-
Notifications
You must be signed in to change notification settings - Fork 0
/
nelder_mead_hy_ns.py
executable file
·184 lines (120 loc) · 5.16 KB
/
nelder_mead_hy_ns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import sys
args = sys.argv
import numpy as np
import time
import subprocess
### use modified version of SCEConomy module
from SCEconomy_hy_ns import Economy, split_shock
import pickle
p_init = float(args[1])
rc_init = float(args[2])
num_core = args[3]
print('the code is running with ', num_core, 'cores...')
prices_init = [p_init, rc_init]
nd_log_file = '/home/yaoxx366/sceconomy/log/log.txt'
detailed_output_file = '/home/yaoxx366/sceconomy/log/detail.txt'
f = open(detailed_output_file, 'w')
f.close()
dist_min = 10000000.0
econ_save = None
def curvedspace(begin, end, curve, num=100):
import numpy as np
ans = np.linspace(0, (end - begin)**(1.0/curve), num) ** (curve) + begin
ans[-1] = end #so that the last element is exactly end
return ans
agrid2 = curvedspace(0., 200., 2., 40)
kapgrid2 = curvedspace(0., 2.5, 1.5, 40)
zgrid2 = np.load('./input_data/zgrid.npy') ** 2.
# prob2 = np.load('./input_data/transition_matrix_0709.npy')
path_to_data_i_s = '/home/yaoxx366/sceconomy/input_data/data_i_s'
def target(prices):
global dist_min
global econ_save
p_ = prices[0]
rc_ = prices[1]
# print('computing for the case w = {:f}, p = {:f}, rc = {:f}'.format(w_, p_, rc_), end = ', ')
print('computing for the case p = {:f}, rc = {:f}'.format(p_, rc_), end = ', ')
###set any additional condition/parameters
### alpha = 0.4 as default, and nu = 1. - phi - alpha
#econ = Economy(agrid = agrid2, zgrid = zgrid2, path_to_data_i_s = path_to_data_i_s, rho = 0.01, ome = 0.6, varpi = 0.1)
econ = Economy(agrid = agrid2, kapgrid = kapgrid2, zgrid = zgrid2, rho = 0.01, upsilon = 0.75,\
ome = 0.3996339901220936, varpi = 0.545313496582086, path_to_data_i_s = './input_data/data_i_s')
econ.set_prices(p = p_, rc = rc_)
with open('econ.pickle', mode='wb') as f: pickle.dump(econ, f)
#with open('econ.pickle', mode='rb') as f: econ = pickle.load(f)
t0 = time.time()
#result = subprocess.run(['mpiexec', '-n', num_core, '--machinefile=node.hf' ,'python', 'SCEconomy_s_emp.py'], stdout=subprocess.PIPE)
result = subprocess.run(['mpiexec', '-n', num_core ,'python', 'SCEconomy_hy_ns.py'], stdout=subprocess.PIPE)
t1 = time.time()
f = open(detailed_output_file, 'ab') #use byte mode
f.write(result.stdout)
f.close()
print('etime: {:f}'.format(t1 - t0), end = ', ')
time.sleep(1)
with open('econ.pickle', mode='rb') as f: econ = pickle.load(f)
p = econ.p
rc = econ.rc
moms = econ.moms
# mom0 = comm.bcast(mom0) #1. - Ecs/Eys
# mom1 = comm.bcast(mom1) # 1. - (Ecc + Ex+ (grate + delk)*(kc + Eks) + g + xnb - yn)/yc
# mom2 = comm.bcast(mom2) # 1. - (tax_rev - tran - netb)/g
# mom3 = comm.bcast(mom3) # 0.0
# mom4 = comm.bcast(mom4) # Ens/En
# mom5 = comm.bcast(mom5) # (p*Eys - (rs+delk)*Eks - w*Ens)/GDP
# mom6 = comm.bcast(mom6) # nc
# mom7 = comm.bcast(mom7) # 1. - EIc
dist = np.sqrt(moms[0]**2.0 + moms[1]**2.0 + moms[2]**2.0) #mom3 should be missing.
# dist = np.sqrt(moms[0]**2.0 + moms[1]**2.0 + moms[2]**2.0 + 100.0*(moms[4] - 0.3)**2.0 +500.* (moms[5]-0.09)**2.0 + 100.*(moms[6] - 0.11)**2.0) #mom3 should be missing.
# dist = np.sqrt(moms[0]**2.0 + moms[1]**2.0 + 100.0*(moms[4] - 0.3)**2.0 +500.* (moms[5]-0.09)**2.0 + 100.*(moms[7] - 0.37)**2.0) #mom3 should be missing.
if p != p_ or rc != rc_:
print('err: input prices and output prices do not coincide.')
print('p = ', p, ', p_ = ', p_)
print('rc = ', rc, ', rc_ = ', rc_)
print('dist = {:f}'.format(dist))
f = open(nd_log_file, 'a')
f.writelines(str(p) + ', ' + str(rc) + ', ' + str(dist) + ', ' + str(moms[0]) + ', ' + str(moms[1]) + ', ' + str(moms[2]) + '\n')
# f.writelines(str(p) + ', ' + str(rc) + ', ' + str(varpi) + ', ' + str(ome) + ', ' + str(theta) + ', ' + str(dist) + ', ' +\
f.close()
if dist < dist_min:
econ_save = econ
dist_min = dist
return dist
if __name__ == '__main__':
split_shock(path_to_data_i_s, 100_000, int(num_core))
f = open(nd_log_file, 'w')
# f.writelines('w, p, rc, dist, mom0, mom1, mom2, mom3\n')
f.writelines('p, rc, dist, mom0, mom1, mom2\n')
f.close()
nm_result = None
from scipy.optimize import minimize
tol_nm = 1.0e-4
for i in range(5):
nm_result = minimize(target, prices_init, method='Nelder-Mead', tol = tol_nm)
if nm_result.fun < tol_nm: #1.0e-3
break
else:
prices_init = nm_result.x #restart
f = open(nd_log_file, 'a')
f.write(str(nm_result))
f.close()
###calculate other important variables###
econ = econ_save
with open('econ.pickle', mode='wb') as f: pickle.dump(econ, f)
e = econ
print('')
print('agrid')
print(e.agrid)
print('kapgrid')
print(e.kapgrid)
print('zgrid')
print(e.zgrid)
print('epsgrid')
print(e.epsgrid)
print('prob')
print(e.prob)
e.print_parameters()
e.calc_moments()
#
#econ.calc_sweat_eq_value()
#econ.simulate_other_vars()
#econ.save_result()