − f is continuous, we know from Example III.2.22(c) that Uy,z and Vy,z

are open in X. By (4.1), y is in Uy,z and z is in Vy,z. Now fix some z ∈ X. Then
{Uy,z , y ∈ X } is an open cover of the compact space X, and there are y0, . . . , ym

in X such that
⋃m

j=0 Uyj ,z = X. Set

hz := min
0≤j≤m

hyj ,z := hy0,z ∧ · · · ∧ hym,z .

By Lemma 4.6, hz is in A. In addition, we have

hz(x) < f(x) + ε , x ∈ X , (4.2)

since, for each x ∈ X, there is some j ∈ {0, . . . , m} such that x ∈ Uyj ,z.

(iii) For z ∈ X, let Vz :=
⋂m

j=0 Vyj ,z. Then we have

hz(x) > f(x) − ε , x ∈ Vz . (4.3)

1This condition is always true in the real case: Any subset of C(X, R) is self adjoint.
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By (4.1), {Vz ; z ∈ X } is an open cover of X. Since X is compact, there are
z0, . . . , zn in X such that X =

⋃n
k=0 Vzk

. Set

h := max
0≤k≤n

hzk
:= hz0 ∨ · · · ∨ hzn

.

Then Lemma 4.6 and Example 4.1(e) show that h is in A. In addition, from (4.2)
and (4.3) follow the inequalities

f(x) − ε < h(x) < f(x) + ε , x ∈ X .

Thus ‖f − h‖∞ < ε. Since h is in A, there is some a ∈ A such that ‖h − a‖∞ < ε,
and hence ‖f − a‖∞ < 2ε. Since ε > 0 was arbitrary, the claim now follows from
Proposition 4.4.

(b) Let K = C.

(i) Let AR be the set of all real valued functions in A. Then AR is an al-
gebra over the field R. Because A is self adjoint, for each f ∈ A, the functions
Re f = (f + f)/2 and Im f = (f − f)/2i are in AR. Hence A ⊆ AR + iAR. Since
also AR + iAR ⊆ A, we have shown that A = AR + iAR.

(ii) Suppose that y, z ∈ X are such that y �= z. Because A separates the points
of X, there is some f ∈ A such that f(y) �= f(z), that is, either Re f(y) �= Re f(z)
or Im f(y) �= Im f(z). Thus AR also separates the points of X. Using the result
proved in (a), we now have C(X, R) = AR, and consequently

A ⊆ C(X, C) = C(X, R) + iC(X, R) = AR + iAR . (4.4)

(iii) Finally, let f ∈ AR + iAR. Then there are g, h ∈ AR such that f = g + ih,
and hence sequences (gk) and (hk) in A such that gk → g and hk → h in C(X, R).
Since the sequence (gk + ihk) converges in C(X, C) to g + ih = f , this implies
that f is in A, and hence C(X, C) = AR + iAR ⊆ A. This, together with (4.4),
completes the proof. �

4.8 Corollary Let M ⊆ Rn be compact.

(a) Any continuous K-valued function on M can be uniformly approximated by
a polynomial in n variables, that is, K[X1, . . . , Xn] |M is dense in C(M, K).

(b) The Banach space C(M, K) is separable.

Proof (a) Set A := K[X1, . . . , Xn] |M . Then A is clearly a subalgebra of C(M, K)
containing 1. In addition, A separates the points of M and is self adjoint (see
Exercise 7). Thus the claim follows from the Stone-Weierstrass theorem.

(b) If K = R, then Q[X1, . . . , Xn] |M is a countable dense subset of C(M, R).
If K = C, then (Q + iQ)[X1, . . . , Xn] |M has the desired properties. �
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4.9 Corollary (Weierstrass approximation theorem) Let −∞ < a < b < ∞. Then,
for each f ∈ C

(
[a, b], K

)
and ε > 0, there is a polynomial p with coefficients in K

such that |f(x) − p(x)| < ε for all x ∈ [a, b].

Using the Stone-Weierstrass theorem we can easily construct an example of
a normed vector space which is not complete.

4.10 Examples (a) Let I be a compact perfect interval and P the subalgebra
of C(I) consisting of all (restrictions of) polynomials on I. Then P is a normed
vector space, but not a Banach space.

Proof By Corollary 4.9, P is dense in C(I). Since exp |X is in C(I), but not in P, P is

a proper subspace of C(I). It follows from Proposition 4.4 that P is not closed, and hence

not complete. �

(b) Let I be a compact interval and ε := exp |I. Then

A :=
{∑n

k=0akεk ; ak ∈ K, n ∈ N
}

is a dense subalgebra of C(I, K). So any continuous function on I can be uniformly
approximated by ‘sums of exponential functions’ of the form t �→ ∑n

k=0 aketk.

Proof Clearly A is a subalgebra of C(I, K) and 1 ∈ A. Since ε(s) 
= ε(t) for s 
= t, A sep-

arates the points of I. Since A is self adjoint, the claim follows from Theorem 4.7. �

(c) Let S := S1 := { z ∈ C ; |z| = 1 } and χ(z) := z for z ∈ S. Define

P(S) := P(S, C) :=
{∑n

k=−nckχk ; ck ∈ C, n ∈ N
}

where χk := χk for all k ∈ Z. Then P(S) is a dense subalgebra of C(S) := C(S, C).

Proof Clearly, P := P(S) is a subalgebra of C(S) with 1 ∈ P. Because χ(z) 
= χ(w) for

z 
= w, P separates the points of S, and, since χk = χ−k, P is self adjoint. So the claim

follows again from Theorem 4.7. �

The great generality of the Stone-Weierstrass theorem is obtained at the cost
of a nonconstructive proof. In the context of the classical Weierstrass approxima-
tion theorem, that is, uniform approximations of continuous functions by polyno-
mials, an explicit procedure for the construction of the approximating polynomials
is possible (see Exercises 11 and 12).

Trigonometric Polynomials

We consider again Example 4.10(c) with the substitution z = ei t for t ∈ R. Then,
for all k ∈ N and ck, c−k ∈ C, Euler’s formula (III.6.1) implies that

ckzk + c−kz−k = (ck + c−k) cos(kt) + i(ck − c−k) sin(kt) .



V.4 Polynomial Approximation 397

Setting
ak := ck + c−k , bk := i(ck − c−k) (4.5)

we can write p :=
∑n

k=−n ckχk ∈ P(S) in the form

p(ei t) =
a0

2
+

n∑
k=1

[
ak cos(kt) + bk sin(kt)

]
. (4.6)

This suggests the following definition: For n ∈ N and ak, bk ∈ K, the function

Tn : R → K , t �→ a0

2
+

n∑
k=1

[
ak cos(kt) + bk sin(kt)

]
(4.7)

is called a (K-valued) trigonometric polynomial. If K = R (or K = C), then Tn is
called real (or complex). If (an, bn) �= (0, 0), then Tn is a trigonometric polynomial
of degree n.

4.11 Remarks (a) Let

P(S, R) :=
{

p =
∑n

k=−nckχk ; c−k = ck, −n ≤ k ≤ n, n ∈ N
}

.

Then P(S, R) = P(S, C) ∩ C(S, R), and P(S, R) is a real subalgebra of C(S, R).
Proof For p ∈ P(S, R) we have

p =
n∑

k=−n

ckχk =
n∑

k=−n

c−kχ−k = p .

