-
Notifications
You must be signed in to change notification settings - Fork 12
/
torch_example.py
775 lines (656 loc) · 31.7 KB
/
torch_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
#!/usr/bin/env python3
import matplotlib
matplotlib.use('Agg')
import io
from PIL import Image
from matplotlib import pyplot as plt
import os
import sys
import torch as th
import torchvision as tv
import torch.nn.functional as F
from torch.autograd import Variable
import math
import tqdm
from filelock import FileLock
import threading
import time
import signal
import numpy as np
import itertools as itt
import scipy.linalg
import scipy.stats
from scipy.spatial.distance import pdist, squareform
import cifar_model
from sklearn.decomposition import PCA
from sklearn.metrics import confusion_matrix
import tf_robustify
import vgg
import carlini_wagner_attack
os.system("taskset -p 0xffffffff %d" % os.getpid())
import sh
sh.rm('-rf', 'logs')
import logging
logging.basicConfig(level=logging.INFO, stream=sys.stdout)
from tensorboardX.writer import SummaryWriter
swriter = SummaryWriter('logs')
add_scalar_old = swriter.add_scalar
def add_scalar_and_log(key, value, global_step=0):
logging.info('{}:{}: {}'.format(global_step, key, value))
add_scalar_old(key, value, global_step)
swriter.add_scalar = add_scalar_and_log
def str2bool(x):
return x.lower() == 'true'
def new_inception_conv2d_forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=False)
tv.models.inception.BasicConv2d.forward = new_inception_conv2d_forward
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--ds', default='cifar10')
parser.add_argument('--model', default='cifar10')
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--eval_bs', default=256, type=int)
parser.add_argument('--eval_batches', default=None, type=int)
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--num_evals', default=20, type=int)
parser.add_argument('--train_log_after', default=0, type=int)
parser.add_argument('--stop_after', default=-1, type=int)
parser.add_argument('--cuda', default=True, type=str2bool)
parser.add_argument('--optim', default='sgd', type=str)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--attack_lr', default=.25, type=float)
parser.add_argument('--eps', default=8/255, type=float)
parser.add_argument('--eps_rand', default=None, type=float)
parser.add_argument('--eps_eval', default=None, type=float)
parser.add_argument('--rep', default=0, type=int)
parser.add_argument('--img_size', default=32, type=int)
parser.add_argument('--iters', default=10, type=int)
parser.add_argument('--noise_eps', default='n0.01,s0.01,u0.01,n0.02,s0.02,u0.02,s0.03,n0.03,u0.03', type=str)
parser.add_argument('--noise_eps_detect', default='n0.003,s0.003,u0.003,n0.005,s0.005,u0.005,s0.008,n0.008,u0.008', type=str)
parser.add_argument('--clip_alignments', default=True, type=str2bool)
parser.add_argument('--pgd_strength', default=1., type=float)
parser.add_argument('--debug', default=False, type=str2bool)
parser.add_argument('--mode', default='eval', type=str)
parser.add_argument('--constrained', default=True, type=str2bool)
parser.add_argument('--clamp_attack', default=False, type=str2bool)
parser.add_argument('--clamp_uniform', default=False, type=str2bool)
parser.add_argument('--train_adv', default=False, type=str2bool)
