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ABSTRACT
Blind image super-resolution(SR) is a long-standing task in
CV that aims to restore low-resolution(LR) images suffer-
ing from unknown and complex distortions. Recent work
has largely focused on adopting more complicated degrada-
tion models to emulate real-world degradations. The result-
ing models have made breakthroughs in perceptual loss and
yield perceptually convincing results. However, the limita-
tion brought by current generative adversarial network(GAN)
structures is still significant: treating pixels equally leads to
the ignorance of the image’s structural features, and results
in performance drawbacks such as twisted lines [1] and back-
ground over-sharpening or blurring. In this paper, we present
A-ESRGAN, a GAN model for blind SR tasks featuring an
attention U-Net based, multi-scale discriminator that can be
seamlessly integrated with other generators. To our knowl-
edge, this is the first work to introduce attention U-Net struc-
ture as the discriminator of GAN to solve blind SR problems.
And the paper also gives an interpretation for the mechanism
behind multi-scale attention U-Net that brings performance
breakthrough to the model. Through comparison experiments
with prior works, our model presents state-of-the-art level
performance on the non-reference natural image quality eval-
uator(NIQE) [2] metric. And our ablation studies have shown
that with our discriminator, the RRDB [3] based generator
can leverage the structural features of an image in multiple
scales, and consequently yields more perceptually realistic
high-resolution(HR) images compared to prior works.

Index Terms— Blind SR, GAN, Attention, U-Net

1. INTRODUCTION AND MOTIVATION

Image super-resolution (SR) is a low-level computer vi-
sion problem aiming to reconstruct a high-resolution(HR) im-
age from a distorted low-resolution(LR) image. Blind super-
resolution, specifically, refers to the idea of restoring LR im-
ages suffering from unknown and complex degradation, as
opposed to the traditional assumption of ideal bicubic degra-
dation.

In recent years, the main methods of this field have been
dominated by deep learning. Specifically, the trend started
from SRCNN [4], a convolutional neural network model
which achieved notable performance. However, while these
methods are able to generate images with high especially in
Peak Signal-to-Noise Ratio (PSNR) value, they tend to out-
put over-smoothed results which lack high-frequency details
[3]. Therefore, scholars proposed to use generative adver-
sarial networks(GANs) to solve image super-resolution chal-
lenges. A super-resolution GAN composes of a generator
network and a discriminator network, in which the generator
takes LR images as input and aims to generate images as sim-
ilar to the original high-resolution image as possible, while
the discriminator tries to distinguish between ”fake” images
generated by the generator and real high-resolution images.

By the competition of generator and discriminator, the
networks are encouraged to favor solutions that look more
like natural images. The state-of-the-art methods using gener-
ative adversarial network includes ESRGAN,Real-ESRGAN
and BSRGAN[3, 1, 5].

Recent work in super-resolution GAN has largely focused
on simulating a more complex and realistic degradation pro-
cess [1] or building a better generator [3], with little work
trying to improve the performance of the discriminator. How-
ever, the importance of a discriminator can not be ignored
since it provides the generator the direction to generate better
images, much like a loss function. In this work, we construct
a new discriminator network structure: Multi-scale Atten-
tion U-Net Discriminator and incorporate it with the exist-
ing RRDB based generator [3] to form our GAN model A-
ESRGAN. Our model shows superiority over the state-of-the-
art real-ESRGAN model in sharpness and details (see 8b).
This result owes to the combination of attention mechanism
and U-Net Structure in our proposed discriminator. U-Net
Structure in discriminator can provide per-pixel feedback to
the generator[6], which can help the generator to generate
more detailed features, such as texture or brushstroke. Mean-
while, the attention layer can not only distinguish the outline
of the subject area so as to maintain the global coherence but
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strengthen the lines and edges of the image to avoid the blur-
ring effect (this is demonstrated in the attention map analysis
section in our paper). Therefore, the combination of U-Net
and Attention is very promising. Besides, in order to increase
the perception field of our discriminator, We use 2 attention
U-Net discriminators that have an identical network structure
but operate at different image scales as our final discrimi-
nator, which is called multi-scale discriminator. Extensive
experiments show that our model outperforms most existing
GAN models both in quantitative NIQE performance metric
and qualitative image perceptual feelings.

