diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index a81885b8a9184..5afe3730210e8 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -159,6 +159,15 @@ steps: #mirror_hardwares: [amd] command: pytest -v -s quantization +- label: Tracing Test + commands: + - "pip install \ + opentelemetry-sdk \ + opentelemetry-api \ + opentelemetry-exporter-otlp \ + opentelemetry-semantic-conventions-ai" + - pytest -v -s tracing + - label: Benchmarks working_dir: "/vllm-workspace/.buildkite" mirror_hardwares: [amd] diff --git a/benchmarks/benchmark_latency.py b/benchmarks/benchmark_latency.py index 767afd21aeacf..98e0be2779922 100644 --- a/benchmarks/benchmark_latency.py +++ b/benchmarks/benchmark_latency.py @@ -20,26 +20,29 @@ def main(args: argparse.Namespace): # NOTE(woosuk): If the request cannot be processed in a single batch, # the engine will automatically process the request in multiple batches. - llm = LLM(model=args.model, - speculative_model=args.speculative_model, - num_speculative_tokens=args.num_speculative_tokens, - tokenizer=args.tokenizer, - quantization=args.quantization, - tensor_parallel_size=args.tensor_parallel_size, - trust_remote_code=args.trust_remote_code, - dtype=args.dtype, - enforce_eager=args.enforce_eager, - kv_cache_dtype=args.kv_cache_dtype, - quantization_param_path=args.quantization_param_path, - device=args.device, - ray_workers_use_nsight=args.ray_workers_use_nsight, - use_v2_block_manager=args.use_v2_block_manager, - enable_chunked_prefill=args.enable_chunked_prefill, - download_dir=args.download_dir, - block_size=args.block_size, - gpu_memory_utilization=args.gpu_memory_utilization, - load_format=args.load_format, - distributed_executor_backend=args.distributed_executor_backend) + llm = LLM( + model=args.model, + speculative_model=args.speculative_model, + num_speculative_tokens=args.num_speculative_tokens, + tokenizer=args.tokenizer, + quantization=args.quantization, + tensor_parallel_size=args.tensor_parallel_size, + trust_remote_code=args.trust_remote_code, + dtype=args.dtype, + enforce_eager=args.enforce_eager, + kv_cache_dtype=args.kv_cache_dtype, + quantization_param_path=args.quantization_param_path, + device=args.device, + ray_workers_use_nsight=args.ray_workers_use_nsight, + use_v2_block_manager=args.use_v2_block_manager, + enable_chunked_prefill=args.enable_chunked_prefill, + download_dir=args.download_dir, + block_size=args.block_size, + gpu_memory_utilization=args.gpu_memory_utilization, + load_format=args.load_format, + distributed_executor_backend=args.distributed_executor_backend, + otlp_traces_endpoint=args.otlp_traces_endpoint, + ) sampling_params = SamplingParams( n=args.n, @@ -254,5 +257,10 @@ def run_to_completion(profile_dir: Optional[str] = None): help='Backend to use for distributed serving. When more than 1 GPU ' 'is used, will be automatically set to "ray" if installed ' 'or "mp" (multiprocessing) otherwise.') + parser.add_argument( + '--otlp-traces-endpoint', + type=str, + default=None, + help='Target URL to which OpenTelemetry traces will be sent.') args = parser.parse_args() main(args) diff --git a/examples/production_monitoring/Otel.md b/examples/production_monitoring/Otel.md new file mode 100644 index 0000000000000..1449442273c7a --- /dev/null +++ b/examples/production_monitoring/Otel.md @@ -0,0 +1,82 @@ +# Setup OpenTelemetry POC + +1. Install OpenTelemetry packages: + ``` + pip install \ + opentelemetry-sdk \ + opentelemetry-api \ + opentelemetry-exporter-otlp \ + opentelemetry-semantic-conventions-ai + ``` + +1. Start Jaeger in a docker container: + ``` + # From: https://www.jaegertracing.io/docs/1.57/getting-started/ + docker run --rm --name jaeger \ + -e COLLECTOR_ZIPKIN_HOST_PORT=:9411 \ + -p 6831:6831/udp \ + -p 6832:6832/udp \ + -p 5778:5778 \ + -p 16686:16686 \ + -p 4317:4317 \ + -p 4318:4318 \ + -p 14250:14250 \ + -p 14268:14268 \ + -p 14269:14269 \ + -p 9411:9411 \ + jaegertracing/all-in-one:1.57 + ``` + +1. In a new shell, export Jaeger IP: + ``` + export JAEGER_IP=$(docker inspect --format '{{ .NetworkSettings.IPAddress }}' jaeger) + export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=grpc://$JAEGER_IP:4317 + ``` + Then set vLLM's service name for OpenTelemetry, enable insecure connections to Jaeger and run vLLM: + ``` + export OTEL_SERVICE_NAME="vllm-server" + export OTEL_EXPORTER_OTLP_TRACES_INSECURE=true + python -m vllm.entrypoints.openai.api_server --model="facebook/opt-125m" --otlp-traces-endpoint="$OTEL_EXPORTER_OTLP_TRACES_ENDPOINT" + ``` + +1. In a new shell, send requests with trace context from a dummy client + ``` + export JAEGER_IP=$(docker inspect --format '{{ .NetworkSettings.IPAddress }}' jaeger) + export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=grpc://$JAEGER_IP:4317 + export OTEL_EXPORTER_OTLP_TRACES_INSECURE=true + export OTEL_SERVICE_NAME="client-service" + python dummy_client.py + ``` + +1. Open Jaeger webui: http://localhost:16686/ + + In the search pane, select `vllm-server` service and hit `Find Traces`. You should get a list of traces, one for each request. + ![Traces](https://i.imgur.com/GYHhFjo.png) + +1. Clicking on a trace will show its spans and their tags. In this demo, each trace has 2 spans. One from the dummy client containing the prompt text and one from vLLM containing metadata about the request. +![Spans details](https://i.imgur.com/OPf6CBL.png) + +## Exporter Protocol +OpenTelemetry supports either `grpc` or `http/protobuf` as the transport protocol for trace data in the exporter. +By default, `grpc` is used. To set `http/protobuf` as the protocol, configure the `OTEL_EXPORTER_OTLP_TRACES_PROTOCOL` environment variable as follows: +``` +export OTEL_EXPORTER_OTLP_TRACES_PROTOCOL=http/protobuf +export OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=http://$JAEGER_IP:4318/v1/traces +python -m vllm.entrypoints.openai.api_server --model="facebook/opt-125m" --otlp-traces-endpoint="$OTEL_EXPORTER_OTLP_TRACES_ENDPOINT" +``` + +## Instrumentation of FastAPI +OpenTelemetry allows automatic instrumentation of FastAPI. +1. Install the instrumentation library + ``` + pip install opentelemetry-instrumentation-fastapi + ``` + +1. Run vLLM with `opentelemetry-instrument` + ``` + opentelemetry-instrument python -m vllm.entrypoints.openai.api_server --model="facebook/opt-125m" + ``` + +1. Send a request to vLLM and find its trace in Jaeger. It should contain spans from FastAPI. + +![FastAPI Spans](https://i.imgur.com/hywvoOJ.png) \ No newline at end of file diff --git a/examples/production_monitoring/dummy_client.py b/examples/production_monitoring/dummy_client.py new file mode 100644 index 0000000000000..b1a2b3c3c4aaf --- /dev/null +++ b/examples/production_monitoring/dummy_client.py @@ -0,0 +1,35 @@ +import requests +from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import ( + OTLPSpanExporter) +from opentelemetry.sdk.trace import TracerProvider +from opentelemetry.sdk.trace.export import (BatchSpanProcessor, + ConsoleSpanExporter) +from opentelemetry.trace import SpanKind, set_tracer_provider +from opentelemetry.trace.propagation.tracecontext import ( + TraceContextTextMapPropagator) + +trace_provider = TracerProvider() +set_tracer_provider(trace_provider) + +trace_provider.add_span_processor(BatchSpanProcessor(OTLPSpanExporter())) +trace_provider.add_span_processor(BatchSpanProcessor(ConsoleSpanExporter())) + +tracer = trace_provider.get_tracer("dummy-client") + +url = "http://localhost:8000/v1/completions" +with tracer.start_as_current_span("client-span", kind=SpanKind.CLIENT) as span: + prompt = "San Francisco is a" + span.set_attribute("prompt", prompt) + headers = {} + TraceContextTextMapPropagator().inject(headers) + payload = { + "model": "facebook/opt-125m", + "prompt": prompt, + "max_tokens": 10, + "best_of": 20, + "n": 3, + "use_beam_search": "true", + "temperature": 0.0, + # "stream": True, + } + response = requests.post(url, headers=headers, json=payload) diff --git a/tests/tracing/__init__.py b/tests/tracing/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/tests/tracing/test_tracing.py b/tests/tracing/test_tracing.py new file mode 100644 index 0000000000000..2f8f62cf2d1e4 --- /dev/null +++ b/tests/tracing/test_tracing.py @@ -0,0 +1,116 @@ +import os +import threading +from concurrent import futures +from typing import Callable, Dict, Iterable, Literal + +import grpc +import pytest +from opentelemetry.proto.collector.trace.v1.trace_service_pb2 import ( + ExportTraceServiceResponse) +from opentelemetry.proto.collector.trace.v1.trace_service_pb2_grpc import ( + TraceServiceServicer, add_TraceServiceServicer_to_server) +from opentelemetry.proto.common.v1.common_pb2 import AnyValue, KeyValue +from opentelemetry.sdk.environment_variables