parser.add_argument('--wdiff_samples', default=256, type=int)
parser.add_argument('--maxp_cutoff', default=.999, type=float)
parser.add_argument('--collect_targeted', default=False, type=str2bool)
parser.add_argument('--n_collect', default=10000, type=int)
parser.add_argument('--save_alignments', default=False, type=str2bool)
parser.add_argument('--load_alignments', default=False, type=str2bool)
parser.add_argument('--save_pgd_samples', default=False, type=str2bool)
parser.add_argument('--load_pgd_train_samples', default=None, type=str)
parser.add_argument('--load_pgd_test_samples', default=None, type=str)
parser.add_argument('--fit_classifier', default=True, type=str2bool)
parser.add_argument('--just_detect', default=False, type=str2bool)
parser.add_argument('--attack', default='pgd', type=str)
parser.add_argument('--cw_confidence', default=0, type=float)
parser.add_argument('--cw_c', default=1e-4, type=float)
parser.add_argument('--cw_lr', default=1e-4, type=float)
parser.add_argument('--cw_steps', default=300, type=int)
parser.add_argument('--cw_search_steps', default=10, type=int)
parser.add_argument('--mean_samples', default=16, type=int)
parser.add_argument('--mean_eps', default=.1, type=float)
args = parser.parse_args()
args.cuda = args.cuda and th.cuda.is_available()
args.eps_rand = args.eps_rand or args.eps
args.eps_eval = args.eps_eval or args.eps
args.mean_eps = args.mean_eps * args.eps_eval
def check_pid():
while os.getppid() != 1:
time.sleep(.1)
os.kill(os.getpid(), signal.SIGKILL)
def init_worker(worker_id):
thread = threading.Thread(target=check_pid)
thread.daemon = True
thread.start()
def gini_coef(a):
a = th.sort(a, dim=-1)[0]
n = a.shape[1]
index = th.arange(1, n+1)[None, :].float()
return (th.sum((2 * index - n - 1) * a, -1) / (n * th.sum(a, -1)))
def main():
nrms = dict(imagenet=([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), imagenet64=([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), cifar10=([.5, .5, .5], [.5, .5, .5]))[args.ds]
if args.ds == 'cifar10' and args.model.startswith('vgg'):
nrms = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
if args.ds == 'imagenet':
if args.model.startswith('inception'):
transforms = [
tv.transforms.Resize((299, 299)),
]
else:
transforms = [
tv.transforms.Resize((256, 256)),
tv.transforms.CenterCrop(224)
]
else:
transforms = [tv.transforms.Resize((args.img_size, args.img_size))]
transforms = tv.transforms.Compose(
transforms + [
tv.transforms.ToTensor(),
])
clip_min = 0.
clip_max = 1.
nrms_mean, nrms_std = [th.FloatTensor(n)[None, :, None, None] for n in nrms]
if args.cuda:
nrms_mean, nrms_std = map(th.Tensor.cuda, (nrms_mean, nrms_std))
if args.ds == 'cifar10':
data_dir = os.path.expanduser('~/data/cifar10')
os.makedirs(data_dir, exist_ok=True)
with FileLock(os.path.join(data_dir, 'lock')):
train_ds = tv.datasets.CIFAR10(data_dir, train=True, transform=transforms, download=True)
test_ds = tv.datasets.CIFAR10(data_dir, train=False, transform=transforms, download=True)
elif args.ds == 'imagenet':
train_folder = os.path.expanduser('~/../stuff/imagenet/train')
test_folder = os.path.expanduser('~/../stuff/imagenet/val')
with FileLock(os.path.join(os.path.dirname(train_folder), 'lock')):
