1010from tqdm import tqdm
1111
1212import vllm .envs as envs
13+ from vllm .distributed .parallel_state import get_dp_group
1314from vllm .model_executor .layers .fused_moe .deep_gemm_moe import DeepGemmExperts
1415from vllm .model_executor .layers .fused_moe .deep_gemm_utils import (
1516 compute_aligned_M , deep_gemm_block_shape )
@@ -131,11 +132,9 @@ def _deepgemm_fp8_gemm_nt_warmup(w: torch.Tensor, ws: torch.Tensor,
131132GROUPED_FP8_GEMM_NT_CONTIGUOUS_WARMUP_CACHE : set [torch .Size ] = set ()
132133
133134
134- def _deepgemm_grouped_fp8_gemm_nt_contiguous_warmup (w1 : torch .Tensor ,
135- w2 : torch .Tensor ,
136- w1_scale : torch .Tensor ,
137- w2_scale : torch .Tensor ,
138- num_topk : int ):
135+ def _deepgemm_grouped_fp8_gemm_nt_contiguous_warmup (
136+ w1 : torch .Tensor , w2 : torch .Tensor , w1_scale : torch .Tensor ,
137+ w2_scale : torch .Tensor , num_topk : int , max_tokens : int ):
139138 if (w1 .size () in GROUPED_FP8_GEMM_NT_CONTIGUOUS_WARMUP_CACHE
140139 and w2 .size () in GROUPED_FP8_GEMM_NT_CONTIGUOUS_WARMUP_CACHE ):
141140 return
@@ -147,9 +146,13 @@ def _deepgemm_grouped_fp8_gemm_nt_contiguous_warmup(w1: torch.Tensor,
147146 num_experts = w1 .size (0 )
148147 device = w1 .device
149148
149+ # Assumes all ranks have the same max_num_batched_tokens
150+ max_tokens_across_dp = get_dp_group ().world_size * max_tokens
151+ max_tokens = min (max_tokens_across_dp , envs .VLLM_FUSED_MOE_CHUNK_SIZE )
152+
150153 # This is the maximum GroupedGemm M size that we expect to run
151154 # the grouped_gemm with.
152- MAX_M = compute_aligned_M (envs . VLLM_FUSED_MOE_CHUNK_SIZE ,
155+ MAX_M = compute_aligned_M (max_tokens ,
153156 num_topk ,
154157 num_experts ,
155158 block_m ,
@@ -201,7 +204,8 @@ def deepgemm_fp8_gemm_nt_warmup(model: torch.nn.Module, max_tokens: int):
201204 _deepgemm_fp8_gemm_nt_warmup (w = w , ws = ws , max_tokens = max_tokens )
202205
203206
204- def deepgemm_grouped_fp8_gemm_nt_contiguous_warmup (model : torch .nn .Module ):
207+ def deepgemm_grouped_fp8_gemm_nt_contiguous_warmup (model : torch .nn .Module ,
208+ max_tokens : int ):
205209 dg_modules = [
206210 m for m in model .modules ()
207211 if _fused_moe_grouped_gemm_may_use_deep_gemm (m )
@@ -211,9 +215,9 @@ def deepgemm_grouped_fp8_gemm_nt_contiguous_warmup(model: torch.nn.Module):
211215 w13 , w13_scale , w2 , w2_scale , num_topk = (
212216 _extract_data_from_fused_moe_module (dgm ))
213217 _deepgemm_grouped_fp8_gemm_nt_contiguous_warmup (
214- w13 , w2 , w13_scale , w2_scale , num_topk )
218+ w13 , w2 , w13_scale , w2_scale , num_topk , max_tokens )
215219
216220
217221def deep_gemm_warmup (model : torch .nn .Module , max_tokens : int ):
218222 deepgemm_fp8_gemm_nt_warmup (model , max_tokens )
219- deepgemm_grouped_fp8_gemm_nt_contiguous_warmup (model )
223+ deepgemm_grouped_fp8_gemm_nt_contiguous_warmup (model , max_tokens )
0 commit comments