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ABSTRACT
The widespread use of text-based search in user interfaces
has led designers in visualization to occasionally add search
functionality to their creations. Yet it remains unclear how
search may impact a person’s behavior. Given the unstructured
context of the web, users may not have explicit information-
seeking goals and designers cannot make assumptions about
user attention. To bridge this gap, we observed the impact of
integrating search with five visualizations across 830 online
participants. In an unguided task, we find that (1) the presence
of text-based search influences people’s information-seeking
goals, (2) search can alter the data that people explore and how
they engage with it, and (3) the effects of search are amplified
in visualizations where people are familiar with the underlying
dataset. These results suggest that text-search in web visualiza-
tions drives users towards more diverse information seeking
goals, and may be valuable in a range of existing visualization
designs.
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INTRODUCTION
Text-based search is widely used on the web in order to enable
users to meet a variety of goals. Whether it is to browse
between webpages, locate a keyword of interest on a particular
page, or facilitate quick actions that shortcut tedious manual
navigation on mobile devices, search has largely become an
interface expectation and necessity. Thus, it comes as no
surprise that data visualization designers have begun to add
search to the visualizations they create for the web.
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To demonstrate search within the context of data visualization,
consider the Women in Films visualization in Figure 1 that
explores gender diversity in high grossing films. A text-based
search box at the bottom left allows users to enter either a
writer or a film name. After three characters, any film whose
writer or name matches the substring is highlighted, while
others fade out. This functionality empowers users to rapidly
search for specific films without resorting to an exhaustive,
guess-and-check strategy.

Despite these clear benefits, it remains unclear how the mere
presence of text-based search impacts how website visitors
explore data. When people explore a visualization, they may
have explicit information-seeking goals (e.g. looking for a par-
ticular point of data), implicit information-seeking goals (e.g.
opting to meander through a dataset until a goal is formed), or
they may arrive at a website with no data-centric goals at all.
From a design perspective, content creators may need to weigh
several questions when considering to add search functionality
to their visualizations:

• If search is built into a visualization, do people notice and
use it?

• How does search impact a user’s experience of the visual-
ization? Does it change their goals or interaction patterns?

Given the resources of time and effort that it takes to create a
compelling data visualization, designers cannot simply assume
people will use search, or that search will benefit exploration.
From a research perspective, it is unclear whether making
relatively small additions to a visualization, like adding text-
based search, results in a significant difference in how the user
will engage with data. Motivated by the intuition of adding
search to visualizations and the unanswered questions of its
benefits and trade-offs, we isolate and quantitatively study its
effect on users’ goals and behavior in the context of open-
ended web exploration.

Defining and Bounding Search
“Search” has many definitions in human-computer interaction
and data visualization. For the scope of this paper, we re-
fer to search as text-based search functionality integrated
with interactive visualizations. To clarify, below are a set of
juxtapositions with altering definitions and scopes of “search”.
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Many existing interactive visualizations can be augmented with 
search to enable diverse information seeking goals.

Results from five crowdsourced experiments indicate that search shapes users’ 
experience and performance with interactive visualizations.

Search mechanisms in interactive 
visualizations are thought to support 
users’ personal exploration and 
discovery.

Board of Directors 
(The Wall Street Journal)

Search provides a direct route to 
identifying companies of interest.

Search allows users to find a college 
of interest.

Search allows users to find a planet of 
interest.

Search enables users to find a particular 
industry of industries sharing keywords.

College Admissions (experimental) Exoplanets (experimental)

How the Recession Reshaped the 
Economy (The New York Times)

a) In this example, searching “Lasseter” 
reveals movies written by John Lasseter.

b) The partial search “Steph” reveals 
writers including Stephen Mazur and 
Stephanie Meyer.

c) Searching “Toy” reveals the Toy Story 
series, which uses the movie name attribute 
rather than the names of writers.

Figure 1. Search mechanisms in interactive data visualizations have been used sporadically throughout research and in practice. Little is known,
however, about how search impacts how people interact with visualizations. We contribute an analysis of search mechanisms in visualization. Our
experiment results indicate that most users will use search when available, and that search leads to positive increases in measures related to engagement.
(The example on the left is from an interactive visualization Women in Films on the web [21].)

Search as a task vs. search as a functionality. A search task in
HCI can refer to a user task, such as seeking information in a
system. Search functionality, then, is defined broadly as the
features the system provides to support users to complete their
tasks. This might mean, for example, menu bars and button
layouts in addition to text-based search.

Faceted search vs. text-based search. Faceted search includes
user-interface functionalities for accessing information orga-
nized according to a faceted classification system, which can
allow users to retrieve certain parts of information by applying
multiple filters. Text-based search, in contrast, generally refers
to functionality which accepts text input and displays results
matching the input.

Contributions
In this paper, we contribute a study on the effects of text-based
search in interactive data visualizations. In an experiment with
five stimuli and 830 crowdsourced participants, we quantify
how search can shape user behavior and goals with visualiza-
tions on the web- even when they are not explicitly given a
task to complete.