train_ds = tv.datasets.ImageFolder(train_folder, transform=transforms)
test_ds = tv.datasets.ImageFolder(test_folder, transform=transforms)
if args.load_pgd_test_samples:
pgd_path = os.path.expanduser('~/data/advhyp/{}/samples'.format(args.load_pgd_test_samples))
x_test = np.load(os.path.join(pgd_path, 'test_clean.npy'))
y_test = np.load(os.path.join(pgd_path, 'test_y.npy'))
pgd_test = np.load(os.path.join(pgd_path, 'test_pgd.npy'))
if x_test.shape[-1] == 3:
x_test = x_test.transpose((0, 3, 1, 2))
pgd_test = pgd_test.transpose((0, 3, 1, 2))
if len(y_test.shape) == 2:
y_test = y_test.argmax(-1)
test_ds = th.utils.data.TensorDataset(*map(th.from_numpy, (x_test, y_test, pgd_test)))
train_loader = th.utils.data.DataLoader(train_ds, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True, pin_memory=True, worker_init_fn=init_worker)
test_loader = th.utils.data.DataLoader(test_ds, batch_size=args.eval_bs, shuffle=True, num_workers=1, drop_last=False, pin_memory=True, worker_init_fn=init_worker)
if args.ds == 'imagenet64' or args.ds == 'imagenet':
with FileLock(os.path.join(os.path.dirname(train_folder), 'lock')):
if args.model in tv.models.__dict__:
if args.model.startswith('inception'):
net = tv.models.__dict__[args.model](pretrained=True, transform_input=False)
else:
net = tv.models.__dict__[args.model](pretrained=True)
else:
raise ValueError('Unknown model: {}'.format(args.model))
elif args.ds == 'cifar10':
if args.model == 'tiny':
net = cifar_model.cifar10_tiny(32, pretrained=args.mode == 'eval' , map_location=None if args.cuda else 'cpu')
elif args.model == 'tinyb':
net = cifar_model.cifar10_tiny(32, pretrained=args.mode == 'eval' , map_location=None if args.cuda else 'cpu', padding=0, trained_adv=args.train_adv)
elif args.model.startswith('vgg'):
net = vgg.__dict__[args.model]()
cp_path = os.path.expanduser('~/models/advhyp/vgg/{}/checkpoint.tar'.format(args.model))
checkpoint = th.load(cp_path, map_location='cpu')
state_dict = {k.replace('module.', ''): v for k, v in checkpoint['state_dict'].items()}
net.load_state_dict(state_dict)
elif args.model == 'carlini':
net = cifar_model.carlini(pretrained=args.mode == 'eval' , map_location=None if args.cuda else 'cpu', trained_adv=args.train_adv)
else:
net = cifar_model.cifar10(128, pretrained=args.mode == 'eval' , map_location=None if args.cuda else 'cpu', trained_adv=args.train_adv)
print(net)
def get_layers():
return itt.chain(net.features.children(), net.classifier.children())
def get_layer_names():
return [l.__class__.__name__ for l in get_layers()]
if args.cuda:
net.cuda()
def net_forward(x, layer_by_layer=False, from_layer=0):
x = x - nrms_mean # cannot be inplace
x.div_(nrms_std)
if not layer_by_layer:
return net(x)
cldr = list(net.children())
if args.model.startswith('resnet'):
x = net.conv1(x)
x = net.bn1(x)
x = net.relu(x)
x = net.maxpool(x)
x = net.layer1(x)
x = net.layer2(x)
x = net.layer3(x)
x = net.layer4(x)
outputs = [net.avgpool(x)]
flat_features = outputs[-1].view(x.size(0), -1)
outputs.append(net.fc(flat_features))
elif args.model.startswith('inception'):
# 299 x 299 x 3
x = net.Conv2d_1a_3x3(x)
# 149 x 149 x 32
x = net.Conv2d_2a_3x3(x)
# 147 x 147 x 32
x = net.Conv2d_2b_3x3(x)
# 147 x 147 x 64
x = F.max_pool2d(x, kernel_size=3, stride=2)
# 73 x 73 x 64
x = net.Conv2d_3b_1x1(x)