In summary, the contributions of our work are:

• We propose a new multi-scale attention U-Net discrim-
inator network. To the best of our knowledge, this is
the first work to adopt attention U-Net structure as a
discriminator in the field of generative adversarial net-
work. This modular discriminator structure can be eas-
ily ported to future work.

• We incorporate our designed discriminator with the ex-
isting RRDB based generator to form our generative
adversarial network model A-ESRGAN. Experiments
show that our model outperforms most state-of-the-art
models in image super-resolution tasks.

• Through detailed analysis and visualization about dif-
ferent layers of our network, we provide convincing
reasoning about why multi-scale attention U-Net dis-
criminator works better than existing discriminators in
image super-resolution tasks.

2. RELATED WORK

Since the paper focuses on designing an improved multi-
scale discriminator by leveraging attention U-Net to train a
GAN model for blind SR tasks, we will give a brief overview
on related GANs-based blind SR works.

GANs-based Blind SR Methods Before GAN frame-
work is applied, deep convolutional neural networks(CNNs)
are widely adopted[4, 7, 8] in the field of blind image SR
tasks. Owing to CNN’s strong modeling power, these meth-
ods have achieved impressive PSNR performance. However,
because these PSNR-oriented methods use pixel-wise defined
losses such as MSE[4], the model tends to find the pixel-wise
average of multiple possible solutions, which generally leads
to overly-smoothed results and absence of high-frequency de-
tails like image textures [3]. Some scholars proposed GANs-
based approaches [9, 10, 11] to address the aforementioned
problem, because GANs have been proven competitive in
learning a mapping between manifolds and can therefore im-
prove the reconstructed local textures [12]. Recent state-of-
the-art works have raised a perceptual-driven perspective to
improve GANs by better modeling the perceptual loss be-
tween images[9, 3]. The ESRGAN[3], as a representative

work, proposed a practical perceptual loss function as well as
a residual-in-residual block(RRDB) generator network, and
produces synthesized HR images with convincing visual qual-
ity. Another perspective is to solve the intrinsic problem of
blind SR that the LR images used for training are synthesized
from HR images in the dataset. Most existing methods are
based on bicubic downsampling [4, 13, 14] and traditional
degradations [15, 16, 17, 18], while real-world degradations
are far more complicated. To produce more photo-realistic
results, the real-ESRGAN [1] proposed a practical high-order
degradation model and achieved visually impressive results
as well as state-of-the-art NIQE [2] performance. Our work
is based on the degradation model and RRDBN generator of
Real-ESRGAN, and we propose a novel and transportable
discriminator model named attention U-Net to remedy the
limitation of current GANs architectures.
Discriminator Models Some remarkable attempts have been
made to improve the discriminator model[19, 6, 20]. To syn-
thesize photo-realistic HR images, two major challenges are
presented: the discriminator needs a large receptive field to
differentiate the synthesized image and the ground truth(GT),
requiring either deep network or large convolution kernel
[19]. Besides, it’s difficult for one discriminator to give pre-
cise feedback on both global and local features, leading to
possible incoherence in the synthesized image such as twisted
textures on a building wall [1]. Wang et al. [19] proposed a
novel multiple discriminator architecture to resolve these two
issues. One discriminator accepts down-sampled synthesized
images as input and has a larger receptive field with fewer pa-
rameters, and it’s responsible to grasp the global view. The
other discriminator takes the full synthesized image as input
to learn the details. Another pioneer work [6] introduces U-
Net based discriminator architecture into GANs-based blind
SR tasks. The U-Net discriminator model can provide per-
pixel feedback to the generator while maintaining the global
coherence of synthesized images. Our discriminator model
presents the advantages of both architectures, and we inte-
grate the mechanism of attention [21, 22], which allows the
discriminator to learn the representations of edges in the im-
ages and put emphasis on the selected details. We show that
with the new discriminator architecture, we produce more
perceptually convincing results than prior works.

3. METHOD

3.1. Attention enhanced super-resolution GAN Model (A-
ESRGAN)

As shown in Figure 1, the proposed network of A-
ESRGAN contains a Generator and two separate discrimina-
tors, as traditional GAN models. Due to the competition of
the two networks, the generator can generate images nearly
the same as the real samples.