The results of these experiments suggest that (1) people gener-
ally use search when it is present, (2) the presence of search
encourages people to actively look for individual data items,
(3) search encourages users to spend more time examining
detail in the data, and (4) search nudges users towards more
diverse exploration patterns. Finally, we find that these effects
are modulated when search accompanies a dataset in which
people have no familiarity.

Taken together, these results lend insight to the practical ef-
fect of text-based search on web visualizations with everyday

people. With actionable information about the role of search,
visualization designers can make informed choices about how
to best support exploration and engagement in the data visu-
alizations they create. In addition, findings relating behavior
differences to interaction design in visualization may provide
initial evidence towards the development of future theoret-
ical interaction frameworks, which provides a baseline for
investigating the underlying mechanisms of those differences.

BACKGROUND
The widespread use of search in general computing systems
has led to taxonomies and in-depth studies on the design space
of search within the HCI community. While a full review of
this space is beyond the focus of this work, we find that recent
work from Wilson et al. is particularly relevant [49, 50, 51].
In Search User Interfaces [49], Wilson described a design
space of search user interfaces (SUIs), including issues such
as faceted search and auto-complete. These results directly
inform the dimensions we consider of the design space of
search in visualization. Additionally, the metrics from Wilson
et al.’s evaluation of search interfaces, such as how search
can lead to engagement with individual pieces of information,
inform the metrics we use in our experiment [51].

Most research on search in visualization has focused on visu-
alizing the results of search queries rather than search as an
interaction mechanism. Nevertheless, there is some overlap in
this thread of prior work and the goals of this study. To that
end, we turn to SUIs in visualization.

Search User Interfaces and Visualization
Visualization has been used extensively to support users’
search processes. With the growth of SUIs, structured 2D



Source Year Title Search Scope Trigger Autocomplete Transition Encoding Change
Paper 2002 SpaceTree [39] tree node name on click (unclear) highlight color
Web 2003 WordCount/QueryCount [25] words or queries on enter no filter out other data position
Web 2004 Zipdecode [22] zip codes while typing no highlight and zoom in color
Paper 2006 NameVoyager [47] baby names while typing no filter out other data position
Paper 2006 TimeTree [26] person or position names on click no highlight color
Paper 2007 NewsLab [23] news content (unclear) (unclear) (unclear) (unclear)
Paper 2007 VisLink [11] words (unclear) (unclear) highlight color
Paper 2009 ResultMaps [10] metadata on click (unclear) highlight color
Paper 2010 VizCept [9] node names on click (unclear) highlight color
Paper 2010 GeneaQuilts [4] any entry or attribute (unclear) (unclear) highlight color
Paper 2013 GPLOM [29] car properties while typing yes highlight color
Paper 2014 Footprints [30] document text content on enter (unclear) reposition position
Paper 2014 Overview [6] document text content on click (unclear) highlight color
Paper 2015 VAiRoma [8] location or article names on click (unclear) highlight addition
Web 2015 Clustergram [20] gene names on click yes highlight and zoom in color and size
Paper 2016 ResViz [18] staff names (unclear) (unclear) (unclear) (unclear)
Web 2016 Who Marries Whom [38] job names on enter yes highlight opacity and size
Web 2016 Women in Films [21] film names while typing no fadeout other data opacity
Web 2016 NBA 3-Point Record [1] player names on enter yes fadeout other data opacity

Table 1. Text-based search has appeared in multiple visualizations throughout research and the web. The above are a sample. We categorize each
across several dimensions, including the scope of the search, how the encoding changes, and others. Notably, some prior research systems do not contain
sufficient detail to determine how text-based search is used in the visualization.

visualizations were introduced to display search results to sup-
port or substitute standard results lists [49]. Several forms of
visualizations have been explored in these systems. Treemaps
were used to show search results in ResultMaps [10], an in-
terface to a digital library. Faceted search was used in the
systems including Dotfire [41], Envision [35], and List and
Matrix Browser [32], grouping specific facets of metadata
using both the horizontal and vertical axes. Timelines were
used in Perspective Wall [34] and Continuum [2] to display the
search results in the form of time series. More recently, more
complex visualizations have been created to support search
systems. In PivotPaths [16], after typing search keywords,
the user can explore the search results of faceted information
resources displayed in an interactive visualization.

What is common between “search mechanisms for visualiza-
tion” and “visualizing search results” is that they both have
visualization and search components. This raises considera-
tions for the present work, such as the impact of search on the
visual display. These works also differ from the present focus
in several ways. First, many prior systems do not support
textual search, rather relying on graphical methods to con-
struct queries [41, 2]. Second, many systems use search as the
starting point for analysis, meaning that subsequent searches
change the dataset display in the visualization [16, 32, 34, 35].
Of these systems, ResultMaps most closely resembles the use
of search as an interaction mechanism. In ResultMaps, an ini-
tial visualization of the data is given as a treemap, and search
is used as a means to highlight sub-sections of the treemap.

Query-Based Interfaces
Query-based interfaces are part of a long thread of research
in data visualization. Queries are core components of well-
known systems such as Polaris [43] and HomeFinder [48].
Evaluating query interfaces consisting of sliders, Ahlberg et al.
found that queries enabled people to quickly hone in on data
of interest. Keim and Kriegel emphasize the notion of using
boolean logic to join queries and ask more complex questions
of data [31]. Text-based search could potentially be used as a

mechanism for more complex queries, using schemes such as
the ones described here.