# 73 x 73 x 80
x = net.Conv2d_4a_3x3(x)
# 71 x 71 x 192
x = F.max_pool2d(x, kernel_size=3, stride=2)
# 35 x 35 x 192
x = net.Mixed_5b(x)
# 35 x 35 x 256
x = net.Mixed_5c(x)
# 35 x 35 x 288
x = net.Mixed_5d(x)
# 35 x 35 x 288
x = net.Mixed_6a(x)
# 17 x 17 x 768
x = net.Mixed_6b(x)
# 17 x 17 x 768
x = net.Mixed_6c(x)
# 17 x 17 x 768
x = net.Mixed_6d(x)
# 17 x 17 x 768
x = net.Mixed_6e(x)
# 17 x 17 x 768
x = net.Mixed_7a(x)
# 8 x 8 x 1280
x = net.Mixed_7b(x)
# 8 x 8 x 2048
x = net.Mixed_7c(x)
# 8 x 8 x 2048
x = F.avg_pool2d(x, kernel_size=8)
# 1 x 1 x 2048
outputs = [F.dropout(x, training=net.training)]
# 1 x 1 x 2048
flat_features = outputs[-1].view(x.size(0), -1)
# 2048
outputs.append(net.fc(flat_features))
# 1000 (num_classes)
else:
outputs = [net.features(x)]
for cidx, c in enumerate(net.classifier.children()):
flat_features = outputs[-1].view(x.size(0), -1)
outputs.append(c(flat_features))
return outputs
loss_fn = th.nn.CrossEntropyLoss(reduce=False)
loss_fn_adv = th.nn.CrossEntropyLoss(reduce=False)
if args.cuda:
loss_fn.cuda()
loss_fn_adv.cuda()
def get_outputs(x, y, from_layer=0):
outputs = net_forward(x, layer_by_layer=True, from_layer=from_layer)
logits = outputs[-1]
loss = loss_fn(logits, y)
_, preds = th.max(logits, 1)
return outputs, loss, preds
def get_loss_and_preds(x, y):
logits = net_forward(x, layer_by_layer=False)
loss = loss_fn(logits, y)
_, preds = th.max(logits, 1)
return loss, preds
def clip(x, cmin, cmax):
return th.min(th.max(x, cmin), cmax)
def project(x, x_orig, eps):
dx = x - x_orig
dx = dx.flatten(1)
dx /= th.norm(dx, p=2, dim=1, keepdim=True) + 1e-9
dx *= eps
return x_orig + dx.view(x.shape)
if args.attack == 'cw':
cw_attack = carlini_wagner_attack.AttackCarliniWagnerL2(cuda=args.cuda, clip_min=clip_min, clip_max=clip_max, confidence=args.cw_confidence, initial_const=args.cw_c / (255**2.), max_steps=args.cw_steps, search_steps=args.cw_search_steps, learning_rate=args.cw_lr)
def attack_cw(x, y):
x_adv = cw_attack.run(net_forward, x, y)
x_adv = th.from_numpy(x_adv)
if args.cuda:
x_adv = x_adv.cuda()
return x_adv
def attack_mean(x, y, eps=args.eps):
x_advs = attack_pgd(x, y, eps)
for _ in tqdm.trange(args.mean_samples, desc='mean attack samples'):
x_noisy = x + th.empty_like(x).uniform_(-args.mean_eps, args.mean_eps)
x_advs += attack_pgd(x_noisy, y, eps)
x_advs = x_advs / (args.mean_samples + 1)
x_advs.clamp_(clip_min, clip_max)
x_advs = clip(x_advs, x-eps, x+eps)
return x_advs
def attack_anti(x, y, eps=args.eps):
pass
def attack_pgd(x, y, eps=args.eps, l2=False):
if l2:
eps = np.sqrt(np.prod(x.shape[1:])) * eps
x_orig = x
x = th.empty_like(x).copy_(x)
x.requires_grad_(True)
x.data.add_(th.empty_like(x).uniform_(-eps, eps))
x.data.clamp_(clip_min, clip_max)
for i in range(args.iters):
if x.grad is not None:
x.grad.zero_()
logits = net_forward(x)
loss = th.sum(loss_fn_adv(logits, y))
loss.backward()
if args.constrained:
if l2:
gx = x.grad.flatten(1)
gx /= th.norm(gx, p=2, dim=-1, keepdim=True) + 1e-9
gx = gx.view(x.shape)
x.data.add_(args.attack_lr * eps * gx)
x.data = project(x.data, x_orig, eps)
else:
x.data.add_(args.attack_lr * eps * th.sign(x.grad))
x.data = clip(x.data, x_orig-eps, x_orig+eps)
x.data.clamp_(clip_min, clip_max)
else:
x.data += args.attack_lr * eps * x.grad
if args.debug:
