-
Notifications
You must be signed in to change notification settings - Fork 12
/
preprocess.py
262 lines (219 loc) · 9.76 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os, sys, time, random, csv, datetime, json
import pandas as pd
import numpy as np
import argparse
import logging
import time
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("preprocess")
logger.setLevel(logging.INFO)
TRAIN_QUERIES_PATH = "./data_set_phase1/train_queries.csv"
TRAIN_PLANS_PATH = "./data_set_phase1/train_plans.csv"
TRAIN_CLICK_PATH = "./data_set_phase1/train_clicks.csv"
PROFILES_PATH = "./data_set_phase1/profiles.csv"
OUT_NORM_TRAIN_PATH = "./out/normed_train.txt"
OUT_RAW_TRAIN_PATH = "./out/train.txt"
OUT_DIR = "./out"
O1_MIN = 115.47
O1_MAX = 117.29
O2_MIN = 39.46
O2_MAX = 40.97
D1_MIN = 115.44
D1_MAX = 117.37
D2_MIN = 39.46
D2_MAX = 40.96
SCALE_OD = 0.02
DISTANCE_MIN = 1.0
DISTANCE_MAX = 225864.0
THRESHOLD_DIS = 40000.0
SCALE_DIS = 500
PRICE_MIN = 200.0
PRICE_MAX = 92300.0
THRESHOLD_PRICE = 20000
SCALE_PRICE = 100
ETA_MIN = 1.0
ETA_MAX = 72992.0
THRESHOLD_ETA = 10800.0
SCALE_ETA = 120
def build_norm_feature():
with open(OUT_NORM_TRAIN_PATH, 'w') as nf:
with open(OUT_RAW_TRAIN_PATH, 'r') as f:
for line in f:
cur_map = json.loads(line)
if cur_map["plan"]["distance"] > THRESHOLD_DIS:
cur_map["plan"]["distance"] = int(THRESHOLD_DIS)
elif cur_map["plan"]["distance"] > 0:
cur_map["plan"]["distance"] = int(cur_map["plan"]["distance"] / SCALE_DIS)
if cur_map["plan"]["price"] and cur_map["plan"]["price"] > THRESHOLD_PRICE:
cur_map["plan"]["price"] = int(THRESHOLD_PRICE)
elif not cur_map["plan"]["price"] or cur_map["plan"]["price"] < 0:
cur_map["plan"]["price"] = 0
else:
cur_map["plan"]["price"] = int(cur_map["plan"]["price"] / SCALE_PRICE)
if cur_map["plan"]["eta"] > THRESHOLD_ETA:
cur_map["plan"]["eta"] = int(THRESHOLD_ETA)
elif cur_map["plan"]["eta"] > 0:
cur_map["plan"]["eta"] = int(cur_map["plan"]["eta"] / SCALE_ETA)
# o1
if cur_map["query"]["o1"] > O1_MAX:
cur_map["query"]["o1"] = int((O1_MAX - O1_MIN) / SCALE_OD + 1)
elif cur_map["query"]["o1"] < O1_MIN:
cur_map["query"]["o1"] = 0
else:
cur_map["query"]["o1"] = int((cur_map["query"]["o1"] - O1_MIN) / 0.02)
# o2
if cur_map["query"]["o2"] > O2_MAX:
cur_map["query"]["o2"] = int((O2_MAX - O2_MIN) / SCALE_OD + 1)
elif cur_map["query"]["o2"] < O2_MIN:
cur_map["query"]["o2"] = 0
else:
cur_map["query"]["o2"] = int((cur_map["query"]["o2"] - O2_MIN) / 0.02)
# d1
if cur_map["query"]["d1"] > D1_MAX:
cur_map["query"]["d1"] = int((D1_MAX - D1_MIN) / SCALE_OD + 1)
elif cur_map["query"]["d1"] < D1_MIN:
cur_map["query"]["d1"] = 0
else:
cur_map["query"]["d1"] = int((cur_map["query"]["d1"] - D1_MIN) / SCALE_OD)
# d2
if cur_map["query"]["d2"] > D2_MAX:
cur_map["query"]["d2"] = int((D2_MAX - D2_MIN) / SCALE_OD + 1)
elif cur_map["query"]["d2"] < D2_MIN:
cur_map["query"]["d2"] = 0
else:
cur_map["query"]["d2"] = int((cur_map["query"]["d2"] - D2_MIN) / SCALE_OD)
cur_json_instance = json.dumps(cur_map)
nf.write(cur_json_instance + '\n')
def preprocess():
"""
Construct the train data indexed by session id and mode id jointly. Convert all the raw features (user profile,
od pair, req time, click time, eta, price, distance, transport mode) to one-hot ids used for
embedding. We split the one-hot features into two categories: user feature and context feature for
better understanding of FM algorithm.