Natural Language Interfaces
Setlur et al.’s Eviza system [40], a natural language interface
for visual analysis, is closely related to the focus of this paper.
Eviza uses a text-based search bar (or voice) to allow users to
ask questions of the data. In a user study, Setlur et al. found
that users produced queries aligning with several visualization
tasks: navigation, calculation, comparison, and more. Our goal
is complementary- acknowledging that search mechanisms
have been included in prior systems and visualizations on the
web, and that they will become more powerful thanks to work
similar to Setlur et al.- how do these mechanisms shape users’
experience and understanding of a visualization?

Design of Search in Visualization
Even after narrowing our focus to text-based search on the
web, there are a variety of potential design choices- some of
which are unique to data visualization. As opposed to the
typical results page of a search engine, designers must bear in
mind the perceptual interactions between visual encodings in a
visualization, such as integral and separable features [45]. Mo-
tivated in part by these challenges, as well as the search design
space articulated by Wilson in Search User Interface [49], we
use the following characteristics to describe how visualizations
in the past have defined search:

• search scope: Do searches access just the primary labels
(often names) of the data or do they access the full dataset,
including metadata?

• trigger: How should search be triggered? Search can be trig-
gered, for example, by clicking a “search” button, pressing
an “enter” key, or updating continually as the user types.

• autocomplete: As the user types, does the search box sug-
gest queries based on the dataset?

• transition: How will the user be notified that the results
have been updated? In most search interfaces, only the
search results are shown, and the others are hidden from the



user. While this may be desirable in some cases for data
visualization, it’s also possible to increase the saliency of
selected data elements, decrease the saliency of remaining
data, or lend focus to search results through automated
zooming.

• encoding change: What visual encoding changes will ac-
complish the aforementioned increases and/or decreases in
saliency (e.g. color, opacity, width, size)?

The results of categorizing several prior research systems and
visualizations on the web are shown in Table 1. Besides
these examples, text-based search has also been supported
in some visualization development tools, such as Prefuse [27]
and Tableau Software [42], where visualization designers can
choose from different design options related to search. Re-
searchers have also expressed intuitions on the potential ben-
efits of search. For example, in NameVoyager [47], where
users can search baby names by prefix, the authors mention:
"A user might not think that searching the data set by prefix
would be interesting, but seeing the striking patterns for single
letters like O or K could encourage further exploration." In
a study on the social impact of NameVoyager [28] by Heer
et al., search functionality was also specifically mentioned:
"Many participants searched for their own occupations and
those of friends and family."

These works including the search examples and the social
impact studies motivate the need to isolate and quantitatively
study the broader effect of search, and inform our experiment
design.

EXPLORING THE IMPACT OF SEARCH
Our study on the effect of text-based search on visualizations
aims to investigate open-ended user exploration on the web,
where users may not have explicit analytical goals. We aim
to examine (1) how users’ exploration strategy is influenced
by the presence of search, and (2) how users’ exploration
behavior is influenced by the use of search.

We used a between subjects design in which each partici-
pant was randomly assigned to either the no search or search
present condition. In the search present condition, a search
box was always present in the visualization, enabling text-
based search. Functionally, users had to click the text-box and
type queries to activate the search-based highlighting. In order
to maintain ecology validity in the study, i.e. recognizing that
users may pursue open-ended exploration rather than specific
data-seeking tasks, we did not force a user to use search when
it was present. In the resulting analyses, therefore, we focus
in part on the group of participants who used search.

By drawing on analytic approaches from several recent studies
examining user behavior and performance with interactive
visualizations on the web [19, 5, 44, 15, 24], we frame our
research questions as follows:

• self-reported exploration strategy: does the presence
of text-based search impact peoples’ reported exploration
strategies? When search is present, what proportion of users
make use of it? Does dataset familiarity matter?

• exploration behavior: does the use of text-based search
impact measures of behavior, such as total exploration time,

the location of data investigated, or the proportion of time
spent viewing detailed information about chart elements?

Procedure and Tasks
Participants were recruited through Amazon’s Mechanical
Turk (AMT) to participate in a maximum of one of the five
visualization stimuli. Each participant was randomly assigned
to either the no search or search present condition. Based
on completion times in pilot experiments, each participant
was paid $2.00 in order to exceed US Minimum Wage. All
participants viewed an IRB-approved consent form.

Our procedure consisted of four phases: Training,
Exploration, Insight/Strategy, and Demographics.

Training: we provided participants with an instruction page
that briefly described their task and the interaction mecha-
nisms in the visualization. For example, for the 255Charts
experiment participants were told:

In the next page, you will explore an interactive
visualization. Your task is to analyze data on the economy
from a popular news website. On the following pages,
you will be asked to briefly describe the findings you
identified, and answer questions on your understanding
of the visualization.

Participants were shown an animation of the interactive fea-
tures available. In the search present condition, an extra sen-
tence explained that the text box could be used to search for
specific charts. No other indication of search functionality was
provided.