break
if args.pgd_strength < 1.:
mask = (x.data.new_zeros(len(x)).uniform_() <= args.pgd_strength).float()
for _ in x.shape[1:]:
mask = mask[:, None]
x.data = x.data * mask + x_orig.data * (1. - mask)
x = x.detach()
inf_norm = (x - x_orig).abs().max().cpu().numpy().item()
if args.clamp_attack:
with th.no_grad():
diff = th.sign(x - x_orig) * inf_norm
x = x_orig + diff
x = clip(x, clip_min, clip_max)
# if args.constrained:
# assert inf_norm < eps * (1.001), 'inf norm {} > {}'.format(inf_norm, eps)
return x
eval_after = math.floor(args.epochs * len(train_ds) / args.batch_size / args.num_evals)
global_step = 0
def run_train():
nonlocal global_step # noqa: E999
if args.model == 'carlini':
optim = th.optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, nesterov=True)
elif args.model == 'cifar10':
optim = th.optim.Adam(net.parameters(), lr=args.lr)
else:
optim = th.optim.RMSprop(net.parameters(), lr=args.lr)
logging.info('train')
for epoch in tqdm.trange(args.epochs):
for batch in tqdm.tqdm(train_loader):
x, y = batch
if args.cuda:
x, y = x.cuda(), y.cuda()
if global_step % eval_after == 0:
run_eval_basic(True)
if args.train_adv:
x_adv = attack_pgd(x, y)
x = th.cat((x, x_adv))
y = th.cat((y, y))
net.zero_grad()
loss, _ = get_loss_and_preds(x, y)
loss = loss.mean()
net.zero_grad()
loss.backward()
optim.step()
if args.model == 'carlini' and not args.train_adv:
for pg in optim.param_groups:
pg['lr'] = args.lr * ((1. - 1e-6)**global_step)
global_step += 1
if args.model == 'cifar10' and not args.train_adv:
if epoch == 80 or epoch == 120:
for pg in optim.param_groups:
pg['lr'] *= .1
with open('logs/model.ckpt', 'wb') as f:
th.save(net.state_dict(), f)
def run_eval_basic(with_attack=True):
logging.info('eval')
eval_loss_clean = []
eval_acc_clean = []
eval_loss_rand = []
eval_acc_rand = []
eval_loss_pgd = []
eval_acc_pgd = []
eval_loss_pand = []
eval_acc_pand = []
all_outputs = []
diffs_rand, diffs_pgd, diffs_pand = [], [], []
eval_preds_clean, eval_preds_rand, eval_preds_pgd, eval_preds_pand = [], [], [], []
norms_clean, norms_pgd, norms_rand, norms_pand = [], [], [], []
norms_dpgd, norms_drand, norms_dpand = [], [], []
eval_important_valid = []
eval_loss_incr = []
eval_conf_pgd = []
wdiff_corrs = []
udiff_corrs = []
grad_corrs = []
minps_clean = []
minps_pgd = []
acc_clean_after_corr = []
acc_pgd_after_corr = []
eval_det_clean = []
eval_det_pgd = []
net.train(False)
for eval_batch in tqdm.tqdm(itt.islice(test_loader, args.eval_batches)):
x, y = eval_batch
if args.cuda:
x, y = x.cuda(), y.cuda()
loss_clean, preds_clean = get_loss_and_preds(x, y)
eval_loss_clean.append((loss_clean.data).cpu().numpy())
eval_acc_clean.append((th.eq(preds_clean, y).float()).cpu().numpy())
eval_preds_clean.extend(preds_clean)
if with_attack:
if args.clamp_uniform:
x_rand = x + th.sign(th.empty_like(x).uniform_(-args.eps_rand, args.eps_rand)) * args.eps_rand
else:
x_rand = x + th.empty_like(x).uniform_(-args.eps_rand, args.eps_rand)
loss_rand, preds_rand = get_loss_and_preds(x_rand, y)
eval_loss_rand.append((loss_rand.data).cpu().numpy())
eval_acc_rand.append((th.eq(preds_rand, y).float()).cpu().numpy())
eval_preds_rand.extend(preds_rand)
if not args.load_pgd_test_samples:
x_pgd = attack_pgd(x, preds_clean, eps=args.eps_eval)