This shows that P(S, R) ⊆ P(S) ∩ C(S, R). If p ∈ P(S) is real valued, then it follows
from χk = χ−k that

n∑
k=−n

ckχ−k = p = p =
n∑

k=−n

ckχk =
n∑

k=−n

c−kχ−k ,

that is,
n∑

k=−n

(c−k − ck)χ−k = 0 . (4.8)

Since χ−n is nowhere zero, it follows from χ−k = χ−nχn−k that (4.8) is equivalent to

ϕ :=

2n∑
k=0

akχk = 0 (4.9)

with an−k := c−k − ck for all −n ≤ k ≤ n. Since ϕ is the restriction of a polynomial to S,

it follows from the identity theorem for polynomials (Remark I.8.19(c)) that ak = 0 for

all 0 ≤ k ≤ 2n. Thus p is in P(S, R), which proves the first claim. The second claim is

now clear. �
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(b) Let T P(R, K) be the set of all K-valued trigonometric polynomials. Then
T P(R, K) is a subalgebra of BC(R, K) and

cis∗ : P(S, K) → T P(R, K) , p �→ p ◦ cis

is an algebra isomorphism.
Proof It follows easily from (4.5), (4.6) and (a) that the function cis∗ is well defined. It
is also clear that T P(R, K) is a subspace of BC(R, K) and that cis∗ is linear and injective.
Let Tn ∈ T P(R, K) be as in (4.7) and set p :=

∑n
k=−n ckχk with

c0 := a0/2 , ck := (ak − ibk)/2 , c−k := (ak + ibk)/2 , 1 ≤ k ≤ n . (4.10)

Then it follows from (a) that p is in P(S, K), and (4.5) and (4.6) imply that Tn = p ◦ cis.
Thus cis∗ is surjective and hence also a vector space isomorphism. Moreover

cis∗(pq) = (pq) ◦ cis = (p ◦ cis)(q ◦ cis) = (cis∗ p)(cis∗ q) , p, q ∈ P(S, K) ,

and so cis∗ : P(S, K) → BC(R, K) is an algebra homomorphism. It follows from this that

T P(R, K), the image of P(S, K) under cis∗, is a subalgebra of BC(R, K) and that cis∗ is

an isomorphism from P(S, K) to T P(R, K). �

(c) The subalgebra T P(R, K) is not dense in BC(R, K).
Proof Define f ∈ BC(R, K) by

f(t) :=

⎧⎪⎨⎪⎩
−2π , −∞ < t < −2π ,

t , −2π ≤ t ≤ 2π ,

2π , 2π < t < ∞ .

Suppose, contrary to the claim, that T P(R, K) is dense in BC(R, K). Then there is
some T ∈ T P(R, K) such that ‖f − T‖∞ < 2π. In particular, |T (2π) − f(2π)| < 2π and
so T (2π) > 0. Since T (2π) = T (0) = T (−2π) and f(−2π) = −2π, this implies

|T (−2π) − f(−2π)| = |T (2π) + 2π| > 2π ,

which contradicts ‖f − T‖∞ < 2π. �

By Example 4.1(e), the closure of T P(R, K) in BC(R, K) is a Banach algebra.
We next show that this Banach algebra is precisely the algebra of continuous
2π-periodic K-valued functions on R.

Periodic Functions

First we prove several general properties of periodic functions. Let M be a set and
p �= 0. Then f : R → M is called periodic2 with period p (or simply p-periodic) if
f(t + p) = f(t) for all t ∈ R.

2This is a special case of the definition given in the footnote for Corollary III.6.14.
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4.12 Remarks (a) A p-periodic function is completely determined by its restriction
to any interval with length p.

(b) Let f : R → M be p-periodic and q > 0. Then the function

R → M , t �→ f(tp/q)

is q-periodic. Consequently, for the study of periodic functions with a fixed pe-
riod p, it suffices to consider only the case p = 2π.

(c) Let Funct2π(R,M) be the set of 2π-periodic functions from R to M . Then

cis∗ : MS → Funct2π(R,M) , g �→ g ◦ cis

is bijective. Using this bijection, we can identify the 2π-periodic functions with
the set of functions on the unit circle.

Proof Since cis : R → S is periodic with period 2π, for each g ∈ MS , the function g ◦ cis

is also 2π-periodic. By Proposition III.6.15, ϕ := cis | [0, 2π) is a bijection from [0, 2π)

to S. Thus, for f ∈ Funct2π(R, M), g := f ◦ ϕ−1 is a well defined function from S to M

such that g ◦ cis = f . Hence cis∗ is bijective. �

(d) Suppose that M is a metric space and f ∈ C(R,M) is periodic and noncon-
stant. Then f has a least positive period p, the minimal period, and pZ× is the
set of all periods of f .
Proof For t ∈ R, let Pt :=

{
p ∈ R ; f(t + p) = f(t)

}
and P :=

⋂
t∈R

Pt. Then P \{0}
is the set of all periods of f . Since f is continuous, the function p �→ f(t + p) is also
continuous on R. Because Pt is the fiber of the function p �→ f(t + p) at the point f(t),
it follows from Example III.2.22(a) that Pt is closed in R. Thus P , being an intersection
of closed sets, is itself closed. Moreover, P 
= {0} since f is periodic, and P 
= R since f
is not constant. For p1, p2 ∈ P , we have f(t + p1 − p2) = f(t + p1) = f(t) for all t ∈ R,
meaning that p1 − p2 is in P . Setting p1 = 0 in this we see that, if p is in P , then so is −p.
Replacing p2 by −p2, we see that p1 + p2 ∈ P . Thus P is a closed subgroup of (R, +).

Because P 
= R, there must be a smallest positive element p0 in P . Otherwise there

would be, for each ε > 0, some p ∈ P ∩ (0, ε), and so, for each s ∈ R, some k ∈ Z such

that |s − kp| < ε. Consequently P would be dense in R, which, by Proposition 4.4 would

imply P = R. Clearly p0Z is a subgroup of P . Suppose that q ∈ P \p0Z and, without loss

of generality, that q > 0. Then there are r ∈ (0, p0) and k ∈ N× such that q = kp0 + r.

From this it follows that r = q − kp0 ∈ P , which contradicts the minimality of p0. This

shows that P = p0Z.3 �

Let M be a metric space and

C2π(R,M) :=
{

f ∈ C(R,M) ; f is 2π-periodic
}

.

The following discussion shows that the function cis∗ of Remark 4.11(b) has a
continuous extension on C(S, K). This result, which is a considerable strengthening

3This proof shows that, if G is a closed subgroup of (R, +), then either G = {0}, G = (R, +),
or G is infinite cyclic (that is, G is an infinite group generated by a single element).
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of Remark 4.12(c), implies that we can identify continuous 2π-periodic functions
with continuous functions on S.

4.13 Proposition If M is a metric space, then cis∗ is a bijection from C(S, M)
to C2π(R,M).

Proof From Remark 4.12(c) and the continuity of cis it follows that cis∗ is an
injective function from C(S, M) to C2π(R,M). Since cis∗ is bijective from MS

to Funct2π(R,M), it suffices to show that, for all f ∈ C2π(R,M), the function
(cis∗)−1(f) is continuous on S. Note first that, for all ϕ = cis | [0, 2π), we have
ϕ−1 = arg |S. It follows from Exercise III.6.9 that ϕ−1 maps the set S• := S\{−1}
continuously into (−π, π). Thus g := (cis∗)−1(f) = f ◦ ϕ−1 maps the set S• con-
tinuously into M . As t ∈ (−π, π) approaches ±π, we have cis(t) → −1, so the
2π-periodicity of f implies that

lim
z→−1
z∈S•

g(z) = f(π) = (cis∗)−1(f)(−1) .