Exploration: The Exploration phase began with a paragraph
that introduces participants to the visualization and their task.
Participants were instructed that they may interact with the
visualization without any time limit. When participants in-
dicated they were finished exploring the visualization, they
advanced to the next phase.

Insight/Strategy: Participants were asked about findings they
made in the visualization and the strategies they used during
exploration. Specifically, participants were asked During ex-
ploration, did you actively search for items that you thought
might be in the visualization? They were then asked to list
any such data items they specifically sought out during their
exploration.

This protocol included additional steps to help ensure reliabil-
ity in participants’ self-reported answers. First, an example
case was provided tailored to the visualization stimuli to help
understand the question, e.g., in 255Charts, the example was
“someone who works in computing may be interested in the
‘Computer systems design and programming’ industry”. Sec-
ond, we included options for uncertainty in the single-choice
response, i.e., the participants chose among yes, no, and not
sure. Third, we provided participants with a list of items they
interacted with as a memory trigger. Specifically, participants
who indicated they had actively sought specific data items,
were asked to select which data items they sought, choosing
from a dynamically generated list of the items they interacted
with for more than 500ms. We refer to these engagements



Figure 2. Experimental stimuli used to evaluate the effects of text-based search on visualization use and exploration. Each stimuli has been augmented
to include search. From left to right: “Inside America’s Boardrooms” from the Wall Street Journal- a multi-section visualization exploring company
leaders. “How the Recession Reshaped the Economy, in 255 Charts” from The New York Times- showing how industries recovered or fell after the
recent US recession. The final two visualizations are used to test specific hypotheses about the value of visualization, e.g., whether the general familiarity
of the dataset impacts the likelihood of users making use of search. (Not shown) An identical version of the third chart was also tested, with anonymized
college names.

Figure 3. In our experiments with five visualizations, participants com-
pleted a training phase before heading to the exploration section. When
they were finished exploring the interactive (no time limit), they moved
to the next section where they describe their insights and strategies of ex-
ploration. In the final section, they provided demographic information.

with data items as “visits”; the 500ms threshold mitigates
accidental visits from stray mouse movement.

Demographics: Participants provided basic demographic in-
formation.

Experiment Stimuli
Each of the following visualizations were equipped with two
conditions: no search and search present

VIS 1: 255 Charts (The New York Times)
The first visualization we augmented with text-based search is
from The New York Times, titled “How the Recession Shaped
the Economy, in 255 Charts” [3] (see Figure 2). We refer to
this as 255Charts through the remainder of this paper.

Representation and Data: 255Charts includes 255 line charts
distributed across the viewport in a scatterplot-like fashion.
Each line in 255Charts represents how a particular industry
of the US Economy – Home Health Care Services or Air
Transportation, for instance – grew or declined from 2004
to 2014. Mousing-over an industry’s chart reveals a detailed
line-chart view showing specific values, years, and industry
information.

Search Design: For participants in our search present condi-
tion, the search box appeared at the top-left, allowing users to
search “Industry Names” with auto-complete available. Search
is triggered by an update of each character, allowing partial
searches (e.g. “comp” for “computer sales” or “computer en-
gineering”).

VIS 2: Board of Directors (The Wall Street Journal)
We augmented an interactive visualization from The Wall
Street Journal titled, “Inside America’s Boardrooms” [33].

This scrolling visualization includes multiple stages with the
same basic view (a grid of dots, see Figure 2, far left). We
refer to this as Boardo f Directors through the remainder of
this paper.

Representation and Data: The Boardo f Directors visualiza-
tion includes companies from the S&P 500. The companies
are represented by colored dots, and grouped into views, where
they are sorted according to the market capital, the percentage
of directors who are women, and other related fields. The
user can navigate through the views in a storytelling form
by clicking the “Next” button on the lower left, or jump to a
certain view by clicking buttons at the top of the visualization.
Mousing-over a company brings up a detailed view, including
the company’s name, the industry it belongs to, and a list of
other data attributes.

Search Design: Search was added on the bottom-right of the
visualization, supporting queries on “Company Names” and
“Industry Names” with auto-complete enabled. Search was
triggered as each character was typed, and partial queries were
possible. To display the search results, the selected data was
highlighted by dark gray outlines, while unselected charts
decreased slightly in opacity. The search box remained visible
across all views.

VIS 3-5: Familiar and Unfamiliar Bubble Charts
One factor worth considering in text-based search is that its
effectiveness may be limited by whether a person knows what
to search for. In other words, does the familiarity of the
dataset impact search behavior? It is with this in mind that
we designed three additional visualizations of similar form
(bubble charts), but with varying familiarity (Figure 2).

Representation and Data: The data sources and mapping for
the datasets are as follows:

• Colleges: we selected 300 colleges from the College Score-
board dataset [36]. Each college was represented by a circle,
of which the radius, color, distance to center mapped to the
college’s annual cost, median earning of the students, and
admission rate.

• AnonColleges: we used exactly the same data source and
mapping as Colleges, except we anonymized the names of
colleges. College names were anonymized via a script
that combined fictitious town names and a typical col-



lege/university prefix or suffix (i.e., X university, university
of X, X community college, etc.)