loss_pgd, preds_pgd = get_loss_and_preds(x_pgd, y)
eval_loss_pgd.append((loss_pgd.data).cpu().numpy())
eval_acc_pgd.append((th.eq(preds_pgd, y).float()).cpu().numpy())
eval_preds_pgd.extend(preds_pgd)
loss_incr = loss_pgd - loss_clean
eval_loss_incr.append(loss_incr.detach().cpu())
x_pand = x_pgd + th.empty_like(x_pgd).uniform_(-args.eps_rand, args.eps_rand)
loss_pand, preds_pand = get_loss_and_preds(x_pand, y)
eval_loss_pand.append((loss_pand.data).cpu().numpy())
eval_acc_pand.append((th.eq(preds_pand, y).float()).cpu().numpy())
eval_preds_pand.extend(preds_pand)
if args.debug:
break
swriter.add_scalar('eval_loss_clean', np.concatenate(eval_loss_clean).mean(), global_step)
swriter.add_scalar('eval_acc_clean', np.concatenate(eval_acc_clean).mean(), global_step)
swriter.add_scalar('eval_loss_rand', np.concatenate(eval_loss_rand).mean(), global_step)
swriter.add_scalar('eval_acc_rand', np.concatenate(eval_acc_rand).mean(), global_step)
swriter.add_scalar('eval_loss_pgd', np.concatenate(eval_loss_pgd).mean(), global_step)
swriter.add_scalar('eval_acc_pgd', np.concatenate(eval_acc_pgd).mean(), global_step)
swriter.add_scalar('eval_loss_incr', th.cat(eval_loss_incr).mean(), global_step)
swriter.add_scalar('eval_loss_pand', np.concatenate(eval_loss_pand).mean(), global_step)
swriter.add_scalar('eval_acc_pand', np.concatenate(eval_acc_pand).mean(), global_step)
net.train(False)
def run_eval(with_attack=True):
logging.info('eval')
net.train(False)
eval_loss_clean = []
eval_acc_clean = []
eval_loss_rand = []
eval_acc_rand = []
eval_loss_pgd = []
eval_acc_pgd = []
eval_loss_pand = []
eval_acc_pand = []
all_outputs = []
diffs_rand, diffs_pgd, diffs_pand = [], [], []
eval_preds_clean, eval_preds_rand, eval_preds_pgd, eval_preds_pand = [], [], [], []
norms_clean, norms_pgd, norms_rand, norms_pand = [], [], [], []
norms_dpgd, norms_drand, norms_dpand = [], [], []
eval_important_valid = []
eval_loss_incr = []
eval_conf_pgd = []
wdiff_corrs = []
udiff_corrs = []
grad_corrs = []
minps_clean = []
minps_pgd = []
acc_clean_after_corr = []
acc_pgd_after_corr = []
eval_det_clean = []
eval_det_pgd = []
eval_x_pgd_l0 = []
eval_x_pgd_l2 = []
all_eval_important_pixels = []
all_eval_important_single_pixels = []
all_eval_losses_per_pixel = []
if args.save_pgd_samples:
for loader, name in ((train_loader, 'train'), (test_loader, 'test')):
train_x = []
train_y = []
train_pgd = []
for eval_batch in tqdm.tqdm(loader):
x, y = eval_batch
if args.cuda:
x, y = x.cuda(), y.cuda()
_, p = get_loss_and_preds(x, y)
train_pgd.append(attack_pgd(x, p, eps=args.eps_eval).cpu().numpy())
train_x.append(x.cpu().numpy())
train_y.append(y.cpu().numpy())
train_pgd = np.concatenate(train_pgd)
train_x = np.concatenate(train_x)
train_y = np.concatenate(train_y)
np.save('logs/{}_pgd.npy'.format(name), train_pgd)
np.save('logs/{}_clean.npy'.format(name), train_x)
np.save('logs/{}_y.npy'.format(name), train_y)
exit(0)
X, Y = [], []
with th.no_grad():
for eval_batch in tqdm.tqdm(train_loader):
x, y = eval_batch
X.append(x.cpu().numpy()), Y.append(y.cpu().numpy())
if args.n_collect > 0 and sum(len(x) for x in X) > args.n_collect:
if args.ds.startswith('imagenet'):
break
y_nc, y_cts = np.unique(Y, return_counts=True)
if y_nc.size == 1000:
if np.all(y_cts >= 5):
break
else:
break