Degradation Model. We utilized the newly-proposed
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Fig. 1: The overall architecture of the A-ESRGAN. The gen-
erator of A-ESRGAN is using RRDB, which is adopted from
ESRGAN’s generator [3].

Fig. 2: The architecture of a singe attention U-Net Discrim-
inator. F, W, H represents output channel number of the first
convolution layer, height of the image and width of the image
respectively.

high-order degradation model [1] to synthesize LR images.
Compared with traditional first-order degration model, a high-
order degration model implements several times the same de-
gration operation and thus better intimate the real-world con-
dition.

Generator Architecture. Stacking residual-in-residual
dense blocks (RRDB), shown in Figure 1, has shown great
performance in SR problems and has been adopted by many
SR methods such as [5] and RealESRGAN [1]. We also
adopted RRDB as our generator.

Attention U-Net Discriminator. Inspired by [6] and
[22], we propose the attention U-Net discriminator structure,
which is shown in Figure 2. It composes a down-sampling
encoding module, an up-sampling decoding module and sev-
eral attention blocks. The detailed structure of the attention
block is shown in Figure 3. Noted in [22], the attention gate
is used for semantic segmentation of medical images, which
is 3D images, so we modified it to use on 2D images. More-
over, following the experience of RealESRGAN [1], we ap-
ply spectral normalization regularization [23] to stabilize the
training process.

Multi-scale Discriminator A-ESRGAN adopts a multi-
ple discriminator architecture that has 2 identical attention U-
Nets as the discriminator with one discriminator D1 takes an
original scale image as input and another discriminator D2

takes a 2× downsampled image as input.

Fig. 3: The architecture of the attention block (AB), which
is modified from [22]. Here xl is the input features from the
U-Net and g is the gating signal. Fint is a super parameter
denoting the output channels of the 1 by 1 convolution in the
AB. In the AB, xl is scaled by attention coefficient α.

3.2. The Relativistic Discriminators

The output of the U-Net discriminator is a W ×H matrix
and each element denote the likelihood that the pixel it repre-
sents is true. To calculate the total loss of one discriminator,
we use the sigmoid function to normalize the output and use
binary cross-entropy loss to calculate the loss. Assume C is
the output matrix, we define D = σ(C), xr is real data and
xf is fake data.

Therefore, uwe define the loss of one discriminator as

LD =

W∑
w=1

H∑
h=1

(−Exr [log(D(xr, xf )[w, h])]

− Exf
[1− log(D(xf , xr)[w, h])])

(1)

Because we have multi-scale discriminators, we will add
up the Loss of the discriminators to get the total Loss

LTotal = λ1LDnormal
+ λ2LDsampled

(2)
where λ1 and λ2 are coefficients. Likely, we can also obtain

the generator loss generated by one discriminator

LG =

W∑
w=1

H∑
h=1

(−Exr
[1− log(D(xr, xf )[w, h])]

− Exf
[log(D(xf , xr)[w, h])]

(3)

Where xf represents the output of the generator G(xi)

3.3. Perceptual Loss for Generator

Apart from the loss obtained from the output of discrim-
inators, we use L1loss and perceptual loss [24] to better tune
the generator.

Thus we obtain the whole loss function for generator

lG = Lprecep + λ1LGnormal
+ λ2LGsampled

+ ηL1 (4)

where λ1, λ2, η are coefficients that need to be tuned.

4. EXPERIMENTS

4.1. Implementing Detail

To better compare the functionality of multi-scale mech-
anism, we build 2 A-ESRGAN mofdels: A-ESRGAN-single
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and A-ESRGAN-multi. The difference is that A-ESRGAN-
single features one single attention U-Net discriminator,
while A-ESRGAN-multi features multi-scale network, i.e.
two identical attention U-Net discriminator operating at dif-
ferent image scale.

We trained with our A-ESRGAN on DIV2K [25] dataset.
For better comparison with Real-ESRGAN, we follows the
setting of training Real-ESRGAN [1] and load the pre-trained
Real-ESRNET to the generator of both A-ESRGAN-Single
and A-ESRGAN-Multi. The training HR patch size is 256.
We train our models with one NVIDIA A100 and three
NVIDIA A40 with a total batch size of 48 by using Adam
optimizer.