• Exoplanets: We selected 300 data points from the extraso-
lar planets dataset, to control for data size relative to the
college datasets. Each planet was represented by a circle,
of which the radius, color, distance to center mapped to
the planet’s radius, temperature and distance to the solar
system.

In each bubble chart, circles represented data elements that
contain three data attributes, represented by color, size, and
distance to the center of the chart. We selected 300 data
points from each of the three datasets, to control for data size.
Mousing-over a circle brings up a detailed view, showing text
values for the underlying data element.

Search Design: Search appeared on the top-left of the bubble
chart, with auto-complete enabled. Searches and highlighting
were triggered on character press. To display search results,
the selected data items maintained opacity, while unselected
items were deemphasized through a slight decrease of opacity.

Measures
We include both quantitative and qualitative measures derived
across the phases of the experiment.

In the Strategy phase, quantitative measures include:

• intent: the proportion of participants who indicated that they
intentionally sought specific data items in the visualization.

• active search count the number of data items participants se-
lected as items they intentionally sought in the visualization
(as opposed to incidental findings).

Self-reported quantitative measures were collected via steps
described in Section 3.1 Procedure and Tasks. Through free-
response questions, we also collect participant comments on
their strategies and experience of the experiment.

In the Exploration phase, we collect which data elements
each participant visited (i.e. interacted with for longer than
500ms), as well as any search queries. Quantitative measures
include:

• exploration time: the total time a participant spent on the
Exploration phase.

• average visit time during exploration: the average time a
participant spent viewing the details of a data item during
exploration.

• average visit time during search: the average time a partici-
pant spent viewing the details of a data item while an active
search query was highlighting items in the visualization
(search present condition only).

• average visit time outside search: the average time a partici-
pant spent viewing the details of a data item while outside
of a search query (search present condition only).

Pilots, Analyses, and Experiment Planning
We conducted several pilot studies to help establish our mea-
sures and procedure. In response to concerns about the limita-
tions of null hypothesis significance testing [14, 46], we model
our analyses on HCI research that seeks to move beyond these

no search search present used search total
255Charts 57 102 (72, 70.6%) 159

BoardofDirectors 47 151 (49, 32.5%) 198
Colleges 68 93 (75, 80.6%) 161

AnonColleges 53 103 (68, 66.7%) 156
Exoplanets 61 95 (65, 68.4%) 156

Table 2. We evaluate the impact of text-based search using a between-
subjects design across multiple visualizations. The table shows partic-
ipant numbers for each experiment, determined by running effect size
and power analyses on pilot studies. More participants were added to
the search present condition based on proportions of use derived from
pilot studies.

limitations (e.g. Dragicevic [17]), primarily focusing on confi-
dence intervals and effect sizes. Following Cumming [14], we
compute 95% confidence intervals using the bootstrap method,
and effect sizes using Cohen’s d- which is the difference in
means of the conditions divided by the pooled standard devia-
tion. While we include significance tests and related statistics,
it is with the intention of supplementing these analyses.

The results of our pilots showed some measures from the
Exploration phase were non-normally distributed, according
to a Shapiro-Wilk test. These measures, such as exploration−
time, were right-skewed with long tails. Because common
transforms (i.e. log, square-root) did not lead to changes in
the Shapiro-Wilk result, we use the non-parametric Mann-
Whitney test to compare these conditions.

To ensure our experiments included enough participants to
reliably detect meaningful differences between the conditions,
we conducted effect size and statistical power analyses. Specif-
ically, we used pilot studies to estimate the variance in our
quantitative measures, and combined these with the observed
means to approximate how many participants were needed.
Additionally, from pilot studies we estimate the percentage of
users who are likely to use search, adding more participants to
the search present condition to ensure roughly equal numbers
of participants in the “used search” and “no search” groups
(see Table 2 for specific proportions and outcomes).

RESULTS
In total, we recruited 830 participants through Amazon’s Me-
chanical Turk for the study. For each visualization, participants
were assigned into one of the two conditions, search present
and no search.

Proportion of People who Use Search When Present
Exploration behavior: when search is present, what proportion
of users make use of it?

In general, a majority of people used text-based search when
present in a visualization. The proportion of participants
that used search were similar in the most of the visualiza-
tions (70.6% for 255Charts, 80.6% for Colleges, 66.7% for
AnonColleges and 68.4% for Exoplanets). However, the pro-
portion was lower for Boardo f Directors (32.5%). We visit
possible reasons for this outlier and design implications that
follow this finding in the discussion.

Search’s Effect on Information Seeking Goals
Self-reported exploration strategy: does the presence of text-
search impact peoples’ reported exploration strategies?



Colleges

Experiment Results

255 Charts Board of Directors

Bubble Charts with Datasets of Different Familiarity

Visualizations from the Web

search present
no search

p=1.78e-6 p=.003

p=.006, W=782, d=.47

[D]  Average visit time per item - between group

p=.002, V=305, d=.64

outside search
during search

p=.502, W=844, d=.18

p=.0005, V=51, d=.93

used search
no search

p=.013, W=1412, d=.46

  [C] Total exploration time

p=.042, W=1622, d=.29

used search
no search

p=1.61e-5, W=1177.5, d=.42

used search
no search

[B]  Active search count

p=.0001, W=670, d=.65

Search Present:search functionality enabled

Used Search:participants who used the search functionality at any time during the trial

Visited During Search :participants investigating data items while using search functionality

No Search:no search functionality

For each visualization, we compute quantitative
results comparing different conditions and groups.
 (Error bars are 95% CIs.) We also plot visit frequency 
maps showing the distribution of visits.
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Figure 4. Experimental results comparing original visualizations with versions that integrate search. The results suggest that adding search enables
a subset of users to identify specific data of interest in visualizations, and that in many cases this leads to more time spent with individual data items,
an indicator of greater engagement with data. Maps showing items visited during search (orange) versus items visited when users did not have search
(purple) suggest that search leads users to different parts of the data.



For all except one condition, AnonColleges, significantly more
participants indicated that they actively sought specific data
items when search was present (significance determined by a
two-proportion z-test, see also the top chart in each column of
Figure 4).

Of note is that AnonColleges and Colleges are identical in
visual form and data attributes, except for the plaintext college-
name field. Specifically, in Colleges, the proportion difference
was 25.7% (95% CI [9.5%, 42.1%]), with 69.9% affirmative in
the search present condition and 44.1% in the no search con-
diton. AnonColleges, on the other hand, showed a difference
of 12.2% (95% CI [-3.0%, 27.4%]), with 31.1% affirmative
in the search present condition and 18.9% in the no search
conditon. We consider differences in these findings related
to exploration strategies and their implications further in the
discussion.

Search’s Effect on Information Seeking Patterns
Exploration behavior: does the use of text-based search impact
measures of behavior, such as the location of investigated
data?

If a participant indicated that they intentionally sought specific
data items in the visualization, they were shown a list of every
item they interacted with (defined as viewing for more than
500ms, to account for accidental interaction). Given these sets,
we generate maps that show patterns of where participants
visited. Specifically, we normalize the number of visits to
each data item, and add a diverging gradient that indicates how
often data items were selected by participants who used search
versus those who did not use search.

Figure 4 shows three of these normalized maps for each vi-
sualization, including proportions for participants who used
search, those who did not, and a diverging map showing the
difference. Notably, across all conditions, with the possible ex-
ception of Exoplanets, participants select a more diverse set
of data items. For example, in the Boardo f Directors visual-
ization, participants who did not use search generally indicated
their intent for items in the upper left of the view. In contrast,
participants who used search indicate a wider range of values,
spanning more of the range of the data.

Search’s Effect on Exploration Time
Exploration behavior: does the use of text-based search im-
pact measures of behavior, such as the total time spent on
exploration?

We measure exploration time, i.e. the total time spent interact-
ing with the visualization, at three levels of granularity. First,
we collect the overall time, meaning the time from which the
participant begins exploring, to the time they click to indicate
they are finished and ready for the next section. Second, we
collect the amount of time a person spends looking at the de-
tails of a data item. Finally, for participants who use search,
we distinguish between “visit” times when a search is active
(i.e. data items are highlighted) and inactive. In the latter case,
the user is examining item detail without the aid of search.

At the overall exploration time level, significant differences are
only found for the “in the wild” visualizations. For example,

in Boardo f Directors we found that the average participant
who used the search functionality spent more time (M = 117
seconds 95% CI [93.1, 147.5]) than those in no search con-
dition (M = 76.9 seconds 95% CI [55.5, 109.8]). Following
Cumming’s methodology for interpreting confidence intervals
[14]. Given the upper and lower limits of the confidence inter-
vals, the average participant in the group spends at least the
same time on exploration, and up to 92 seconds more.

We note that longer exploration time, while reported in prior
studies (e.g. Boy et al. [5]), may indicate greater engagement
of participants, it could also indicate difficulty in using aspects
of the visualization, like search. For this reason, it is necessary
to further differentiate aspects of time, such as time spent
examining individual data items.

Time Examining Individual Data Elements
Exploration behavior: does the use of text-based search impact
measures of behavior, such as the proportion of time spent
viewing detailed information about chart elements?

At the second level of time-granularity, we analyze the aver-
age time participants spent viewing the details of each data
element, which we term a “visit”. This difference was signif-
icant only in 255Charts, where the average participant who
used search spent more time visiting a data item (M = 3.9 sec-
onds 95% CI [3.2, 4.9]) than those in the no search condition
(M = 2.7 seconds 95% CI [2.3, 3.1]). Given the upper and
lower limits of the confidence intervals, the average partici-
pant who used the search functionality spends at least same
time visiting a data item, and up to 2.6 more seconds (d =
0.46 [0.17, 0.7]). We revisit this finding in the discussion, as
255Charts is also different from all other visualizations in that
a “visit” brings up a secondary chart.

At the third level of granularity, we compare visits within the
search condition, specifically visits that occur while search is
active, against those that occur when search features are not
in use. As shown in the bottom confidence interval charts in
each column of Figure 4, participants spent significantly more
time with data items when search was active, for all conditions
except Exoplanets (p = .10).