logging.debug('need more samples, have {} classes with min size {}...'.format(y_nc.size, np.min(y_cts)))
if args.debug:
break
X, Y = map(np.concatenate, (X, Y))
pgd_train = None
if args.load_pgd_train_samples:
pgd_path = os.path.expanduser('~/data/advhyp/{}/samples'.format(args.load_pgd_train_samples))
X = np.load(os.path.join(pgd_path, 'train_clean.npy'))
Y = np.load(os.path.join(pgd_path, 'train_y.npy'))
pgd_train = np.load(os.path.join(pgd_path, 'train_pgd.npy'))
if X.shape[-1] == 3:
X = X.transpose((0, 3, 1, 2))
pgd_train = pgd_train.transpose((0, 3, 1, 2))
if len(Y.shape) == 2:
Y = Y.argmax(-1)
if args.model.startswith('resnet') or args.model.startswith('inception'):
w_cls = net.fc.weight
else:
w_cls = list(net.classifier.children())[-1].weight
nb_classes = w_cls.shape[0]
if args.n_collect > 0 and args.load_pgd_train_samples:
all_idcs = np.arange(len(X))
while True:
np.random.shuffle(all_idcs)
idcs = all_idcs[:args.n_collect]
Y_partial = Y[idcs]
y_nc = np.unique(Y_partial).size
if y_nc == nb_classes:
break
logging.debug('only have {} classes, reshuffling...'.format(y_nc))
X, Y = X[idcs], Y[idcs]
if pgd_train is not None:
pgd_train = pgd_train[idcs]
def latent_and_logits_fn(x):
lat, log = net_forward(x, True)[-2:]
lat = lat.reshape(lat.shape[0], -1)
return lat, log
noise_eps_detect = args.noise_eps_detect
if noise_eps_detect is None:
noise_eps_detect = args.noise_eps
predictor = tf_robustify.collect_statistics(X, Y, latent_and_logits_fn_th=latent_and_logits_fn, nb_classes=nb_classes, weights=w_cls, cuda=args.cuda, debug=args.debug, targeted=args.collect_targeted, noise_eps=args.noise_eps.split(','), noise_eps_detect=noise_eps_detect.split(','), num_noise_samples=args.wdiff_samples, batch_size=args.eval_bs, pgd_eps=args.eps, pgd_lr=args.attack_lr, pgd_iters=args.iters, clip_min=clip_min, clip_max=clip_max, p_ratio_cutoff=args.maxp_cutoff, save_alignments_dir='logs/stats' if args.save_alignments else None, load_alignments_dir=os.path.expanduser('~/data/advhyp/{}/stats'.format(args.model)) if args.load_alignments else None, clip_alignments=args.clip_alignments, pgd_train=pgd_train, fit_classifier=args.fit_classifier, just_detect=args.just_detect)
next(predictor)
if args.save_alignments:
exit(0)
for eval_batch in tqdm.tqdm(itt.islice(test_loader, args.eval_batches)):
if args.load_pgd_test_samples:
x, y, x_pgd = eval_batch
else:
x, y = eval_batch
if args.cuda:
x, y = x.cuda(), y.cuda()
if args.load_pgd_test_samples:
x_pgd = x_pgd.cuda()
loss_clean, preds_clean = get_loss_and_preds(x, y)
eval_loss_clean.append((loss_clean.data).cpu().numpy())
eval_acc_clean.append((th.eq(preds_clean, y).float()).cpu().numpy())
eval_preds_clean.extend(preds_clean)
if with_attack:
if args.clamp_uniform:
x_rand = x + th.sign(th.empty_like(x).uniform_(-args.eps_rand, args.eps_rand)) * args.eps_rand
else:
x_rand = x + th.empty_like(x).uniform_(-args.eps_rand, args.eps_rand)
loss_rand, preds_rand = get_loss_and_preds(x_rand, y)
eval_loss_rand.append((loss_rand.data).cpu().numpy())
eval_acc_rand.append((th.eq(preds_rand, y).float()).cpu().numpy())
eval_preds_rand.extend(preds_rand)
if args.attack == 'pgd':
if not args.load_pgd_test_samples:
x_pgd = attack_pgd(x, preds_clean, eps=args.eps_eval)
elif args.attack == 'pgdl2':