The A-ESRGAN-Single is trained with a single attention
U-Net discriminator for 400K iterations under 10−4 rate. The
A-ESRGAN-Multi is trained for 200K iterations under 10−4

learning rate.
For both A-ESRGAN-Single and A-ESRGAN-Multi,

the weight for L1loss, perceptual loss and GAN loss are
{1, 1, 0.1}. The A-ESRGAN-Multi is composed of two dis-
criminators Dnromal and Dsampled, which has the input of
1X and 2X down-sampled images as the input. The weight
for GAN loss of Dnromal and Dsampled is {1, 1}. The imple-
mentation of our model is based on BasicSR [26].

4.2. Testing Datasets

In prior works, the synthesized low resolution (LR) im-
ages manually degraded from high resolution (HR) are usu-
ally used to test the model in blind image super-resolution
task. However, the human simulated degraded images can
hardly reflect the low-resolution image coming from degra-
dation in real world, which usually features complicate com-
binations of different degradation processes. Besides, there is
no real dataset which provides real-world LR images. There-
fore, we choose to use real-world images, resizing them to
4 times as large as original images and use these as our test
dataset.

In this paper, we use the real-world images in the five stan-
dard benchmark datasets, Set5 [27], Set14 [28], BSD100 [29],
Sun-Hays80[30] and Urban100 [31]. These five datasets con-
tains images from manifold groups, such as portraits, scenery
and buildings. We argue that a good general super resolu-
tion model should achieve good performance on the overall 5
datasets.

4.3. Compared Methods

We compare the proposed A-ESRGAN-Single and
ESRGAN-Multi with several state-of-the-art(SOTA) genera-
tive based methods, i.e. ESRGAN [3], RealSR [32], BSR-
GAN [5], Real-ESRGAN [1]. Note that the architecture of
the generators of ESRGAN, BSRGAN and Real-ESRGAN
are the same as us, which can help verfiy the effectiveness of
our designed discriminator.

Fig. 4: Visual comparison of our method with other ×4 super
resolution methods. Zoom in for the best view.

4.4. Experiment Results

Since there is no ground-truth for the real world images
of the dataset, so we adopt the no-reference image quality as-
sessment metrics NIQE [2] for quantitative evaluation. NIQE
indicates the perceptual quality of the image. A lower NIQE
value indicates better perceptual quality. As can be seen from
the Table 1, our method outperforms most of the SOTA meth-
ods in NIQE metrics. From visual comparison (some exam-
ples are shown in Figure 4), we observe our methods can re-
cover sharper edges and restore better texture details.

4.5. Attention Map Analysis

To verify the effectiveness of attention gate in our dis-
criminator, We visualize the attention weights in the attention
layer from test images during our training process. The exam-
ple is shown in Figure 5. Initially, the attention weights are
uniformly distributed in all locations of the images. As the
training process goes on, we can observe that the attention
weight is gradually updated and begin to focus on ”particular
regions”, which are the edges where color changes abruptly.
Meanwhile, by visualizing attention map at different layers,
we argue that different attention layers recognize the images
at different granularity. As shown in Figure 6, the lower atten-
tion layers are coarse-grained give rough edges of the patches
while the upper attention layers are fine-grained and focus on
details such as lines and dots.

4.6. Disctiminator output analysis

We study the output image generated by the two atten-
tion U-Net disctiminators and propose that the two discrimi-
nators play different roles in identifying the properties of the
images. The normal discriminator, which is also used in the
single version, emphasizes more on lines. In contrast, the in-
put downsampled input images with blurred edges force the
other discriminator to focus more on larger patches.

As shown in Figure 7, the output image of the normal
discriminator judges the edges while the the dowsampled
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NIQE Bicubic ESRGAN BSRGAN RealESRGAN RealSR A-ESRGAN-Single(Ours) A-ESRGAN-Multi(Ours)

Set5 7.8524 5.6712 4.5806 4.8629 3.5064 3.9125 3.840
Set14 7.5593 5.0363 4.4096 4.4978 3.5413 3.4983 3.5168
BSD100 7.3413 3.1544 3.8172 3.9826 3.6916 3.2948 3.2474
Sun-Hays80 7.6496 3.6639 3.5609 2.9540 3.3109 2.6664 2.5908
Urban100 7.1089 3.1074 4.1996 4.0950 3.929 3.4728 3.3993

Table 1: The NIQE results of different methods on Set5, Set14, BSD100, Sun Hays80 and Urban 100 (The lower, the better).
The best and second best results are high lighted in red and blue, respectively.

Fig. 5: The figure shows the weight in the third attention layer
across the training process from iteration 5000 to 285000 at
an interval of 20000. The example image is picked from Ur-
ban100 [31]. It clearly shows at first the attention is uniformly
distributed. Then the attention is gradually updated and be-
gins to focus on the edges. Zoom in for the best view.

Fig. 6: The figure shows the weight of the first and third
attention layer at iteration 200000. The example image is
picked from Set5 [27]. The example shows lower level atten-
tion(first) would learn coarse-grained color changes (patches)
while upper level attention(third) learn fine-grained color
changes (dots and lines). The layers are resized for better
view.

discriminator judges thicker blocks, such as textures on the
branches of the tree.

Fig. 7: The figure shows Unet output of the two discrimina-
tors. The example image is picked from BSD100 [29]. The
example shows the normal discriminator(first) would focus on
lines in the image while the discriminator that parse the down-
sampled input will focus on patches. The brighter a pixel is
the more likely it is going to be a real picture. The outputs are
resized for better view.

4.7. Ablation Study

Effect of attention U-Net discriminator. The key factor
of A-ESRGAN surpassing the existing models is our designed
attention U-Net discriminator. In the ablation study, we com-
pare the results of Real-ESRGAN model and A-ESRGAN-
Single model. The only difference of these two network is
that Real-ESRGAN uses a plain U-Net as discriminator, while
A-ESRGAN applies an attention U-Net discriminator.

As shown in Table 1, A-ESRGAN-Single achieves better
NIQE in all tested datasets. By taking a close look at the re-
sult, we could find since plain U-Net uniformly gives weight
to each pixel, it can’t distinguish between the subject area and
background of images. However, as shown in Section 4.5, the
attention U-Net is able to put more efforts on the edges than
ordinary pixels.

We believe this will bring at least two benefits. First, the
result image will give sharper and clearer details as shown in
8a. Second, when up-sampling process is based on the main

edges of the image, there will be less probability of distortion
(like shown in 8b).

Effect of multi-scale discriminator. The multi-scale dis-
criminator enable our model to focus on not only the edges
but also on more detailed parts such as textures. In the abla-
tion study, we compare the result of the A-ESRGAN-single
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(a)

(b)

Fig. 8: Ablation on the discriminator design. Zoom in for the
best view.

and the A-ESRGAN-multi. The latter has the same generator
as the former while it possesses two discriminators, which are
a normal one and a downsampled one.

As shown in Table 1, the A-ESRGAN-multi surpasses
the performance of A-ESRGAN-single in all dataset except
Set14. By analyzing the output images of the two models,
we conclude that the A-ESRGAN-multi does much better on
showing the texture of items than A-ESRGAN-single. Like
the images shown in Figure 9, the A-ESRGAN-single poorly
performs on rebuilding the texture of the branches and the sea
creature. In contrast, because the downsampled discrimina-
tor focus on patches, it can rebuild the texture as well as give
shaper edge details.

(a)

(b)

Fig. 9: Ablation on the multi-scale design. Zoom in for the
best view.

5. CONCLUSIONS

In this paper, a multi-scale attention U-Net discrimina-
tor is proposed to train a deep blind super-resolution model.
Based on the new discriminator, we trained a deep blind
super-resolution model and compared it with other SOTA
generative methods by directly upscaling real images in 5
benchmark datasets. Our model outperforms most of them
in both NIQE metrics and visual performance. By systemat-
ically analyzing how the attention coefficient changes across
time and space during the training process, we give a convinc-
ing interpretation of how the attention layer and multi-scale
mechanism contribute to the progress in SR problems. We
believe that other super-resolution models can benefit from
our work.
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