import ( + OTEL_EXPORTER_OTLP_TRACES_INSECURE) + +from vllm import LLM, SamplingParams +from vllm.tracing import SpanAttributes + +FAKE_TRACE_SERVER_ADDRESS = "localhost:4317" + +FieldName = Literal['bool_value', 'string_value', 'int_value', 'double_value', + 'array_value'] + + +def decode_value(value: AnyValue): + field_decoders: Dict[FieldName, Callable] = { + "bool_value": (lambda v: v.bool_value), + "string_value": (lambda v: v.string_value), + "int_value": (lambda v: v.int_value), + "double_value": (lambda v: v.double_value), + "array_value": + (lambda v: [decode_value(item) for item in v.array_value.values]), + } + for field, decoder in field_decoders.items(): + if value.HasField(field): + return decoder(value) + raise ValueError(f"Couldn't decode value: {value}") + + +def decode_attributes(attributes: Iterable[KeyValue]): + return {kv.key: decode_value(kv.value) for kv in attributes} + + +class FakeTraceService(TraceServiceServicer): + + def __init__(self): + self.request = None + self.evt = threading.Event() + + def Export(self, request, context): + self.request = request + self.evt.set() + return ExportTraceServiceResponse() + + +@pytest.fixture +def trace_service(): + """Fixture to set up a fake gRPC trace service""" + server = grpc.server(futures.ThreadPoolExecutor(max_workers=1)) + service = FakeTraceService() + add_TraceServiceServicer_to_server(service, server) + server.add_insecure_port(FAKE_TRACE_SERVER_ADDRESS) + server.start() + + yield service + + server.stop(None) + + +def test_traces(trace_service): + os.environ[OTEL_EXPORTER_OTLP_TRACES_INSECURE] = "true" + + sampling_params = SamplingParams(temperature=0.01, + top_p=0.1, + max_tokens=256) + model = "facebook/opt-125m" + llm = LLM( + model=model, + otlp_traces_endpoint=FAKE_TRACE_SERVER_ADDRESS, + ) + prompts = ["This is a short prompt"] + outputs = llm.generate(prompts, sampling_params=sampling_params) + + timeout = 5 + if not trace_service.evt.wait(timeout): + raise TimeoutError( + f"The fake trace service didn't receive a trace within " + f"the {timeout} seconds timeout") + + attributes = decode_attributes(trace_service.request.resource_spans[0]. + scope_spans[0].spans[0].attributes) + assert attributes.get(SpanAttributes.LLM_RESPONSE_MODEL) == model + assert attributes.get( + SpanAttributes.LLM_REQUEST_ID) == outputs[0].request_id + assert attributes.get( + SpanAttributes.LLM_REQUEST_TEMPERATURE) == sampling_params.temperature + assert attributes.get( + SpanAttributes.LLM_REQUEST_TOP_P) == sampling_params.top_p + assert attributes.get( + SpanAttributes.LLM_REQUEST_MAX_TOKENS) == sampling_params.max_tokens + assert attributes.get( + SpanAttributes.LLM_REQUEST_BEST_OF) == sampling_params.best_of + assert attributes.get(SpanAttributes.LLM_REQUEST_N) == sampling_params.n + assert attributes.get(SpanAttributes.LLM_USAGE_PROMPT_TOKENS) == len( + outputs[0].prompt_token_ids) + completion_tokens = sum(len(o.token_ids) for o in outputs[0].outputs) + assert attributes.get( + SpanAttributes.LLM_USAGE_COMPLETION_TOKENS) == completion_tokens + metrics = outputs[0].metrics + assert attributes.get( + SpanAttributes.LLM_LATENCY_TIME_IN_QUEUE) == metrics.time_in_queue + ttft = metrics.first_token_time - metrics.arrival_time + assert attributes.get( + SpanAttributes.LLM_LATENCY_TIME_TO_FIRST_TOKEN) == ttft + e2e_time = metrics.finished_time - metrics.arrival_time + assert attributes.get(SpanAttributes.LLM_LATENCY_E2E) == e2e_time diff --git a/vllm/config.py b/vllm/config.py index d95faf52db1a0..5de00d7d38d46 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -10,6 +10,7 @@ from vllm.logger import init_logger from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS from vllm.model_executor.models import ModelRegistry +from vllm.tracing import is_otel_installed from vllm.transformers_utils.config import get_config, get_hf_text_config from vllm.utils import (cuda_device_count_stateless, get_cpu_memory, is_cpu, is_hip, is_neuron, is_tpu, is_xpu) @@ -1371,6 +1372,17 @@ def __post_init__(self): f"must be one of {valid_guided_backends}") +@dataclass +class ObservabilityConfig: + """Configuration for observability.""" + otlp_traces_endpoint: Optional[str] = None + + def __post_init__(self): + if not is_otel_installed() and self.otlp_traces_endpoint is not None: + raise ValueError("OpenTelemetry packages must be installed before " + "configuring 