x_pgd = attack_pgd(x, preds_clean, eps=args.eps_eval, l2=True)
elif args.attack == 'cw':
x_pgd = attack_cw(x, preds_clean)
elif args.attack == 'mean':
x_pgd = attack_mean(x, preds_clean, eps=args.eps_eval)
eval_x_pgd_l0.append(th.max(th.abs((x - x_pgd).view(x.size(0), -1)), -1)[0].detach().cpu().numpy())
eval_x_pgd_l2.append(th.norm((x - x_pgd).view(x.size(0), -1), p=2, dim=-1).detach().cpu().numpy())
loss_pgd, preds_pgd = get_loss_and_preds(x_pgd, y)
eval_loss_pgd.append((loss_pgd.data).cpu().numpy())
eval_acc_pgd.append((th.eq(preds_pgd, y).float()).cpu().numpy())
conf_pgd = confusion_matrix(preds_clean.cpu(), preds_pgd.cpu(), np.arange(nb_classes))
conf_pgd -= np.diag(np.diag(conf_pgd))
eval_conf_pgd.append(conf_pgd)
eval_preds_pgd.extend(preds_pgd)
loss_incr = loss_pgd - loss_clean
eval_loss_incr.append(loss_incr.detach().cpu())
x_pand = x_pgd + th.empty_like(x_pgd).uniform_(-args.eps_rand, args.eps_rand)
loss_pand, preds_pand = get_loss_and_preds(x_pand, y)
eval_loss_pand.append((loss_pand.data).cpu().numpy())
eval_acc_pand.append((th.eq(preds_pand, y).float()).cpu().numpy())
eval_preds_pand.extend(preds_pand)
preds_clean_after_corr, det_clean = predictor.send(x.cpu().numpy()).T
preds_pgd_after_corr, det_pgd = predictor.send(x_pgd.cpu().numpy()).T
acc_clean_after_corr.append(preds_clean_after_corr == y.cpu().numpy())
acc_pgd_after_corr.append(preds_pgd_after_corr == y.cpu().numpy())
eval_det_clean.append(det_clean)
eval_det_pgd.append(det_pgd)
if args.debug:
break
swriter.add_scalar('eval_loss_clean', np.concatenate(eval_loss_clean).mean(), global_step)
swriter.add_scalar('eval_acc_clean', np.concatenate(eval_acc_clean).mean(), global_step)
swriter.add_scalar('eval_loss_rand', np.concatenate(eval_loss_rand).mean(), global_step)
swriter.add_scalar('eval_acc_rand', np.concatenate(eval_acc_rand).mean(), global_step)
swriter.add_scalar('eval_loss_pgd', np.concatenate(eval_loss_pgd).mean(), global_step)
swriter.add_scalar('eval_acc_pgd', np.concatenate(eval_acc_pgd).mean(), global_step)
swriter.add_scalar('eval_loss_incr', th.cat(eval_loss_incr).mean(), global_step)
swriter.add_scalar('eval_loss_pand', np.concatenate(eval_loss_pand).mean(), global_step)
swriter.add_scalar('eval_acc_pand', np.concatenate(eval_acc_pand).mean(), global_step)
swriter.add_histogram('class_dist_clean', th.stack(eval_preds_clean), global_step)
swriter.add_histogram('class_dist_rand', th.stack(eval_preds_rand), global_step)
swriter.add_histogram('class_dist_pgd', th.stack(eval_preds_pgd), global_step)
swriter.add_histogram('class_dist_pand', th.stack(eval_preds_pand), global_step)
swriter.add_scalar('acc_clean_after_corr', np.concatenate(acc_clean_after_corr).mean(), global_step)
swriter.add_scalar('acc_pgd_after_corr', np.concatenate(acc_pgd_after_corr).mean(), global_step)
swriter.add_scalar('det_clean', np.concatenate(eval_det_clean).mean(), global_step)
swriter.add_scalar('det_pgd', np.concatenate(eval_det_pgd).mean(), global_step)
swriter.add_scalar('x_pgd_l0', np.concatenate(eval_x_pgd_l0).mean(), global_step)
swriter.add_scalar('x_pgd_l2', np.concatenate(eval_x_pgd_l2).mean(), global_step)
net.train(True)
if args.mode == 'eval':
for p in net.parameters():
p.requires_grad_(False)
run_eval()
elif args.mode == 'train':
run_train()
if __name__ == '__main__':
main()