From 23727eb49ea71609fc29963b996a68a14fddf79c Mon Sep 17 00:00:00 2001 From: Kimish Patel Date: Wed, 25 Sep 2019 09:52:09 -0700 Subject: [PATCH] Added tesnorizeation for avx2 based gemm. (#3982) * Added tesnorizeation for avx2 based gemm. Summary: Tensorized the same region as avx512. Names produce 16x1 int32 results. Does by doing two sets of AVX2 instructions to do reduction on 8x4 int8 kernel with 1x4 data. Test Plan: on avx2 machine: python tests/python/contrib/test_gemm_avx2_acc32.py Reviewers: Subscribers: Tasks: Tags: * Fix lint errors. Removed commented out code. Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: --- tests/python/contrib/test_gemm_avx2_acc32.py | 94 ++++++++++++++++++++ topi/python/topi/x86/tensor_intrin.py | 94 ++++++++++++++++++++ 2 files changed, 188 insertions(+) create mode 100644 tests/python/contrib/test_gemm_avx2_acc32.py diff --git a/tests/python/contrib/test_gemm_avx2_acc32.py b/tests/python/contrib/test_gemm_avx2_acc32.py new file mode 100644 index 000000000000..b0d50f2454e6 --- /dev/null +++ b/tests/python/contrib/test_gemm_avx2_acc32.py @@ -0,0 +1,94 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +# pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition + +import tvm +import numpy as np +from topi.x86.tensor_intrin import dot_16x1x16_int8_int8_int32_vnni +from topi.x86.tensor_intrin import dot_1x4x16_int8_int8_int32_avx2 + + +def test_avx2_int8_gemm_acc32(): + m = 1024 + n = 1024 + k = 1024 + + X = tvm.placeholder((m, k), name='X', dtype="uint8") + W = tvm.placeholder((n, k), name='W', dtype="int8") + + memory_ops = m * k + n * k + 2 * m * n + gops_per_mm = 2 * m * n * k + + def verify(target="llvm -mcpu=core-avx2"): + if not tvm.module.enabled(target): + print("skip because %s is not enabled..." % target) + return + + ctx = tvm.context(target, 0) + pc = dot_1x4x16_int8_int8_int32_avx2() + ak = tvm.reduce_axis((0, k), name='k') + packedW = tvm.placeholder( + (n // 16, 16 * (k // 4), 4), name='packedW', dtype="int8") + + t_fc = tvm.compute((m, n), lambda i, j: tvm.sum(X[i, ak].astype( + "int32") * packedW[j // 16, (ak // 4) * 16 + j % 16, ak % 4].astype("int32"), axis=ak), name="F") + t_sch = tvm.create_schedule(t_fc.op) + a_x, a_y = t_fc.op.axis + a_k, = t_fc.op.reduce_axis + + a_yo, a_yi = t_sch[t_fc].split(a_y, factor=16) + a_xo, a_xi = t_sch[t_fc].split(a_x, factor=32) + a_ko, a_ki = t_sch[t_fc].split(a_k, factor=4) + a_koo, a_koi = t_sch[t_fc].split(a_ko, factor=4) + t_sch[t_fc].reorder(a_yo, a_xo, a_xi, a_koo, a_koi, a_yi, a_ki) + + t_sch[t_fc].unroll(a_koi) + t_sch[t_fc].tensorize(a_yi, pc) + + t_func = tvm.build(t_sch, [X, packedW, t_fc], target, name="intrinsic") + t_evaluator = t_func.time_evaluator(t_func.entry_name, ctx, number=10) + + # generate the plain data + a_ = np.random.uniform(1, 10, size=(m, k)).astype("uint8") + b_ = np.random.uniform(1, 10, size=(n, k)).astype("int8") + + packW = np.random.uniform(1, 10, size=( + n // 16, 16 * (k // 4), 4)).astype("int8") + # This occurs in pre_compute stage + for r_idx in range(n // 16): + for s_idx in range(16 * (k // 4)): + for t_idx in range(4): + packW[r_idx][s_idx][t_idx] = b_[r_idx * 16 + s_idx % + 16][(s_idx // 16) * 4 + t_idx] + + x = tvm.nd.array(a_, ctx) + w = tvm.nd.array(packW, ctx) + y = tvm.nd.array(np.zeros((m, n), dtype="int32"), ctx) + result = t_evaluator(x, w, y) + + gops_per_sec = gops_per_mm / result.mean / 1e9 + # verify the correctness + tvm.testing.assert_allclose(y.asnumpy(), np.dot(a_, b_.T), rtol=0) + print('Tensorization: running time: {:.3f} ms, {:.2f} Gops/s'.format( + result.mean * 1000, gops_per_sec)) + + verify() + + +if __name__ == "__main__": + test_avx2_int8_gemm_acc32() + pass diff --git a/topi/python/topi/x86/tensor_intrin.py b/topi/python/topi/x86/tensor_intrin.py index cba00c023f89..92db36459770 100644 --- a/topi/python/topi/x86/tensor_intrin.py +++ b/topi/python/topi/x86/tensor_intrin.py @@ -275,3 +275,97 @@ def _instr(index): with tvm.build_config(offset_factor=1, partition_const_loop=True): return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer}) + + +def dot_1x4x16_int8_int8_int32_avx2(): + """ + Int8 dot product by every 4 elements using x86 AVX2 instructions. + This function takes two arrays of int8 datatype -- data[4] and + kernel[16][4] -- and computes a dot product of data[4] with every + 4 elements of kernels, resulting in output[16] of int32 datatype. + The pseudo code is as follows. + .. code-block:: c + void dot_1x4x16_int8_int8_int32(int8 data[4], int8 kernel[16][4], + int32 output[16]){ + for (int i = 0; i < 16; i++){ + out[i] = 0; + for (int k = 0; k < 4; k++){ + out[i] += data[k] * kernel[i][k] + } + } + } + + Physically, the kernel array sits in two AVX2 vector registers and + the data[4] is broadcasted to AVX2 vector register. This + function returns a TensorIntrin that can be used to tensorize + a schedule. + + Returns + ------- + intrin : TensorIntrin + The AVX2 int8 TensorIntrin that can be used in tensorizing schedule + """ + + int32_lanes = 16 # 16 int32 lanes in AVX2 + num_int8_elements = 4 # 4 int8 elements in int32 + data = tvm.placeholder((num_int8_elements,), dtype='uint8', name='data') + kernel = tvm.placeholder((int32_lanes, num_int8_elements), dtype='int8', name='kernel') + k = tvm.reduce_axis((0, num_int8_elements), name='k') + C = tvm.compute((int32_lanes,), + lambda i: tvm.sum(data[k].astype('int32') * + kernel[i, k].astype('int32'), + axis=k), + name="C") + + a_buffer = tvm.decl_buffer(data.shape, dtype='uint8', name="a_buffer", + offset_factor=1, + strides=[1]) + b_buffer = tvm.decl_buffer(kernel.shape, dtype='int8', name="b_buffer", + offset_factor=1, + strides=[tvm.var('ldw'), 1]) + + def _intrin_func(ins, outs): + def _instr(index): + ib = tvm.ir_builder.create() + if index == 1: + ib.emit(outs[0].vstore(0, tvm.const(0, 'int32x16'))) + return ib.get() + + a_int8 = ins[0].vload([0], "uint8x4") + re_int32 = tvm.call_pure_intrin('int32', 'reinterpret', a_int8) + vec_ai32 = re_int32.astype('int32x8') + vec_a = tvm.call_pure_intrin('int8x32', 'reinterpret', vec_ai32) + vec_b_0 = ins[1].vload([0, 0], "int8x32") + vec_b_1 = ins[1].vload([8, 0], "int8x32") + vec_one = tvm.const(1, "int16x16") + pair_reduction_0 = tvm.call_llvm_intrin('int16x16', + 'llvm.x86.avx2.pmadd.ub.sw', + tvm.const(0, 'uint32'), + vec_a, vec_b_0) + quad_reduction_0 = tvm.call_llvm_intrin('int32x8', + 'llvm.x86.avx2.pmadd.wd', + tvm.const(0, 'uint32'), + pair_reduction_0, vec_one) + pair_reduction_1 = tvm.call_llvm_intrin('int16x16', + 'llvm.x86.avx2.pmadd.ub.sw', + tvm.const(0, 'uint32'), + vec_a, vec_b_1) + quad_reduction_1 = tvm.call_llvm_intrin('int32x8', + 'llvm.x86.avx2.pmadd.wd', + tvm.const(0, 'uint32'), + pair_reduction_1, vec_one) + if index == 0: + ib.emit(outs[0].vstore([0], quad_reduction_0)) + ib.emit(outs[0].vstore([8], quad_reduction_1)) + else: + ib.emit(outs[0].vstore([0], quad_reduction_0 + \ + outs[0].vload([0], 'int32x8'))) + ib.emit(outs[0].vstore([8], quad_reduction_1 + \ + outs[0].vload([8], 'int32x8'))) + return ib.get() + + # body, reset, update + return _instr(0), _instr(1), _instr(2) + + with tvm.build_config(offset_factor=1, partition_const_loop=True): + return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer})