
Why add capabilities
and move Flash slowly
to generic MTD class.

0.Why add new capability to Flash?
● We are starting to support new kind of devices that replace

Flash as code/storage solution in SoC devices and are
becoming more common as external devices. These are
RRAM, MRAM, FRAM and other devices that have similar
characteristics of Flash in use, but do not have erase
requirement or sometimes even lack endurance problem.

● This device are now connected to Flash Driver API,
because code is basically tied to Flash at this point in
varius ways.

0. Why add new capability to Flash?
● In Zephyr flash is kinda generic subsystem that allows

to access Code/Storage within SoC device and external
devices. There is a lot of Kconfig, Linker scripts, DTS
definitions around flash that usually mean „CODE
STORAGE“, for example
CONFIG_FLASH_BASE_ADDRESS, etc.:

0. Why add new capability to Flash?
● A lot of our subsystem uses Flash Map or Fixed Partitions, which are

positioned around Flash and moving them to oher subsystems, like
EEPROM, would require significant rework and ability to demultiplex type
of device API is invoked for, rather than what API could do with the
device.etc.

● A lot of code directly accesses devices via Flash API, this means that if
we would move the SoC non-Flash devices to EEPROM we would
generate two paths in every instance when storage is accessed to allow
choosing betwen EEPROM and Flash API.

● All devices use Flash API, EEPROM is optional. Moving these devices to
EEPROM makes EEPROM API mandatory for them, even though they „run
on Flash“.

1. We need new subsystem to handle that

● We need transition from what we have to more generic
storage system. Moving to a new subsystem will
require a lot of work, which has been already discussed
while this ZSAI (Zephyr Storage Access Interface, do
not stick to a name) https://github.com/zephyrproject-
rtos/zephyr/issues/64732

2. What is your proposal then?
● Slowly adapt Flash API as a generic storage API, and then renaming it into some

„common storage“ API.
● This I am approching with addition to capabilities to struct flash_parameters,

where first capability is explicit_erase, a capability that is now set by each Flash
driver to indicate that it requires explicit call to erase in comparison to no-erase
device like RAM, or auto-erase/erase-on-write devices like EEPROM.

● I am also adding CONFIG_HAS_EXPLICIT_ERASE and
CONFIG_HAS_NO_EXPLICIT_ERASE, for a device driver to indicate what kind of
devices are within a system.

● There are additions to Flash API in form of flash_flatten and flash_fill functions,
where the first one is for applications that use have been using erase for purpose
other than mandated by hardware, for example to remove data or set specific
pattern (erase_value) accross some storage area.

3. Why CONFIG_HAS_ and CONFIG_HAS_NOT_?
Wouldn’t CONFIG_HAS_ suffice?

● No it would not. The CONFIG_ indicates for subsystems
what capabilities various drivers provide.

● Subsystems can use both to optimize out alternative
paths in code when there is no device with specific
capability or all devices have capability a subsystem
will not work at all.

Subsys code

Path when there is property Path where there is no property

If defined(CONFIG_HAS_
If defined(CONFIG_HAS_NO

4. Why CONFIG_HAS_ and CONFIG_HAS_NOT_?
Wouldn’t CONFIG_HAS_ suffice?

● This also allows at the level of Menuconfig show only
subsystems that support hardware with given
capabilities.

● Additionally the subsystems can decide to provide sub-
menus that are dependent on declared capabilities.

●

5. No, the CONFIG_HAS_ would suffice!
● Yes, kinda but in clumsy way. You have no way to

inform code that there are no devices that have no
capability and so the paths that support such case
could be removed. Now you have to add Kconfig to
every subsystem to disable the path and do that by
hand.

●
Subsys code

Path when there is property Path where there is no property

If defined(CONFIG_HAS_

Not optional
unless Kconfig
from subsys
provided

6. So just controll it from subsys.
● Yeah, that is fine, but you have no feedback from

drivers what is supported or not, so from careful
configuration this changes to trail-and-error approach.

●

7. This should be property in DTS to allow compile
time optimization by picking it from DTS directly

● This only works if you have subsystem targetting single
instance of a device.

● Kconfi works here as well and you are able to set if
from multiple drivers.

8. User should be able to set it for a device
in DTS.

● Capability is not configurable at level of device – device
has it or not; driver may support it or not, which can be
indicated by Kconfig and turned of at the level of driver,
if it is required.

● Properties, applied to a device, should modify how a
common driver code works; if they do not do that, they
are pointless.

9. No, DTS. Since subsystems can check that as
property/capability this this belongs to a device node.

● First this makes it harder to actually make the compile
time optimizations (yeah, so it breaks 7. anyway, and is
worse than 3.)

● For the mental experiment let assume we have
●

DTS definition
Generated Object

● Note ahat no code in object uses the prop_b, it is only passed further. So the property
does nothing within class of the object and should not have interface to be modified.

10. You are inconsistent: you want subsystems to
check for the capability but do not allow to set it

● No I am consistent. Storing property that does nothing for
the object makes no sens. Capability is property of a class
not a specific instance of it.

● If system check for that capability then in this scenario
calling set_prop_b(), within object, changes behaviour of
that subsystem, without changing anything in the object or
behaviour of common class code. This means that prop_b is
property of subsystem not a class defining the object that
is used by the subsystem.

●

11. We can automatically pick the property
from DTS, rather than having Kconfig

● It only works within single driver. (DT_INST and so on)
● You still need to export it as Kconfig finally.
● Now there is need to maintain binding.
● It is hard to have some logic around it in linker scripts

and so on (should we pick the highest value, lowest?
Does one true make everything true or one false make
averything false?)

12. You are inconsistent write_block_size
works in Flash, why new property would not.

● write_block_size is broken design. There is nearly no chance to change the property
of write_block_size within drivers.

● This property is usable only if you target directly specific device (by node).
● You can not figure out write_block_size common for entire system if there are

multiple device.
● It is actually used by subsystems only, because device can only write by

write_block_size hardcoded in factory
● If you set a write_block_size if has effect on everything that uses device, except for

driver that will still write by what design of chip tells it.
● It allows user to break subsystems in bunch, and should be rather property set for

instances of subsystems that work on a device.

13. we need another layer to gather all
devices underneath

● We have a layer we can extend it. Result will be the
same.

● No layer fixes problem with too many layers.
● No layer fixes problems with layer underneath.
● The layer still needs to figure out what devices it works

with to pass that info to next layer.

14. New layer should focus on types of
devices rather than capabilities

● Devices of various types share the same capabilities.
There is no point to distinguish devices by type, as in the
end we have to dismantle them to capabilities anyway.

● No layer fixes problem with too many layers.
● No layer fixes problems with layer underneath.

15. No. People know Flash and that breaks
assumptions

● Things change. We had
ROM→PROM→EPROM→EEPROM→Flash eveolution and
nobody remembers that Flash is EEPROM anymore.

15. Software should erase when it wants to
● Software can just erase if it wants, but that may not be

provided by a device.
● Erase is not convenience for software, there is no software

that is happy that device forces it to erase entire area.
Software would preferebly change single bit.

16. OK, why add flag that device requires erase
rather than the one that states otherwise.

● Because you do not want to do extra steps when not need.
● Software is the same, and it is more convenient to check

„do I need to do erase“ and call operation than, then have
negative check „!do I need to do erase“ and call erase.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