'otlp_traces_endpoint'") + + @dataclass(frozen=True) class EngineConfig: """Dataclass which contains all engine-related configuration. This @@ -1387,6 +1399,7 @@ class EngineConfig: vision_language_config: Optional[VisionLanguageConfig] speculative_config: Optional[SpeculativeConfig] decoding_config: Optional[DecodingConfig] + observability_config: Optional[ObservabilityConfig] def __post_init__(self): """Verify configs are valid & consistent with each other. diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index 9d04f1dc557fd..647793a6d5cd1 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -7,8 +7,9 @@ from vllm.config import (CacheConfig, DecodingConfig, DeviceConfig, EngineConfig, LoadConfig, LoRAConfig, ModelConfig, - ParallelConfig, SchedulerConfig, SpeculativeConfig, - TokenizerPoolConfig, VisionLanguageConfig) + ObservabilityConfig, ParallelConfig, SchedulerConfig, + SpeculativeConfig, TokenizerPoolConfig, + VisionLanguageConfig) from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS from vllm.utils import str_to_int_tuple @@ -101,6 +102,8 @@ class EngineArgs: qlora_adapter_name_or_path: Optional[str] = None + otlp_traces_endpoint: Optional[str] = None + def __post_init__(self): if self.tokenizer is None: self.tokenizer = self.model @@ -599,6 +602,13 @@ def add_cli_args( type=str, default=None, help='Name or path of the QLoRA adapter.') + + parser.add_argument( + '--otlp-traces-endpoint', + type=str, + default=None, + help='Target URL to which OpenTelemetry traces will be sent.') + return parser @classmethod @@ -757,6 +767,9 @@ def create_engine_config(self, ) -> EngineConfig: decoding_config = DecodingConfig( guided_decoding_backend=self.guided_decoding_backend) + observability_config = ObservabilityConfig( + otlp_traces_endpoint=self.otlp_traces_endpoint) + if (model_config.get_sliding_window() is not None and scheduler_config.chunked_prefill_enabled and not scheduler_config.use_v2_block_manager): @@ -764,16 +777,19 @@ def create_engine_config(self, ) -> EngineConfig: "Chunked prefill is not supported with sliding window. " "Set --disable-sliding-window to disable sliding window.") - return EngineConfig(model_config=model_config, - cache_config=cache_config, - parallel_config=parallel_config, - scheduler_config=scheduler_config, - device_config=device_config, - lora_config=lora_config, - vision_language_config=vision_language_config, - speculative_config=speculative_config, - load_config=load_config, - decoding_config=decoding_config) + return EngineConfig( + model_config=model_config, + cache_config=cache_config, + parallel_config=parallel_config, + scheduler_config=scheduler_config, + device_config=device_config, + lora_config=lora_config, + vision_language_config=vision_language_config, + speculative_config=speculative_config, + load_config=load_config, + decoding_config=decoding_config, + observability_config=observability_config, + ) @dataclass diff --git a/vllm/engine/async_llm_engine.py b/vllm/engine/async_llm_engine.py index bfef1893ff778..7894fe9b2498e 100644 --- a/vllm/engine/async_llm_engine.py +++ b/vllm/engine/async_llm_engine.py @@ -244,6 +244,9 @@ async def step_async( # Log stats. self.do_log_stats(scheduler_outputs, output) + # Tracing + self.do_tracing(scheduler_outputs) + if not request_outputs: # Stop the execute model loop in parallel workers until there are # more requests to process. This avoids waiting indefinitely in @@ -285,6 +288,7 @@ async def add_request_async( params: Union[SamplingParams, PoolingParams], arrival_time: Optional[float] = None, lora_request: Optional[LoRARequest] = None, + trace_headers: Optional[Dict[str, str]] = None, ) -> None: if lora_request is not None and not self.lora_config: raise ValueError(f"Got lora_request {lora_request} but LoRA is " @@ -301,6 +305,7 @@ async def add_request_async( params=params, arrival_time=arrival_time, lora_request=lora_request, + trace_headers=trace_headers, ) async def check_health_async(self) -> None: @@ -559,6 +564,7 @@ async def add_request( params: Union[SamplingParams, PoolingParams], arrival_time: Optional[float] = None, lora_request: Optional[LoRARequest] = None, + trace_headers: Optional[Dict[str, str]] = None, ) -> AsyncStream: if self.log_requests: if isinstance(inputs, str): @@ -600,6 +606,7 @@ async def add_request( params=params, arrival_time=arrival_time, lora_request=lora_request, + trace_headers=trace_headers, ) return