Consequently (cis∗)−1(f) is continuous on S. �

4.14 Corollary Let E := (E, |·|) be a Banach space. Then C2π(R, E) is a closed
subspace of the Banach space BC(R, E) and hence a Banach space with the
maximum norm

‖f‖C2π
:= max

−π≤t≤π
|f(t)| ,

and cis∗ is an isometric isomorphism4 from C(S, E) to C2π(R, E).

Proof By Remark 4.12(a), it is clear that C2π(R, E) is a subspace of BC(R, E),
and that ‖·‖∞ induces the norm ‖·‖C2π

. It is also clear that the pointwise limit (and
hence, in particular, the uniform limit) of a sequence of 2π-periodic functions is also
2π-periodic. Thus C2π(R, E) is a closed subspace of the Banach space BC(R, E),
and so is itself a Banach space. By Proposition 4.13, cis∗ is a bijection from
C(S, E) to C2π(S, E) which is trivially linear. Since cis, by Proposition III.6.15, is
a bijection from [−π, π) to S, it follows that

‖ cis∗(f)‖C2π
= max

−π≤t≤π

∣∣f(cis(t))∣∣ = max
z∈S

|f(z)| = ‖f‖C(S,E)

for all f ∈ C(S, E). Hence cis∗ is isometric. �

4.15 Remark For each a ∈ R, we have

‖f‖C2π
= max

a≤t≤a+2π
|f(t)| .

Proof This follows directly from the periodicity of f . �

4Naturally, in connection with vector spaces, ‘isomorphism’ means ‘vector space isomorphism’.
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The Trigonometric Approximation Theorem

After this discussion of periodic functions, we can now easily prove the trigono-
metric form of the Weierstrass approximation theorem.

4.16 Theorem C2π(R, K) is a Banach algebra with unity element 1, and the sub-
algebra of trigonometric polynomials T P(R, K) is dense in C2π(R, K). In addition,
cis∗ is an isometric algebra isomorphism from C(S, K) to C2π(R, K).

Proof By Corollary 4.14, cis∗ is an isometric vector space isomorphism from
C := C(S, K) to C2π := C2π(R, K). Example 4.10(c) and Remark 4.11(a) imply
that P := P(S, K) is a dense subalgebra of C. Remark 4.11(b) says that cis∗ |T P
is an algebra isomorphism from P to T P := T P(R, K). Now let f, g ∈ C. Then
there are sequences (fn) and (gn) in P such that fn → f and gn → g in C. By the
continuity of cis∗ and the continuity of multiplication it follows that

cis∗(fg) = lim cis∗(fngn) = lim(cis∗ fn)(cis∗ gn) = (cis∗ f)(cis∗ g) .

Thus cis∗ is an algebra isomorphism from C to C2π. Since P is dense in C and
cis∗ is a homeomorphism from C to C2π, the image T P of P under cis∗ is dense
in C2π (see Remark 4.2(d)). �

4.17 Corollary (trigonometric form of the Weierstrass approximation theorem)
For f ∈ C2π(R, K) and ε > 0, there are n ∈ N and ak, bk ∈ K such that

∣∣∣f(t) − a0

2
−

n∑
k=1

[
ak cos(kt) + bk sin(kt)

]∣∣∣ < ε

for all t ∈ R.

Theorem 4.16 says, in particular, that the Banach algebras C(S, K) and
C2π(R, K) are isomorphic and isometric. This means that, for applications, as well
as for questions about continuity and limits, we can use whichever of these spaces
is most convenient. For algebraic operations and abstract considerations, this is
often the algebra C(S, K), whereas, for the concrete representations of 2π-periodic
functions, the space C2π(R, K) is usually preferred.

Corollary 4.17 suggests several questions:

• What conditions on the coefficients (ak) and (bk) ensure that the trigono-
metric series

a0

2
+
∑

k

[
ak cos(k · ) + bk sin(k · )

]
(4.11)

converges uniformly on R? When this occurs, the series clearly represents a con-
tinuous periodic function with period 2π.
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• In the case that f ∈ C2π(R, K) can be represented by a trigonometric series,
how can the coefficients ak and bk be calculated? Are they uniquely determined
by f? Can every 2π-periodic continuous function be represented in this way?

For the first of these questions, the Weierstrass majorant criterion provides
an easy sufficient condition. We will return to the second question in later chapters.

Exercises

1 Verify that the Banach space BCk(X, K) of Exercise 2.10 is an algebra with unity
and that multiplication is continuous. For which k is BCk(X, K) a Banach algebra?

2 Let x0, . . . , xk ∈ Kn be nonzero. Show that
{

x ∈ Kn ;
∏k

j=0(x |xj) 
= 0
}

is open and
dense in Kn.

3 Let M be a metric space. Prove or disprove the following:

(a) Finite intersections of dense subsets of M are dense in M .

(b) Finite intersections of open dense subsets of M are open and dense in M .

4 Let Dk, k ∈ N, be open dense subsets of Kn and D :=
⋂

k Dk. Show the following:5

(a) D is dense in Kn.

(b) D is uncountable.

(Hint: (a) Set Fk :=
⋂k

�=0 Dk. Then Fk is open and dense, and F0 ⊇ F1 ⊇ · · ·. Let x ∈ Kn

and r > 0. Then there are x0 ∈ F0 and r0 > 0 such that B̄(x0, r0) ⊆ B(x, r) ∩ F0. Choose
inductively xk ∈ Fk and rk > 0 such that B̄(xk+1, rk+1) ⊆ B(xk, rk) ∩ Fk for all k ∈ N.
Now use Exercise III.3.4. (b) If D were countable, there would be xm ∈ Kn such that
D = {xm ; m ∈ N }. Consider

⋂
m{xm}c ∩⋂

k Dk.)

5 Show that there is no function from R to R which is continuous at each rational point
and discontinuous at each irrational point. (Hint: Let f be a such function. Consider
Dk := {x ∈ R ; ωf (x) < 1/k } for all k ∈ N×, where ωf is the modulus of continuity from
Exercise III.1.17. By Exercise III.2.20, Dk is open. But then Q ⊆ Dk and

⋂
k Dk = Q,

contradicting 4(b).)

6 Let V be a finite dimensional normed vector space with basis {b1, . . . , bn}, and D a
countable dense subset of K. Show that

{∑n
k=1 αkbk ; αk ∈ D

}
is countable and dense

in V .

7 Let M ⊆ Rn and A := K[X1, . . . , Xn] |M . Show that A separates the points of M and
is self adjoint.

8 Suppose that −∞ < a < b < ∞ and f ∈ C
(
[a, b], K

)
. Show that f has an antideriva-

tive. (Hint: Let (pn) be a sequence of polynomials which converges uniformly to f . Find
Fn ∈ C1

(
[a, b], K

)
such that F ′

n = pn and Fn(a) = 0. Now apply Exercise 2.11 and The-
orem 2.8.)

9 Let f ∈ C2π(R, R) be differentiable. Show that f ′ has a zero in (0, 2π).

5(a) is a special case of the Baire category theorem.
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10 Let D0(R, K) be the set of all absolutely convergent trigonometric series with a0 = 0
(see (4.11)). Show the following:

(a) D0(R, K) is a subalgebra of C2π(R, K).

(b) Each f ∈ D0(R, K) has a 2π-periodic antiderivative.

(c) Each f ∈ D0(R, R) has a zero in (0, 2π).

(d) Claim (c) is false for functions in D0(R, C).

11 For n ∈ N and 0 ≤ k ≤ n, the (elementary) Bernstein polynomial Bn,k is defined by

Bn,k :=
(n

k

)
Xk(1 − X)n−k .

