-
Notifications
You must be signed in to change notification settings - Fork 0
/
simulate_LSC.py
78 lines (47 loc) · 1.93 KB
/
simulate_LSC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import time
import subprocess
from SCEconomy_LSC_give_A import Economy
import pickle
if __name__ == '__main__':
def curvedspace(begin, end, curve, num=100):
import numpy as np
ans = np.linspace(0, (end - begin)**(1.0/curve), num) ** (curve) + begin
ans[-1] = end #so that the last element is exactly end
return ans
### additional info
zgrid2 = np.load('./input_data/zgrid.npy') ** 2.0
# zgrid2 = np.load('./input_data/zgrid_09_0075.npy') ** 2.0
# prob2 = np.load('./input_data/prob_epsz_07_09_01_0075.npy')
###define additional parameters###
num_core = 4 #7 or 8 must be the best for Anmol's PC. set 3 or 4 for Yuki's laptop
# prices
w_ = 3.1137438879863
p_ = 0.7144185920141111
rc_ = 0.06380964643545145
###end defining additional parameters###
print('Solving the model with the given prices...')
print('Do not simulate more than one models at the same time...')
econ = Economy(zgrid = zgrid2*0.45)
econ.set_prices(w = w_, p = p_, rc = rc_)
with open('econ.pickle', mode='wb') as f: pickle.dump(econ, f)
t0 = time.time()
result = subprocess.run(['mpiexec', '-n', str(num_core), 'python', 'SCEconomy_LSC_give_A.py'], stdout=subprocess.PIPE)
t1 = time.time()
with open('econ.pickle', mode='rb') as f: econ = pickle.load(f)
w = econ.w
p = econ.p
rc = econ.rc
moms = econ.moms
dist = np.sqrt(moms[0]**2.0 + moms[1]**2.0 + moms[2]**2.0)
if w != w_ or p != p_ or rc != rc_:
print('err: input prices and output prices do not coincide.')
print('w = ', w, ', w_ = ', w_)
print('p = ', p, ', p_ = ', p_)
print('rc = ', rc, ', rc_ = ', rc_)
econ.calc_moments()
###calculate other important variables###
# econ.calc_sweat_eq_value()
econ.calc_age()
econ.simulate_other_vars()
econ.save_result()