Note that the user profile is already provided by one-hot encoded form, we treat it as embedded vector
for unity with the context feature and easily using of PaddlePaddle embedding layer. Given the
train clicks data, we label each train instance with 1 or 0 depend on if this instance is clicked or
not include non-click case.
:return:
"""
train_data_dict = {}
with open(TRAIN_QUERIES_PATH, 'r') as f:
csv_reader = csv.reader(f, delimiter=',')
train_index_list = []
for k, line in enumerate(csv_reader):
if k == 0: continue
if line[0] == "": continue
if line[1] == "":
train_index_list.append(line[0] + "_0")
else:
train_index_list.append(line[0] + "_" + line[1])
train_index = line[0]
train_data_dict[train_index] = {}
train_data_dict[train_index]["pid"] = line[1]
train_data_dict[train_index]["query"] = {}
reqweekday = datetime.datetime.strptime(line[2], '%Y-%m-%d %H:%M:%S').strftime("%w")
reqhour = datetime.datetime.strptime(line[2], '%Y-%m-%d %H:%M:%S').strftime("%H")
train_data_dict[train_index]["query"].update({"weekday":reqweekday})
train_data_dict[train_index]["query"].update({"hour":reqhour})
o = line[3].split(',')
o_first = o[0]
o_second = o[1]
train_data_dict[train_index]["query"].update({"o1":float(o_first)})
train_data_dict[train_index]["query"].update({"o2":float(o_second)})
d = line[4].split(',')
d_first = d[0]
d_second = d[1]
train_data_dict[train_index]["query"].update({"d1":float(d_first)})
train_data_dict[train_index]["query"].update({"d2":float(d_second)})
plan_map = {}
plan_data = pd.read_csv(TRAIN_PLANS_PATH)
for index, row in plan_data.iterrows():
plans_str = row['plans']
plans_list = json.loads(plans_str)
session_id = str(row['sid'])
# train_data_dict[session_id]["plans"] = []
plan_map[session_id] = plans_list
profile_map = {}
with open(PROFILES_PATH, 'r') as f:
csv_reader = csv.reader(f, delimiter=',')
for k, line in enumerate(csv_reader):
if k == 0: continue
profile_map[line[0]] = [i for i in range(len(line)) if line[i] == "1.0"]
session_click_map = {}
with open(TRAIN_CLICK_PATH, 'r') as f:
csv_reader = csv.reader(f, delimiter=',')
for k, line in enumerate(csv_reader):
if k == 0: continue
if line[0] == "" or line[1] == "" or line[2] == "":
continue
session_click_map[line[0]] = line[2]
#return train_data_dict, profile_map, session_click_map, plan_map
generate_sparse_features(train_data_dict, profile_map, session_click_map, plan_map)
def generate_sparse_features(train_data_dict, profile_map, session_click_map, plan_map):
if not os.path.isdir(OUT_DIR):
os.mkdir(OUT_DIR)
with open(os.path.join("./out/", "train.txt"), 'w') as f_train:
for session_id, plan_list in plan_map.items():
if session_id not in train_data_dict:
continue
cur_map = train_data_dict[session_id]
if cur_map["pid"] != "":
cur_map["profile"] = profile_map[cur_map["pid"]]
else:
cur_map["profile"] = [0]
del cur_map["pid"]
whole_rank = 0
for plan in plan_list:
whole_rank += 1
cur_map["whole_rank"] = whole_rank
flag_click = False
rank = 1
for plan in plan_list:
if ("transport_mode" in plan) and (session_id in session_click_map) and (
int(plan["transport_mode"]) == int(session_click_map[session_id])):
cur_map["plan"] = plan
cur_map["label"] = 1
flag_click = True
# print("label is 1")
else:
cur_map["plan"] = plan
cur_map["label"] = 0
cur_map["rank"] = rank
rank += 1
cur_json_instance = json.dumps(cur_map)
f_train.write(cur_json_instance + '\n')
if not flag_click:
cur_map["plan"]["distance"] = -1
cur_map["plan"]["price"] = -1
cur_map["plan"]["eta"] = -1
cur_map["plan"]["transport_mode"] = 0
cur_map["rank"] = 0
cur_map["label"] = 1
cur_json_instance = json.dumps(cur_map)
f_train.write(cur_json_instance + '\n')
else:
cur_map["plan"]["distance"] = -1
cur_map["plan"]["price"] = -1
cur_map["plan"]["eta"] = -1
cur_map["plan"]["transport_mode"] = 0
cur_map["rank"] = 0
cur_map["label"] = 0
cur_json_instance = json.dumps(cur_map)
f_train.write(cur_json_instance + '\n')
build_norm_feature()
if __name__ == "__main__":
preprocess()