These results suggest that, in most cases, data items that are
visited during search are examined for longer. This effect is
particularly strongest in the news visualizations, where visits
during search are higher than all population-level visit times
(see Figure 4). For example in 255Charts, the average par-
ticipant spent more time visiting a data item found by using
text-based search (M = 9.2 seconds 95% CI [6.5, 13.8]) than
through browsing (M = 3.4 seconds 95% CI [2.7, 4.3]). Given
the upper and lower limits of the confidence intervals, the av-
erage participant in the group spends at least 2.2 more seconds
visiting a data item found through text-based search, and up to
11.1 more (d = 0.64 [0.34, 0.87]). In Boardo f Directors, we
found that the average participant spent more time visiting a
data item found by using text-based search (M = 5.7 seconds
95% CI [4.3, 7.8]) than through browsing (M = 2.5 seconds
95% CI [2, 3.4]). Given the upper and lower limits of the con-
fidence intervals, the average participant in the group spends



at least 0.9 more seconds visiting a data item found through
text-based search, and up to 5.8 more (d = 0.93 [0.43, 1.41]).

DISCUSSION
As shown in Figure 4, the results of these experiments suggest
that the mere presence of text-based search in visualization
can impact users’ self-reported exploration strategy, the data
they explore, and how long they explore specific items of data.
Results from the controlled variation of dataset familiarity
suggest that the effects of text-based search change depend-
ing on the topic of a visualization. We turn our attention to
possible causes for these findings, notable uses of search by
participants, and the implications these findings carry for the
design of visualizations.

Search Encourages Personalized Information-Seeking
Our results indicate that most people use text-based search
when it appears alongside a visualization. Furthermore, people
who utilized search were more likely to indicate that they
actively sought specific data items in the visualizations. While
these results may not be surprising in their own right, our
observations suggest that the data people looked for while
using search was often deeply personal. As one participant
who searched for ‘Duke’ stated:

Duke University is very expensive at $61,000 a year...
when I was a kid I wanted to go to Duke.

Similarly, a participant that used a partial query ‘Tech’, pro-
vided the finding:

Tech colleges promise the most consistent ROI... [I’m]
interested in science. Also, my brother applied to these
schools

Quotes like those above suggest that simple interaction mech-
anisms such as text-search have the capability of changing
user’s relationship with the visualization. While it is possible
that these participants could have arrived at their insights with-
out the use of search, doing so may have been more haphazard
or time-consuming given the initial interaction schemes and
visual forms.

From a design perspective, it may be important to emphasize
that some people did not use search, even when it was present.
Use of search ranged from a high of 81%, Colleges, to a low
of 33% Boardo f Directors. This low value is an outlier, but
remains an interesting case worthy of further investigation.
One possibility for the low use of search is that people simply
didn’t notice it. Due to constraints in the form of the visual-
ization, search appeared in the bottom-right (Other positions
were possible, but it was unknown apriori that position may
have an effect).

Another possibility is that the interaction scheme of
Boardo f Directors is what practitioners and researchers some-
times refer to as “scrollytelling”, where the main narrative
of the visualization is controlled by user scrolling or click-
ing to advance the “slides”. Effects like these raise questions
of whether there is an upper limit on the number of avail-
able interactions that a given person will make use of during
exploration.

Search Encourages Diverse Engagement with Data
When participants used search queries, they engaged with
individual data items for significantly longer than when search
queries were inactive. A likely explanation for this trend is
that search queries serve as an implicit indicator of interest.
However, it’s worth noting that this deeper engagement was
facilitated by the presence of search.

However, the strength of the effect differed across conditions.
In 255Charts, for example, data items that were visited during
searches outpaced non-search visits (according to 95% CIs) by
at least 2.2 seconds, and up to 11.1 on average. One possible
reason for these differences corresponds to the depth of detail
available to users on-demand. A unique feature of 255Charts
is that, on mouseover, a secondary line chart appears, showing
additional data for the given industry (see Figure 4). In con-
trast, the details shown in the bubble charts consist of a few
simple data items: college cost, planet temperature, etc. The
effect was similar in Boardo f Directors, where multiple data
elements about companies were shown on mouseover.

The results show a longer exploration time found in the
Boardo f Directors visualization. Unlike the other visualiza-
tions, Boardo f Directors has multiple tabs, which may have
led users to compare highlighted search results in different
views by switching between tabs.

A possible consideration for design, then, is that the value
of search increases alongside the amount and quality of data
revealed in detail views in an interactive visualisation. Fu-
ture research might investigate the role of detail quantity and
quality of exploration patterns, as well.

Text-based Search in Visualization Task Taxonomies
Beyond measures of behavior, the value of search mechanisms
in visualization may be more clearly articulated through ex-
isting task taxonomies. One that is particularly relevant is
Brehmer and Munzner’s typology of abstract visualization
tasks [7]. In their taxonomy, search is used as a general term
referring to multiple user goals, including lookup, browse,
locate, and explore. We contextualize each of these within the
Colleges condition of our visualization:

• lookup (location known, target known): the user knows
exactly which college they are looking for and exactly where
it is in the visualization

• browse (location known, target unknown): the user has
characteristics of a college that they are interested in (ex:
high tuition) guiding them to a region of the visualization,
but does not have any specific college in mind.

• locate (location unknown, target known): the user is looking
for information about a specific college, but does not know
where in the visualization that college might be represented.