Show the following:

(a) For each n ∈ N, the Bernstein polynomials form a decomposition of unity, that is,∑n
k=0 Bn,k = 1.

(b)
∑n

k=0 kBn,k = nX,
∑n

k=0 k(k − 1)Bn,k = n(n − 1)X2.

(c)
∑n

k=0(k − nX)2Bn,k = nX(1 − X).

(Hint: For y ∈ R, let pn,y := (X + y)n. Consider Xp′
n,y and X2p′′

n,y and set y := 1 − X.)

12 Let E be a Banach space and f ∈ C
(
[0, 1], E

)
. Show that the sequence

(
Bn(f)

)
of

Bernstein polynomials for f ,

Bn(f) :=

n∑
k=0

f
( k

n

)
Bn,k , n ∈ N ,

converges in C
(
[0, 1], E

)
(and hence uniformly on [0, 1]) to f . (Hint: For suitable δ > 0

consider |x − n/k| ≤ δ and |x − n/k| > δ, and use Exercise 11.)

13 Let X be a topological space. A family B of open sets of X is called a basis for the
topology of X if, for each x ∈ X and neighborhood U of x, there is some B ∈ B such that
x ∈ B ⊆ U . Prove the following:

(a) Any separable metric space has a countable basis of open sets.

(b) Any subset of a separable metric space is separable (that is, a separable metric space
with the induced metric).

(c) Any subset of Rn is separable.

14 Let X be a compact separable metric space. Show that C(X, K) is a separable Ba-

nach space. (Hint: Consider linear combinations with rational coefficients of ‘monomials’

dm1
B1

· · · · · dmk
Bk

with k ∈ N, mj ∈ N, Bj ∈ B, where B is a basis for the topology of X,

and dB := d(·, Bc) as in Example III.1.3(l) for all B ∈ B.)

Remark We will show in Proposition IX.1.8 that any compact metric space is

separable.
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Introduction to Mathematical Logic

1 Logic is about statements and proofs. Examples of statements are: The equa-
tion x2 + 1 = 0 has no solution and 2 is greater than 3 and Given a line and a
point not on the line, there is exactly one line which passes through the point which
is parallel to the given line (the parallel postulate as formulated by Proklos).

Statements can be ‘true’, ‘false’ or ‘unprovable’. Standing alone, a statement
may have no truth value, but may become true or false in connection with other
statements.

In logic, statements are usually written in a special formal language. Such a
language is based on simple word formation rules and grammar, and so avoids the
ambiguities present in usual languages. This can however lead to immense, hard
to understand, sentences.

Since we wish to use conventional language in this discussion, a precise defi-
nition of the word ‘statement’ is not possible. Our statements are sentences in the
English language. But that does not mean that sentences and statements are the
same thing.

Firstly it is possible for different sentences to be the same statement. For
example, There is no number x such that x2 = −1 is the same statement as the
first example. Secondly, many sentences are ambiguous because words can have
multiple meanings or because part of the intended statement is missing if it is seen
as self-evident. For example, in the first example we have not explicitly said that x
must be real. Finally most sentences from daily life are not statements in the sense
intended here. We do not try to put a sentence such as Team Canada strikes gold
again into a logical and coherent system of statements. We limit ourselves here
to statements about terms, that is, about mathematical objects such as numbers,
points, functions, and variables.

2 Even though we do not have a definition of a statement, we can at least provide
rules for constructing statements:

a) Equality : Terms can always be equated. Thus we can construct the ‘true’
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statement The solution set of the equation x2 − 1 = 0 is equal to {−1, 1} and
the ‘false’ statement ‘2 = [0, 1]’.

b) Membership: Sentences such as The point P lies on the line G, P belongs
to the line G or P is an element of the line G are all the same statement. This
kind of statement is often expressed using the membership symbol ∈: ‘P ∈ G’.

New statements can be constructed from other statements as follows:

c) Each statement φ has a negation ¬φ. Thus The equation x2 + 1 = 0 has no
solution is the negation of The equation x2 + 1 = 0 has a solution. The negation
of 2 is greater than 3 is 2 is not greater than 3 (which is not the same as 2 is
smaller than 3 ).

d) From the two statements φ and ψ, we can construct the statement φ → ψ
(if φ then ψ). For example, we have the ‘true’, but seemingly abstruse, statement
If 2 is greater than 3, then the equation x2 + 1 = 0 has a solution.

e) The constructions in c) and d) can be combined. For example, from φ and ψ,
we get the statements φ ∨ ψ = (¬φ) → ψ (φ or ψ) and φ ∧ ψ = ¬(φ → ¬ψ)
(φ and ψ).

f ) Existence statements: The statement There exist real numbers x and y such
that x2 + y2 = 1 is often formally expressed using the symbol ∃ (existential
quantifier):

∃x∃y
((

(x ∈ R) ∧ (y ∈ R)
)
∧ (x2 + y2 = 1)

)
.

Here R is the set of real numbers.
The expression

(
(x ∈ R) ∧ (y ∈ R)

)
∧ (x2 + y2 = 1) is not a statement because

x and y are variables. It is instead a formula which becomes a statement if the
variables are replaced by numbers or, as above, becomes an existence statement
using existential quantifiers.

g) A statement such as For all real x and all real y, we have x2 + y2 > 0 is a
‘double’ negated existence statement:

¬(∃x)(∃y)
(
¬
(
(x ∈ R) ∧ (y ∈ R) → (x2 + y2 > 0)

))
.

In practice this statement is abbreviated using the symbol ∀ (universal quanti-
fier):

(∀x)(∀y)
(
(x ∈ R) ∧ (y ∈ R) → (x2 + y2 > 0)

)
.

3 Each set of statements Γ has a logical closure Γ, which is the set of all state-
ments which are implied by Γ. Of course, Γ contains the set Γ (assumption rule)
as well as the logical closure ∆ of any subset ∆ of Γ (chain rule). In the following
we collect only the most important of the remaining rules of logic. The notation
Γ $ φ means that Γ implies φ. Similarly Γ, ψ $ φ means that φ is implied by the
statements in Γ together with the statement ψ.
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a) Γ $ (t = t) for each set of statements Γ and each constant term t (equality
rule). In particular, t = t is implied by the ‘empty’ set of statements ∅.
b) ψ,¬ψ $ φ for all statements φ and ψ (contradiction rule).

c) Γ, ψ $ φ and Γ,¬ψ $ φ imply Γ $ φ (cases rule).

d) Γ, φ $ ψ implies Γ $ (φ → ψ) (implication rule).

e) φ, (φ → ψ) $ ψ (modus ponens).

f ) If a, b, . . . , c are constant terms and φ(x, y, . . . , z) is a formula with the free
variables x, y, . . . , z, then φ(a, b, . . . , c) $ (∃x)(∃y) . . . (∃z)φ(x, y, . . . , z) (substi-
tution rule).