stream @@ -610,6 +617,7 @@ async def generate( sampling_params: SamplingParams, request_id: str, lora_request: Optional[LoRARequest] = None, + trace_headers: Optional[Dict[str, str]] = None, ) -> AsyncIterator[RequestOutput]: """Generate outputs for a request. @@ -624,6 +632,7 @@ async def generate( sampling_params: The sampling parameters of the request. request_id: The unique id of the request. lora_request: LoRA request to use for generation, if any. + trace_headers: OpenTelemetry trace headers. Yields: The output `RequestOutput` objects from the LLMEngine @@ -677,6 +686,7 @@ async def generate( inputs, sampling_params, lora_request=lora_request, + trace_headers=trace_headers, ): yield LLMEngine.validate_output(output, RequestOutput) @@ -686,6 +696,7 @@ async def encode( pooling_params: PoolingParams, request_id: str, lora_request: Optional[LoRARequest] = None, + trace_headers: Optional[Dict[str, str]] = None, ) -> AsyncIterator[EmbeddingRequestOutput]: """Generate outputs for a request from an embedding model. @@ -700,6 +711,7 @@ async def encode( pooling_params: The pooling parameters of the request. request_id: The unique id of the request. lora_request: LoRA request to use for generation, if any. + trace_headers: OpenTelemetry trace headers. Yields: The output `EmbeddingRequestOutput` objects from the LLMEngine @@ -751,6 +763,7 @@ async def encode( inputs, pooling_params, lora_request=lora_request, + trace_headers=trace_headers, ): yield LLMEngine.validate_output(output, EmbeddingRequestOutput) @@ -761,6 +774,7 @@ async def _process_request( params: Union[SamplingParams, PoolingParams], *, lora_request: Optional[LoRARequest] = None, + trace_headers: Optional[Dict[str, str]] = None, ) -> AsyncIterator[Union[RequestOutput, EmbeddingRequestOutput]]: """Common logic to process requests with SamplingParams or PoolingParams.""" @@ -781,6 +795,7 @@ async def _process_request( params, arrival_time=arrival_time, lora_request=lora_request, + trace_headers=trace_headers, ) try: @@ -860,3 +875,10 @@ async def check_health(self) -> None: else: await self.engine.check_health_async() logger.debug("Health check took %fs", time.perf_counter() - t) + + async def is_tracing_enabled(self) -> bool: + if self.engine_use_ray: + return await self.engine.is_tracing_enabled.remote( # type: ignore + ) + else: + return self.engine.is_tracing_enabled() diff --git a/vllm/engine/llm_engine.py b/vllm/engine/llm_engine.py index eed9a17e477f3..75d417f525e3a 100644 --- a/vllm/engine/llm_engine.py +++ b/vllm/engine/llm_engine.py @@ -1,14 +1,14 @@ import time from contextlib import contextmanager -from typing import TYPE_CHECKING, ClassVar, Iterable, List, Optional +from typing import TYPE_CHECKING, ClassVar, Dict, Iterable, List, Optional from typing import Sequence as GenericSequence from typing import Set, Type, TypeVar, Union from transformers import GenerationConfig, PreTrainedTokenizer from vllm.config import (CacheConfig, DecodingConfig, DeviceConfig, LoadConfig, - LoRAConfig, ModelConfig, ParallelConfig, - SchedulerConfig, SpeculativeConfig, + LoRAConfig, ModelConfig, ObservabilityConfig, + ParallelConfig, SchedulerConfig, SpeculativeConfig, VisionLanguageConfig) from vllm.core.scheduler import (ScheduledSequenceGroup, Scheduler, SchedulerOutputs) @@ -31,6 +31,8 @@ PoolerOutput, SamplerOutput, Sequence, SequenceGroup, SequenceGroupMetadata, SequenceStatus) +from vllm.tracing import (SpanAttributes, SpanKind, extract_trace_context, + init_tracer) from vllm.transformers_utils.detokenizer import Detokenizer from vllm.transformers_utils.tokenizer_group import (BaseTokenizerGroup, get_tokenizer_group) @@ -154,6 +156,7 @@ def __init__( vision_language_config: Optional[VisionLanguageConfig], speculative_config: Optional[SpeculativeConfig], decoding_config: Optional[DecodingConfig], + observability_config: Optional[ObservabilityConfig], executor_class: Type[ExecutorBase], log_stats: bool, usage_context: UsageContext = UsageContext.ENGINE_CONTEXT, @@ -168,7 +171,8 @@ def __init__( "disable_custom_all_reduce=%s, quantization=%s, " "enforce_eager=%s, kv_cache_dtype=%s, " "quantization_param_path=%s, device_config=%s, " - "decoding_config=%r, seed=%d, served_model_name=%s)", + "decoding_config=%r, observability_config=%r, " + "seed=%d, served_model_name=%s)", VLLM_VERSION, model_config.model, speculative_config, @@ -192,6 +196,7 @@ def __init__( model_config.quantization_param_path, device_config.device, decoding_config, + observability_config, model_config.seed, model_config.served_model_name, ) @@ -207,6 +212,8 @@ def __init__( self.speculative_config = speculative_config self.load_config = load_config self.decoding_config = decoding_config or DecodingConfig() + self.observability_config = observability_config or ObservabilityConfig( + ) self.log_stats = log_stats if not self.model_config.skip_tokenizer_init: @@ -288,6 +295,12 @@ def __init__( max_model_len=self.model_config.max_model_len) self.stat_logger.info("cache_config", self.cache_config) + self.tracer = None + if self.observability_config.otlp_traces_endpoint: + self.tracer = init_tracer( + "vllm.llm_engine", + self.observability_config.otlp_traces_endpoint) + # Create sequence output processor, e.g. for beam search or # speculative decoding. self.output_processor = ( @@ -444,6 +457,7 @@ def _add_processed_request( params: Union[SamplingParams, PoolingParams], arrival_time: float, lora_request: Optional[LoRARequest], + trace_headers: Optional[Dict[str, str]] = None, ) -> None: # Create the sequences. block_size = self.cache_config.block_size @@ -461,6 +475,7 @@ def _add_processed_request( params, arrival_time=arrival_time, lora_request=lora_request, + trace_headers=trace_headers, ) elif isinstance(params, PoolingParams): seq_group = self._create_sequence_group_with_pooling( @@ -507,6 +522,7 @@ def add_request( params: Union[SamplingParams, PoolingParams], arrival_time: Optional[float] = None, lora_request: Optional[LoRARequest] = None, + trace_headers: Optional[Dict[str, str]] = None, ) -> None: """Add a request to the engine's request pool. @@ -524,6 +540,7 @@ def add_request( :class:`~vllm.PoolingParams` for pooling. arrival_time: The arrival time of the request. If None, we use the current monotonic time. + trace_headers: OpenTelemetry trace headers. Details: - Set arrival_time to the current time if it is None. @@ -565,6 +582,7 @@ def add_request( params=params, arrival_time=arrival_time, lora_request=lora_request, + trace_headers=trace_headers, ) def _create_sequence_group_with_sampling( @@ -574,6 +592,7 @@ def _create_sequence_group_with_sampling( sampling_params: SamplingParams, arrival_time: float, lora_request: Optional[LoRARequest], + trace_headers: Optional[Dict[str, str]] = None, ) -> SequenceGroup: """Creates a SequenceGroup with SamplingParams.""" max_logprobs = self.get_model_config().max_logprobs @@ -595,11 +614,14 @@ def _create_sequence_group_with_sampling( self.generation_config_fields) # Create the sequence group. - seq_group = SequenceGroup(request_id=request_id, - seqs=[seq], - arrival_time=arrival_time, - sampling_params=sampling_params, - lora_request=lora_request) + seq_group = SequenceGroup( + request_id=request_id, + seqs=[seq], + arrival_time=arrival_time, + sampling_params=sampling_params, + lora_request=lora_request, + trace_headers=trace_headers, + ) return seq_group @@ -793,6 +815,9 @@ def step(self) -> List[Union[RequestOutput, EmbeddingRequestOutput]]: # Log stats. self.do_log_stats(scheduler_outputs, output) + # Tracing + self.do_tracing(scheduler_outputs) + if not request_outputs: # Stop the execute model loop in parallel workers until there are # more requests to process. This avoids waiting indefinitely in @@ -986,3 +1011,62 @@ def list_loras(self) -> Set[int]: def check_health(self) -> None: self.model_executor.check_health() + + def is_tracing_enabled(self) -> bool: + return self.tracer is not None + + def do_tracing(self, scheduler_outputs: SchedulerOutputs) -> None: + if self.tracer is None: + return + + for scheduled_seq_group in scheduler_outputs.scheduled_seq_groups: + seq_group = scheduled_seq_group.seq_group + if seq_group.is_finished(): + self.create_trace_span(seq_group) + + def create_trace_span(self, seq_group: SequenceGroup) -> None: + if self.tracer is None or seq_group.sampling_params is None: + return + arrival_time_nano_seconds = int(seq_group.metrics.arrival_time * 1e9) + + trace_context = extract_trace_context(seq_group.trace_headers) + + with self.tracer.start_as_current_span( + "llm_request", + kind=SpanKind.SERVER, + context=trace_context, + start_time=arrival_time_nano_seconds) as seq_span: + metrics = seq_group.metrics + ttft = metrics.first_token_time - metrics.arrival_time + e2e_time = metrics.finished_time - metrics.arrival_time + # attribute names are based on + # https://github.com/open-telemetry/semantic-conventions/blob/main/docs/gen-ai/llm-spans.md + seq_span.set_attribute(SpanAttributes.LLM_RESPONSE_MODEL, + self.model_config.model) + seq_span.set_attribute(SpanAttributes.LLM_REQUEST_ID, + seq_group.request_id) + seq_span.set_attribute(SpanAttributes.LLM_REQUEST_TEMPERATURE, + seq_group.sampling_params.temperature) + seq_span.set_attribute(SpanAttributes.LLM_REQUEST_TOP_P, + seq_group.sampling_params.top_p) + seq_span.set_attribute(SpanAttributes.LLM_REQUEST_MAX_TOKENS, + seq_group.sampling_params.max_tokens) + seq_span.set_attribute(SpanAttributes.LLM_REQUEST_BEST_OF, + seq_group.sampling_params.best_of) + seq_span.set_attribute(SpanAttributes.LLM_REQUEST_N, + seq_group.sampling_params.n) + seq_span.set_attribute(SpanAttributes.LLM_USAGE_NUM_SEQUENCES, + seq_group.num_seqs()) + seq_span.set_attribute(SpanAttributes.LLM_USAGE_PROMPT_TOKENS, + len(seq_group.prompt_token_ids)) + seq_span.set_attribute( + SpanAttributes.LLM_USAGE_COMPLETION_TOKENS, + sum([ + seq.get_output_len() + for seq in seq_group.get_finished_seqs() + ])) + seq_span.set_attribute(SpanAttributes.LLM_LATENCY_TIME_IN_QUEUE, + metrics.time_in_queue) + seq_span.set_attribute( + SpanAttributes.LLM_LATENCY_TIME_TO_FIRST_TOKEN, ttft) + seq_span.set_attribute(SpanAttributes.LLM_LATENCY_E2E, e2e_time) diff --git a/vllm/entrypoints/openai/serving_chat.py b/vllm/entrypoints/openai/serving_chat.py index 76940612496a0..744e1d94511b3 100644 --- a/vllm/entrypoints/openai/serving_chat.py +++ b/vllm/entrypoints/openai/serving_chat.py @@ -31,6 +31,8 @@ get_full_image_text_prompt) from vllm.outputs import RequestOutput from vllm.sequence import Logprob +from vllm.tracing import (contains_trace_headers, extract_trace_headers, + log_tracing_disabled_warning) from vllm.utils import random_uuid logger = init_logger(__name__) @@ -267,11 +269,20 @@ async def create_chat_completion( if image_data is not None: inputs["multi_modal_data"] = image_data + is_tracing_enabled = await self.engine.is_tracing_enabled() + trace_headers = None + if is_tracing_enabled and raw_request: + trace_headers = extract_trace_headers(raw_request.headers) + if not is_tracing_enabled and raw_request and contains_trace_headers( + raw_request.headers): + log_tracing_disabled_warning() + result_generator = self.engine.generate( inputs, sampling_params, request_id, lora_request, + trace_headers=trace_headers, ) # Streaming response if request.stream: diff --git a/vllm/entrypoints/openai/serving_completion.py b/vllm/entrypoints/openai/serving_completion.py index 64671e21a724d..c775fa6daa739 100644 --- a/vllm/entrypoints/openai/serving_completion.py +++ b/vllm/entrypoints/openai/serving_completion.py @@ -24,6 +24,8 @@ get_guided_decoding_logits_processor) from vllm.outputs import RequestOutput from vllm.sequence import Logprob +from vllm.tracing import (contains_trace_headers, extract_trace_headers, + log_tracing_disabled_warning) from vllm.utils import merge_async_iterators, random_uuid logger = init_logger(__name__) @@ -125,6 +127,14 @@ async def create_completion(self, request: CompletionRequest, truncate_prompt_tokens) prompt_ids, prompt_text = prompt_formats + is_tracing_enabled = await self.engine.is_tracing_enabled() + trace_headers = None + if is_tracing_enabled: + trace_headers = extract_trace_headers(raw_request.headers) + if not is_tracing_enabled and contains_trace_headers( + raw_request.headers): + log_tracing_disabled_warning() + generator = self.engine.generate( { "prompt": prompt_text, @@ -133,6 +143,7 @@ async def create_completion(self, request: CompletionRequest, sampling_params, f"{request_id}-{i}", lora_request=lora_request, + trace_headers=trace_headers, ) generators.append(generator) diff --git a/vllm/sequence.py b/vllm/sequence.py index 54243bfb1e913..38d3349f2ab41 100644 --- a/vllm/sequence.py +++ b/vllm/sequence.py @@ -414,6 +414,7 @@ class SequenceGroup: for an embedding model. encoder_seq: Optional, the single encoder sequence. Should be None unless you are working with an encoder/decoder model. + trace_headers: OpenTelemetry trace headers. """ def __init__( @@ -426,6 +427,7 @@ def __init__( embeddings: Optional[List[float]] = None, pooling_params: Optional[PoolingParams] = None, encoder_seq: Optional[Sequence] = None, + trace_headers: Optional[Dict[str, str]] = None, ) -> None: self.request_id = request_id self.seqs_dict = {seq.seq_id: seq for seq in seqs} @@ -441,6 +443,7 @@ def __init__( self.embeddings = embeddings self.pooling_params = pooling_params self.encoder_seq = encoder_seq + self.trace_headers = trace_headers @property def prompt(self) -> Optional[str]: diff --git a/vllm/tracing.py b/vllm/tracing.py new file mode 100644 index 0000000000000..ba6732cab68f2 --- /dev/null +++ b/vllm/tracing.py @@ -0,0 +1,104 @@ +import os +from typing import Mapping, Optional + +from vllm.logger import init_logger +from vllm.utils import run_once + +TRACE_HEADERS = ["traceparent", "tracestate"] + +logger = init_logger(__name__) + +_is_otel_installed = False +try: + from opentelemetry.context.context import Context + from opentelemetry.sdk.environment_variables import ( + OTEL_EXPORTER_OTLP_TRACES_PROTOCOL) + from opentelemetry.sdk.trace import TracerProvider + from opentelemetry.sdk.trace.export import BatchSpanProcessor + from opentelemetry.semconv.ai import SpanAttributes as BaseSpanAttributes + from opentelemetry.trace import SpanKind, Tracer, set_tracer_provider + from opentelemetry.trace.propagation.tracecontext import ( + TraceContextTextMapPropagator) + _is_otel_installed = True +except ImportError: + + class Context: # type: ignore + pass + + class BaseSpanAttributes: # type: ignore + pass + + class SpanKind: # type: ignore + pass + + class Tracer: # type: ignore + pass + + +def is_otel_installed() -> bool: + return _is_otel_installed + + +def init_tracer(instrumenting_module_name: str, + otlp_traces_endpoint: str) -> Optional[Tracer]: + assert is_otel_installed(), ("OpenTelemetry packages must be installed " + "prior to initializing a tracer") + trace_provider = TracerProvider() + + span_exporter = get_span_exporter(otlp_traces_endpoint) + trace_provider.add_span_processor(BatchSpanProcessor(span_exporter)) + set_tracer_provider(trace_provider) + + tracer = trace_provider.get_tracer(instrumenting_module_name) + return tracer + + +def get_span_exporter(endpoint): + protocol = os.environ.get(OTEL_EXPORTER_OTLP_TRACES_PROTOCOL, "grpc") + if protocol == "grpc": + from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import ( + OTLPSpanExporter) + elif protocol == "http/protobuf": + from opentelemetry.exporter.otlp.proto.http.trace_exporter import ( + OTLPSpanExporter) + else: + raise ValueError( + f"Unsupported OTLP protocol '{protocol}' is configured") + + return OTLPSpanExporter(endpoint=endpoint) + + +def extract_trace_context( + headers: Optional[Mapping[str, str]]) -> Optional[Context]: + if is_otel_installed(): + headers = headers or {} + return TraceContextTextMapPropagator().extract(headers) + else: + return None + + +def extract_trace_headers(headers: Mapping[str, str]) -> Mapping[str, str]: + + return {h: headers[h] for h in TRACE_HEADERS if h in headers} + + +class SpanAttributes(BaseSpanAttributes): + # The following span attribute names are added here because they are missing + # from the Semantic Conventions for LLM. + LLM_REQUEST_ID = "gen_ai.request.id" + LLM_REQUEST_BEST_OF = "gen_ai.request.best_of" + LLM_REQUEST_N = "gen_ai.request.n" + LLM_USAGE_NUM_SEQUENCES = "gen_ai.usage.num_sequences" + LLM_LATENCY_TIME_IN_QUEUE = "gen_ai.latency.time_in_queue" + LLM_LATENCY_TIME_TO_FIRST_TOKEN = "gen_ai.latency.time_to_first_token" + LLM_LATENCY_E2E = "gen_ai.latency.e2e" + + +def contains_trace_headers(headers: Mapping[str, str]) -> bool: + return any(h in headers for h in TRACE_HEADERS) + + +@run_once +def log_tracing_disabled_warning() -> None: + logger.warning( + "Received a request with trace context but tracing is disabled") diff --git a/vllm/utils.py b/vllm/utils.py index 1adfa9218c047..ffe921e650aaa 100644 --- a/vllm/utils.py +++ b/vllm/utils.py @@ -763,3 +763,15 @@ def cuda_device_count_stateless() -> int: # after https://github.com/pytorch/pytorch/pull/122815 is released. return _cuda_device_count_stateless(envs.CUDA_VISIBLE_DEVICES) + + +#From: https://stackoverflow.com/a/4104188/2749989 +def run_once(f): + + def wrapper(*args, **kwargs) -> Any: + if not wrapper.has_run: # type: ignore[attr-defined] + wrapper.has_run = True # type: ignore[attr-defined] + return f(*args, **kwargs) + + wrapper.has_run = False # type: ignore[attr-defined] + return wrapper