• explore (location unknown, target unknown): the user is not
looking for any particular college or characteristic.

While the visualizations we tested largely support browse
and explore, they fall short in locate goals without search.
Because of the density of the data, labels are supported through
interaction mechanisms rather than natively appearing on the
page. As a result, finding a specific college, industry, planet,
or company can be challenging.



Figure 5. Some participants used text-based search to explore the data
in creative ways. In one case, a participant noticed that some planets had
common substringsin their names. They arrived at the query "hat", and
produced a finding about common data features among "hat" planets.
("HAT" happens to be the organization that discovered these planets.)

Search Enables Creative Exploration of Unfamiliar Data
The flexible nature of linking text-based queries to visual en-
codings (such as highlighting) in visualizations enables some
users to investigate data in surprising ways. For example, in
the Exoplanets condition, one participant used partial queries
to investigate relationships in the naming schemes of the plan-
ets. As shown in Figure 5, the participant appears to have
arrived at a query of ‘hat’ - a naming prefix of the exoplan-
ets discovered by the Hungarian Automated Telescope (HAT)
network. Analysis of interaction logs shows that this partic-
ipant began exploration by mousing over planets at random,
until noticing that some had this common prefix. In the free-
response section, the participant described their strategy:

I compared different properties of the different groups of
planets with similar names to those with different names

Queries like this demonstrate a possible ancillary benefit of
text-based search: partial queries across data fields allow peo-
ple to segment unfamiliar data in novel ways, even if the data
is unfamiliar to them.

Keyboard-based Features for Accessibility
In addition to exploration behaviors and strategies, our experi-
mentation with text-based search raised questions of accessi-
bility in visualization. Visualizations can be difficult to interact
with for people with motor deficiencies, i.e. people who can-
not use a mouse to generate precise movements, as interactive
elements may be only a few pixels wide. However, the W3
Standards organization lists extensive accessibility principles
for web designers [12]. Text-based search mechanisms in
visualization, applied at the appropriate scope, increase ac-
cessibility by supporting keyboard based interaction, which
is a key recommendation of W3. While accessibility has not
been addressed broadly in the visualization community, the
results of this study, along with other findings that multi-modal
interaction mechanisms are generally beneficial [37, 13], add
a perspective to this ongoing thread.

LIMITATIONS
Our study of text-based search in visualizations was within
a limited scope in three aspects: (1) data characteristics, (2)
visualization types and (3) user background. First, all the vi-
sualizations used in our study consist of 200-500 data items.
Each data item has at least one key (e.g., industry name in
255Charts), which is used for text-based search. Second, the
visual representation of the visualizations was single view
including all data items, with details revealed by mouseover.

More complex representations such as coordinated multiple
views were not used in this first study. Third, participants of
our study were closer to a general population with diverse back-
grounds, not domain experts. In addition, there are alternative
mechanisms supporting text-based search, such as drop-down
boxes and sliders, which may yield different behavioral results
and raise new design trade-offs. The generalization of our
results beyond these constraints is open to investigation.

The effect of search on comprehension is a likely a delicate
dance in which design, data, target audience, and encoding
interact to nudge its effect on the user. While we investigated
the impact of search in different visualizations, we do not
know the effect of varying choices in the visualization design
space as it relates to search. Future research can build upon
these experiments to investigate increasingly diverse combina-
tions of search and interaction mechanisms to generate clearer
design guidelines (for example, when is search not useful or
harmful?)1.

Finally, the measures we have for understanding the overall
impact of any interaction mechanism still leave a lot to be
desired. In this study, we used a combination of behavior,
open-response, and survey questions to try and understand the
overall impact of search in visualization. However, in a realis-
tic environment in which goals are not prescribed to the user,
they do not always translate cleanly to clear success/failure
outcomes - is the person who found their home institution in
the Colleges condition but visited nothing else less successful
than the person who broadly explores the entire visualization?
More research is needed to understand exactly when a visual-
ization succeeds or fails in the open web environment. Future
work in this area will likely require close collaboration with
practitioners who create visualizations for the masses.

CONCLUSION
Across the web, designers build thousands of data-dense vi-
sualizations for the public to explore and comprehend. Sur-
prisingly, only a very small subset of these visualizations are
accompanied by text-based search mechanisms. While text-
based search has often been used in conjunction with large
datasets for analysts, our results suggest that its inclusion
in everyday visualizations, even those with relatively small
amounts of data, may encourage engagement and support user
information seeking goals that are difficult with other forms
of interaction. Through experiments with five visualizations,
we find that in most visualizations, a majority of users will use
text-based search features if present, and that search can shape
people’s experience and behavior with visualizations. Results
of the experiments also indicate the average participant who
used text-based search engaged with individual data items for
longer, and explored different parts of the data. The results of
these experiments have practical implications for design, and
more broadly serve as a case study in how interactive data vi-
sualizations can be augmented to support diverse information
seeking goals.

1To facilitate future work, all experiment materials, participant
data, and analyses scripts are available online: https://wpivis.
github.io/search-in-vis.

https://wpivis.github.io/search-in-vis
https://wpivis.github.io/search-in-vis
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