4 By combining the rules in 3 we get additional constructions:

a) Γ $ (φ → ψ) implies Γ, φ $ ψ (the converse of the implication rule):
From φ, (φ → ψ) $ ψ (modus ponens) we get Γ, φ, (φ → ψ) $ ψ. Then Γ, φ $ ψ
because φ → ψ is in Γ (chain rule).

b) (φ → ψ) $ (¬ψ → ¬φ) (First contrapositive rule):
From φ, (φ → ψ) $ ψ (modus ponens) we get φ, (φ → ψ),¬ψ $ ψ.
Since φ, (φ → ψ),¬ψ $ ¬ψ also holds, this implies φ, (φ → ψ),¬ψ $ ¬φ (contra-
diction rule).
From φ, (φ → ψ),¬ψ $ ¬φ and ¬φ, (φ → ψ),¬ψ $ ¬φ it follows that
(φ → ψ),¬ψ $ ¬φ (cases rule).
Finally, this gives us (φ → ψ) $ (¬ψ → ¬φ) (implication rule).
Similarly, one can prove the following:
(φ → ¬ψ) $ (ψ → ¬φ) (second contrapositive rule).
(¬φ → ψ) $ (¬ψ → φ) (third contrapositive rule).
(¬φ → ¬ψ) $ (ψ → φ) (fourth contrapositive rule).
For example, to prove the fourth rule one replaces φ, ¬φ, ψ and ¬ψ by ¬φ, φ,
¬ψ and ψ respectively in the proof of the first rule.
Of course, the four contrapositive rules coincide if the underlying language is
such that the double negation ¬¬φ is the same as φ. This may be so in every-
day conversation where we consider the double negation It is not true that the
equation x2 + 1 = 0 has no solution as a reformulation of the statement The
equation x2 + 1 = 0 has a solution. In the usual formal language of logic, φ and
¬¬φ are distinct statements which are equivalent in the sense of implication:

c) φ $ ¬¬φ and ¬¬φ $ φ (double negation rule):
From ¬φ $ ¬φ (assumption rule) we get
∅ $ (¬φ → ¬φ) $ (φ → ¬¬φ) (implication and second contrapositive rules).
It then follows from ∅ $ (φ → ¬¬φ) (chain rule) that φ $ ¬¬φ (converse of the
implication rule).

d1) ψ $ (φ → ψ):
From ψ, φ $ ψ (assumption rule) we get ψ $ (φ → ψ) (implication rule).
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d2) ¬φ $ (φ → ψ):
This follows from ¬φ $ (¬ψ → ¬φ) and (¬ψ → ¬φ) $ (φ → ψ) (fourth contra-
positive rule) using the chain rule.
d3) φ,¬ψ $ ¬(φ → ψ):
From φ, (φ → ψ) $ ψ (modus ponens) we get φ $

(
(φ → ψ) → ψ

)
(implication

rule) as well as φ $
(
¬ψ → ¬(φ → ψ)

)
(first contrapositive and chain rules).

The claim then follows from the converse of the implication rule.
e1) φ, ψ $ φ ∧ ψ (conjunction rule):
From φ, (φ → ¬ψ) $ ¬ψ (modus ponens) we get φ $

(
(φ → ¬ψ) → ¬ψ

)
(impli-

cation rule). Then φ $
(
ψ → ¬(φ → ¬ψ)

)
follows from the second contrapositive

and chain rules. The claim is then a consequence of the converse of the impli-
cation rule.
e2) (φ ∧ ψ $ φ):
From ¬φ $ (φ → ¬ψ) (d2) we get ∅ $

(
¬φ → (φ → ¬ψ)

)
$
(
¬(φ → ¬ψ) → φ

)
(third contrapositive rule) and ¬(φ → ¬ψ) $ φ (converse of the implication
rule).
e3) (φ ∧ ψ $ ψ):
From ¬ψ $ (φ → ¬ψ) (d1) we get ∅ $

(
¬ψ → (φ → ¬ψ)

)
$
(
¬(φ → ¬ψ) → ψ

)
(third contrapositive rule) and ¬(φ → ¬ψ) $ ψ (converse of the implication
rule).
f 1) ψ $ (φ ∨ ψ) $ (ψ ∨ φ) (disjunction rule):
By definition we have (φ ∨ ψ) = (¬φ → ψ). So the first implication follows
from d1), and the second from the third contrapositive rule.
f 2) (φ ∨ ψ),¬φ $ ψ (modus ponens).

5 Using these construction rules we can construct statements α such that ∅ $ α.
For example, from φ $ φ and the implication rule we get ∅ $ (φ → φ) for any state-
ment φ . In particular, we have ∅ $ (ψ ∨ ¬ψ) = (¬ψ → ¬ψ) (law of the excluded
middle)

Statements which are implied by the empty set can be thought of as abso-
lutely true. For example, the statements, t = t, ¬φ → (φ → ψ), (φ ∨ ψ) → (ψ ∨ φ),
φ → ¬¬φ, and (ψ ∧ ¬ψ) → φ are absolutely true.

Since mathematicians usually thirst for more than ‘absolute truth’, it is com-
mon to start with a set of statements Γ, called axioms, which arise in some par-
ticular mathematical context. Examples of such axioms are the parallel postulate
in Euclidean geometry or the extensionality axiom of set theory (Sets x and y are
equal if and only if any z in x is in y, and any z in y is in x):

∀x∀y
(
∀z
(
(z ∈ x → z ∈ y) ∧ (z ∈ y → z ∈ x)

)
→ x = y

)
.

The goal of mathematics is then the exploration of the logical closure Γ of
the given set of statements. We want to suppose that these axioms can be trusted,
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that is, Γ does not imply any contradictions of the form (¬φ ∧ φ) = ¬(¬φ → φ).
If so, we say that a statement φ is true if it is in Γ, and we say it is false if ¬φ is
true.

The statement φ ∨ ψ is true if one of the statements φ and ψ is true (disjunc-
tion rule), and it is false if both φ and ψ are false (4.f 2). However, it is possible
for φ ∨ ψ to be true even if none of the statements φ, ¬φ, ψ, ¬ψ are in Γ. For
example, the statement ψ ∨ ¬ψ is absolutely true. So, in general, it is not true
that ψ must be either true or false. It is entirely possibly that ψ is not decidable,
that is, neither ψ nor ¬ψ is implied by Γ.

If we consider only decidable statements, then there is a truth function that
maps each decidable statement to one of the values T (= true) or F (= false).
The following ‘truth table’ gives the truth values of combinations of decidable
statements. The decidability of these combinations follows easily from 3 and 4.
For example, if φ is true and ψ is false, then ¬φ, φ → ψ and φ ∧ ψ are false, and
φ ∨ ψ is true.

φ ψ ¬φ φ → ψ φ ∨ ψ φ ∧ ψ
T T F T T T
T F F F T F
F T T T T F
F F T T F F

6 For a more detailed discussion of logic, the reader is referred to the literature,
for example, [EFT96]. Even though the grammar of the formal languages developed
in the literature is completely simple, we prefer in this presentation to express
our statements in English. After sufficient practice, it allows compact and precise
formulations of mathematical statements. In English there is no sharp distinction
between syntax and semantics: A set is a collection of objects — not just a sequence
of symbols devoid of meaning. In formal languages, the interpretation is left to the
reader. In English, the interpretation is usually built in.
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[Wal82] R. Walter. Einführung in die lineare Algebra. Vieweg & Sohn, Braunschweig,
1982.

[Wal85] R. Walter. Lineare Algebra und analytische Geometrie. Vieweg & Sohn, Braun-
schweig, 1985.

[WS79] H. Werner, R. Schaback. Praktische Mathematik II. Springer Verlag, Berlin,
1979.



Index

absolute
convergence, 195, 366
value, 70, 106

accumulation point, 234, 245
action

of a field, 112
of a group, 60
transitive, 118

addition theorem
for the exponential function, 277
for the logarithm function, 281
for the tangent function, 290
for trigonometric functions, 279

additive
group, 62
identity, 62

affine
function, 119
space, 117

algebra, 122
Banach, 390
endomorphism, 123
homomorphism, 123

algebraic number, 289
algorithm, 76

Babylonian, 167
division, 34

almost all, 64, 131
alternating

group, 90
harmonic series, 187
series, 186

analytic
complex, 378
continuation, 387
function, 378
real, 378

antiderivative, 380

approximately linear, 302

approximation with order α, 336

arccosine, 322

arccotangent, 322

Archimedean

order, 90

property, 96

arcsine, 321

arctangent, 321

argument, 293

normalized, 292

principal value of the, 294

arithmetic

mean, 101

sequence, 126

associative, 26

automorphism

group, 58, 113

ring, 64

vector space, 112

axiom, 13

completeness, 91

first countability, 245

of choice, 50

Peano, 29

axiom system

NBG, 31

ZFC, 31

Babylonian algorithm, 167

Baire category theorem, 402

Banach

algebra, 390

fixed point theorem, 351

space, 176

base g expansion, 188

periodic, 189
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basis

for a topology, 403

of a vector space, 115

standard, 115

Bernoulli’s inequality, 101

Bernstein polynomial, 403

bijective, 18

bilinear form, 154, 270

symmetric, 153

binary expansion, 188

binomial

addition of coefficients, 73

coefficient, 44, 348, 382

series, 382

theorem, 65

Bolzano-Weierstrass theorem, 172

bound

greatest lower, 25

least upper, 25

lower, 24

upper, 24

boundary, 237, 245

bounded

function, 151

interval, 100

norm, 150

on bounded sets, 25

sequence, 137

subset, 137, 150

totally, 251

canonical indentification, 159

Cantor

function, 260

series, 193

set, 260

Cartesian product, 10, 49

Cauchy

condensation theorem, 193

criterion, 185

equation, 127

product, 204

remainder formula, 341

sequence, 175

Cauchy-Schwarz inequality, 154

characteristic function, 16

Chebyschev
normalized polynomials, 349
polynomial, 348

Chebyschev’s theorem, 349
circle group, 109, 295
closed

function, 248
interval, 100
relatively, 244, 246
set, 245
subset, 233, 244
under an operation, 26
unit ball, 149

closure, 235
cluster point, 134, 169
codomain, 15
commutative, 26, 42

diagram, 17
compact, 259

sequentially, 252, 259
subset, 250

comparison test, 143
complement, 9

orthogonal, 161
relative, 9

complete
metric space, 176
order, 91

completeness axiom, 91
complex

analytic, 378
conjugate, 104
number, 104

component, 10, 11
composition, 17
concave function, 322
condensation theorem, 193
conditional convergence, 196
congruent, 81
conjugate

complex, 104
Hölder, 325
linear, 154

conjunction, 3
connected, 263

component, 269
path, 266
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continuous, 219
extension, 242
left, 228
Lipschitz, 222
lower, 261
path, 265
right, 228
sequentially, 224
uniformly, 258
upper, 261

contraction, 351
constant, 351
theorem, 351

contrapositive, 6
convergence, 135, 245

absolute, 195, 366
conditional, 196
disk, 211
improper, 169
linear, 353
locally uniform, 370
norm, 366
of a sequence, 169
of a series, 183
pointwise, 363, 366
quadratic, 353
radius of, 211
radius of, for Taylor series, 338
uniform, 364, 366
with order α, 353

convex
combination, 270
function, 322
set, 266

convolution, 71
coordinate, 118

function, 118
system, 118

coset, 55
left, 55
modulo I, 81
right, 55

cosine, 277
hyperbolic, 296
series, 277

cotangent, 289
hyperbolic, 297

countable, 47

cover, 250
criterion

Cauchy, 185
Leibniz, 186
majorant, 196
Weierstrass majorant, 368

critical point, 317
cubic equation, 110
cyclic group, 399

de Moivre’s formula, 296
decimal expansion, 188
decomposition of unity, 403
Dedekind cut, 92
definite

negative, 270
positive, 154, 270

degree
of a polynomial, 74, 79
of a trigonometric polynomial, 397

dense subset, 391
derivative, 301

left, 313
right, 313

determinant, 231
diagonal sequence, 257
diagram, 17

commutative, 17
diameter, 137
difference

operator, 123
quotient, 303
symmetric, 64

differentiable, 301
left, 313
right, 313

differentiation operator, 309
dimension of a vector space, 115
Dini’s theorem, 375
direct

product, 54, 63
sum, 114

direction space, 117
Dirichlet function, 221
discontinuous, 219
discrete metric, 133
discriminant, 106
disjunction, 3
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disk of convergence, 211
distance, 132, 223, 256
distributive law, 42, 62, 111
divergence

of a sequence, 169
of a series, 183

division algorithm, 34
divisor, 34
domain, 15, 380
double series theorem, 202

elementary symmetric function, 82
elimination, Gauss-Jordan, 121
empty set, 8
endomorphism

algebra, 123
group, 56
ring, 64
vector space, 112

equation, Cauchy, 127
equinumerous, 47
equipotent, 47
equivalence, 6

class, 22
relation, 22

equivalent
metric, 140, 229
norm, 157

Euclidean
inner product, 154
norm, 156
unit ball, 158

Euler number, 165
Euler’s formula, 278
exponential

function, 199
series, 199

exponential function
addition theorem for the, 277

extension, 16
continuous, 242
field, 91

extreme value theorem, 253
extremum

global, 317
isolated, 331
local, 317

factorial function, 43
fiber, 20
Fibonacci number, 168
field, 67

extension, 91
of complex numbers, 103
of rational functions, 87
of real numbers, 92

finite intersection property, 260
fixed point, 101, 350

Banach theorem, 351
floor, 188
form

bilinear, 154
negative definite, 270
positive definite, 154, 270
sesquilinear, 154

formal power series, 71
formula

Hadamard’s, 211
Leibniz, 389

function, 15
affine, 119
analytic, 378
bijective, 18
bounded, 151
Cantor, 260
characteristic, 16
closed, 248
composition of, 17
concave, 322
constant, 16
continuous, 219
convex, 322
coordinate, 118
differentiable, 301
Dirichlet, 221
discontinuous, 219
distance, 223
elementary symmetric, 82
empty, 16
even, 216
exponential, 199
extension of a, 16
factorial, 43
fiber of a, 20
graph of a, 15
Hermitian, 153
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idempotent, 236
identity, 16
image of a, 15
injective, 18
inverse, 19
inverse trigonometric, 321
isometric, 224
linear, 112
monotone, 25
nth iterate, 358
odd, 216
open, 248
periodic, 398
polynomial, 75, 80
preimage of a, 19
quotient, 23
rational, 87
remainder, 338
restriction of a, 16
Riemann zeta, 368
sequence, 363
series, 366
sign, 90
smooth, 308
surjective, 18
trigonometric, 279, 289
zero, 64

Gauss-Jordan elimination, 121
general summation formula, 124
geometric

mean, 101
series, 184

graph, 15
greatest lower bound, 25
group, 52

Abelian, 52
action of a, 60
additive, 62
alternating, 90
automorphism, 58, 113
circle, 109, 295
commutative, 52
cyclic, 399
endomorphism, 56
homomorphism, 56
isomorphism, 58
multiplicative, 68

order of a, 59
permutation, 54, 59
quotient, 56
symmetric, 59
trivial, 54

Hadamard’s formula, 211
harmonic series, 184
Hausdorff

condition, 238
space, 246

Heine-Borel theorem, 252
Hermitian function, 153
Heron’s method, 167
Hilbert

norm, 156
space, 177

Hölder
conjugate, 325
inequality, 326
inequality for series, 334

homeomorphism, 260
homogeneous

polynomial, 79
positive, 148

homomorphism
algebra, 123
group, 56
kernel of a, 57
quotient, 114
ring, 64
trivial, 57
vector space, 112

hyperbolic
cosine, 296
cotangent, 297
sine, 296
tangent, 297

ideal, 81
proper, 81

idempotent, 236
identity

additive, 62
element, 26
function, 16
multiplicative, 62
parallelogram, 110, 160
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identity theorem

for analytic functions, 386

for polynomials, 78

for power series, 214

image, 15

imaginary part, 104

implication, 5

improper convergence, 169

inclusion, 16

order, 24

indefinite form, 270

index set, 12

induced

metric, 133

norm, 150

induction

the principle of, 29

inductive set, 30

inequality

Bernoulli’s, 101

Cauchy-Schwarz, 154

Hölder, 326

Hölder, for series, 334

Minkowski, 327

Minkowski, for series, 334

reversed triangle, 71, 108, 133, 149

triangle, 70, 107, 132, 148

Young, 325

infimum, 25

infinite system, 30

inflection point, 332

injective, 18

inner

operation, 111

product, 153

Euclidean, 154

space, 153

instantaneous velocity, 303

integer, 85

interior, 236, 245

intermediate value theorem, 271

interpolation

Lagrange, 121

Newton, 122, 125

polynomial, 120, 124

interval, 100
bounded, 100
closed, 100
open, 100
perfect, 100
unbounded, 100

inverse
function, 19
function theorem, 274
hyperbolic cosine, 332
hyperbolic sine, 332
trigonometric function, 321

irrational number, 99
isometric, 224

isomorphism, 224
isometry, 224
isomorphic, 58, 64, 112
isomorphism, 31

class, 59
group, 58
isometric, 224
ring, 64
vector space, 112

jump discontinuity, 273

kernel, 57, 64
Kronecker symbol, 121

Lagrange
interpolation polynomial, 121
remainder formula, 341

Landau symbol, 335, 336
least upper bound, 25
left

derivative, 313
limit, 242
shift operator, 123

Legendre polynomial, 316
Leibniz

criterion, 186
formula, 389

limit, 135, 169, 245
inferior, 170
left, 242
point, 234, 245
pointwise, 363
right, 242
superior, 170
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linear
combination, 115
conjugate, 154
convergence, 353
function, 112

linearly
dependent, 115
independent, 115

Lipschitz
constant, 222
continuous, 222

locally uniform convergence, 370
logarithm, 281, 293

addition theorem for, 281
principal value of the, 294

lower
bound, 24
continuous, 261

lowest terms, 86

majorant, 196
criterion, 196
Weierstrass, criterion, 368

map, 15
maximum norm, 151
mean

arithmetic, 101
geometric, 101
weighted arithmetic, 101
weighted geometric, 101

mean value theorem, 319
for vector valued functions, 328

method of false position, 359
metric, 132

discrete, 133
equivalent, 140, 229
induced, 133
induced from a norm, 148
natural, 133
product, 133
space, 132

complete, 176
minimal period, 399
Minkowski

inequality, 327
inequality for series, 334

minorant, 196
modulus of continuity, 231

monomial, 79
monotone, 25

sequence, 163
monotone functions

inverse function theorem for, 274
multi-index

length of a, 65
order of a, 65

multinomial
coefficient, 67
theorem, 66

multiplicative
group, 68
identity, 62

multiplicity of a zero
of a function, 348
of a polynomial, 78

natural
metric, 133
number, 29
order, 66, 94

NBG axiom system, 31
negation, 3
negative definite form, 270
neighborhood, 134, 245

countable basis, 245
ε-, 134
left δ-, 228
of ∞, 169
right δ-, 228

nest of intervals, 102
Newton interpolation polynomial, 122,

125
Newton’s method, 356

simplified, 358
norm, 148, 227

convergence, 366
equivalent, 157
Euclidean, 156
Hilbert, 156
induced, 150
induced from a scalar product, 155
maximum, 151
supremum, 151
topology, 233
vector space, 148

normal subgroup, 55
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normalized argument, 292
null sequence, 141
number

algebraic, 289
complex, 104
Euler, 165
Fibonacci, 168
irrational, 99
natural, 29
prime, 36
rational, 86
real, 94
sequence, 131
transcendental, 289

number line, 94
extended, 94

open
cover, 250
function, 248
interval, 100
relatively, 244, 246
set, 233
subset, 232, 244
unit ball, 149

operation, 26
associative, 26
commutative, 26
induced, 58
inner, 111
outer, 111

operator
difference, 123
differentiation, 309
left shift, 123

orbit, 60
order

Archimedean, 90
complete, 91
inclusion, 24
natural, 66, 94
of a group, 59
of a multi-index, 65
partial, 23
total, 23
well, 35

ordered ring, 69
ordering, 202

origin, 118
orthogonal, 161

complement, 161
system, 161

orthonormal system, 161
outer operation, 111

parallelogram identity, 110, 160
partial

order, 23
sum, 183

partition, 22
Pascal triangle, 44
path, 265

connected, 266
polygonal, 267

Peano axioms, 29
perfect

interval, 100
subset, 307

period, 286, 398
minimal, 399

periodic, 286
base g expansion, 189
function, 398

permutation, 42, 47
even, 90
group, 54, 59
odd, 90

pointwise convergence, 363, 366
polar coordinates, 292, 293
polygonal path, 267
polynomial, 73

Bernstein, 403
Chebyschev, 348
function, 75, 80
homogeneous, 79
in m indeterminates, 78, 80
interpolation, 120, 124
Lagrange interpolation, 121
Legendre, 316
linear, 79
Newton interpolation, 122, 125
ring, 73
symmetric, 81
Taylor, 338
trigonometric, 397
with coefficients in E, 336
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position vector, 118
positive

definite form, 154, 270
homogeneous, 148

power, 42
complex, 294
principal value of the, 294
summation, 126

power series, 210
expansion, 378
formal, 71
formal in m indeterminates, 78

preimage, 19
prime

factorization, 36
number, 36

principal value, 294
of the logarithm, 294
of the power, 294

principle
of induction, 29
well ordering, 35

product
Cartesian, 10, 49
Cauchy, 204
direct, 54, 63
Euclidean inner, 154
inner, 153
metric, 133
of functions, 225
of metric spaces, 133
ring, 63
rule, 304
scalar, 153
vector space, 113

projection, 10, 12

quantifier, 4
quotient, 34

field, 86
function, 23
group, 56
homomorphism, 114
in a field, 68
of functions, 225
ring, 81
rule, 305
space, 114

radius of convergence, 211, 338
ratio test, 198
rational number, 86
real

analytic, 378
number, 94
part, 104

rearrangement
of a series, 199
theorem of Riemann, 207

recursive definition, 39
reflexive relation, 22
regula falsi, 359
relation, 22

equivalence, 22
reflexive, 22
symmetric, 22
transitive, 22

relative
complement, 9
topology, 246

relatively
closed, 244, 246
open, 244, 246

remainder
formula

of Cauchy, 341
of Lagrange, 341
of Schlömilch, 340

function, 338
representative of equivalence class, 22
restriction, 16, 22
reversed triangle inequality, 71, 108,

133, 149
Riemann

rearrangement theorem, 207
zeta function, 368

right
derivative, 313
limit, 242

ring, 62
automorphism, 64
commutative, 62
endomorphism, 64
formal power series, 71
homomorphism, 64
isomorphism, 64
of integers, 84, 85
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ordered, 69
polynomial, 73
product, 63
quotient, 81
with unity, 62

Rolle’s theorem, 318
generalized, 333

root
nth, 98
of unity, 292
square, 89
test, 197

Russell’s antinomy, 30

scalar, 111
product, 153

Schlömilch remainder formula, 340
separable space, 391
sequence, 131

arithmetic, 126
bounded, 137
Cauchy, 175
diagonal, 257
monotone, 163
null, 141
number, 131
of functions, 363
sub-, 138

sequentially
compact, 252, 259
continuous, 224

series, 183
alternating, 186
alternating harmonic, 187
binomial, 382
Cantor, 193
cosine, 277
exponential, 199
finite geometric, 80
formal power, 71
geometric, 81, 184
harmonic, 184
of functions, 366
power, 210
sine, 277
summable, 202
Taylor, 338
trigonometric, 401

sesquilinear form, 154
set

Cantor, 260
closed, 245
convex, 266
countable, 47
empty, 8
index, 12
inductive, 30
of neighborhoods, 134
partially ordered, 23
power, 9
symmetric, 216
totally ordered, 23
uncountable, 47

sign, 70
function, 90

simple zero, 78
sine, 277

hyperbolic, 296
series, 277

slope, 303
smooth function, 308
space

affine, 117
Banach, 176
direction, 117
Hausdorff, 246
Hilbert, 177
inner product, 153
metric, 132, 133
normed vector, 148
of bounded continuous functions,

372
of bounded functions, 151
of bounded sequences, 152
quotient, 114
separable, 391
standard, 115, 118
topological, 233
vector, 111

span, 114
sphere, 239

unit, 153
square root, 89
Stone-Weierstrass theorem, 394
subcover, 250
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subgroup, 54

normal, 55

subsequence, 138

subset, 8

closed, 233, 244

compact, 250

dense, 391

open, 232, 244

perfect, 307

subspace, 113

topological, 246

successor, 29

sum

direct, 114

of functions, 225

of vector spaces, 114

partial, 183

pointwise, 366

summable series, 202

summation, power, 126

supremum, 25

norm, 151

surjective, 18

symmetric

bilinear form, 153

difference, 64

group, 59

polynomial, 81

relation, 22

set, 216

tangent, 289

addition theorem for the, 290

hyperbolic, 297

line, 303

Taylor

polynomial, 338

series, 338

Taylor’s theorem, 337

ternary expansion, 188

test

ratio, 198

root, 197

theorem
Baire category, 402
Banach fixed point, 351
binomial, 65
binomial coefficients, 73
Bolzano-Weierstrass, 172
Cauchy condensation, 193
Chebyschev’s, 349
contraction, 351
Dini’s, 375
double series, 202
extreme value, 253
Heine-Borel, 252
intermediate value, 271
inverse function, 274
mean value, 319

for vector valued functions, 328
multinomial, 66
Riemann’s rearrangement, 207
Rolle’s, 318, 333
Stone-Weierstrass, 394
Taylor’s, 337

topological
boundary, 237
space, 233
subspace, 246

topology, 159, 233
basis for a, 403
induced, 246
induced from a metric, 233
norm, 233
relative, 246

total order, 23
totally bounded, 251
transcendental number, 289
transitive

action, 118
relation, 22

translation, 118
transposition, 90
triangle inequality, 70, 107, 132, 148
trigonometric

function, 279, 289
addition theorem for, 279

polynomial, 397
series, 401

trivial homomorphism, 57
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truth

table, 3

value, 3

unbounded interval, 100

uncountable, 47

uniform convergence, 364, 366

uniformly continuous, 258

union, 9, 12

unit

ball, 149

Euclidean, 158

cube, 241

disk, 108

sphere, 153

unity, 62

upper

bound, 24

continuous, 261

Vandermonde matrix, 121

vector, 111

position, 118

vector space, 111, 131

automorphism , 112

complex, 111

endomorphism, 112

homomorphism, 112

isomorphism, 112

normed, 148

of bounded continuous functions,
372

of bounded functions, 151

of bounded sequences, 152

of continuous functions, 225

of formal power series, 114

of polynomials, 114

product, 113

real, 111

velocity, instantaneous, 303

Venn diagram, 9

Weierstrass

approximation theorem, 396

Bolzano-Weierstrass theorem, 172

majorant criterion, 368

Young inequality, 325

zero, 62
divisor, 63
function, 64
multiplicity of a, 78
of a function, 348
of a polynomial, 77
simple, 78

ZFC axiom system, 31

∧, 3, 25
∨, 3, 25
a ≡ b (mod I), 81
a ≡ b (mod n), 89
∼=, 58, 112

[·], 22
X ∼ Y , 47
X/∼, 22
SX , 47
Sn, 59

o, 335
O, 336

A\B, 9
A � B, 64
Ac, 9
∆X , 22
P(X), 9

Num, 46
2X , 9
Y X , 21
XA, 50

B, 149
B̄, 149
B(a, r), 108, 132, 149
B̄(a, r), 108, 132, 149
Bn, 158
Sn, 239
D, 108
D(a, r), 108
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m |n, 34
 ·!, 188
N, 29
N×, 29
N̄, 46
Q, 86
R, 92
R̄, 94
R+, 94
R + iR, 104
C, 103
K, 108
Zn, 89
Km×n, 162

(a, b), 100
(a, b], 100
[a, b), 100
[a, b], 100
[[a, b]], 266

x+, 207
x−, 207
max, 24
min, 24
sup, 25
inf, 25

1R, 62
K×, 68
F2, 69
R[X], 73
R[X1, . . . , Xm], 78
R[[X]], 71
R[[X1, . . . , Xm]], 78
Kn[X1, . . . , Xm], 116
deg, 74, 79

dom, 15
im, 15
idX , 16
prj , 10
f |A, 16
χA, 16
δjk, 121
graph, 15
arg, 294
argN , 292

cis, 283

sign, 70, 90

End, 112

Aut, 113

Hom, 112

dim, 115

span, 114

ker, 57, 64, 112

det, 231

⊕, 114

(· | ·), 153

⊥, 161

F⊥, 161

Funct(X, Y ), 21

B(X, E), 151

BC(X, E), 372

BCn(X, E), 376

BUC(X, E), 374

C(X), 225

C(X, E), 308

C(X, Y ), 219

Cn(X, E), 308

C∞(X, E), 308

Cω(D), 378

C2π(R, M), 399

c, 142

c0, 141

�1, 208

�∞, 152

s, 131

|·|, 70, 106, 156

|·|1, 157

|·|∞, 151

|·|p, 326

‖·‖, 148

‖·‖1, 208

‖·‖∞, 151

‖·‖BC , 372

‖·‖BCn , 376

‖·‖C2π , 400
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A, 234
clX , 235
Å, 236, 245
intX , 236
∂A, 237, 245
UX , 134
UX(x), 245
TY , 246
diam, 137

limx→a, 241
limx→a+, 242
limx→a−, 242
lim sup, 170
lim inf, 170
lim, 170
lim, 170
↑, 163
↓, 163
fn → f (unf), 364
fn → f (pointw), 363
f(a+), 242
f(a−), 242
ωf , 231

∂f , 301, 307
∂+f , 313
∂−f , 313
df/dx, 301, 307
Df , 301, 307
ḟ , 301, 307
f ′, 301, 307

T (f, a), 338
Tn(f, a), 338
Rn(f, a), 338
N [f ; x0; h], 124
pm[f ; x0, . . . , xm], 120
pm[f ; x0; h], 124
f [x0, . . . , xn], 127

|α|, 65
α!, 66
aα, 66(

n
m

)
, 44(

α
n

)
, 382(

k
α

)
, 67

�, 123
�h, 125
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