Skip to content

Pytorch implementation of Ligeng Zhu and Brian Funt 's paper "Colorizing Color Images"

Notifications You must be signed in to change notification settings

zhaoyanglijoey/White-Balance-By-Deep-learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

White-Balance-By-Deep-learning

Pytorch implementation of Ligeng Zhu and Brian Funt 's paper "Colorizing Color Images" (HVEI 2018)

Torch implementation by Ligeng Zhu

Demo

demo

Usage

Training

python3 colorize.py train --dataset <dataset_dir> --save-model-name <model_name>

usage: colorize.py train [-h] [--epochs EPOCHS] [--batch-size BATCH_SIZE]
                         --dataset DATASET [--save-model-dir SAVE_MODEL_DIR]
                         [--save-model-name SAVE_MODEL_NAME]
                         [--image-size IMAGE_SIZE] [--cuda] [--seed SEED]
                         [--lr LR] [--log-interval LOG_INTERVAL]
                         [--checkpoint-dir CHECKPOINT_DIR] [--resume RESUME]
                         [--gpus [GPUS [GPUS ...]]]

optional arguments:
  -h, --help            show this help message and exit
  --epochs EPOCHS       number of training epochs, default is 2
  --batch-size BATCH_SIZE
                        training batch size, default is 30
  --dataset DATASET     path to training dataset, the path should point to a
                        folder containing another folder with all the training
                        images
  --save-model-dir SAVE_MODEL_DIR
                        directory of the model to be saved, default is model/
  --save-model-name SAVE_MODEL_NAME
                        save model name
  --image-size IMAGE_SIZE
                        size of training images, default is 256
  --cuda                run on GPU
  --seed SEED           random seed for training
  --lr LR               learning rate, default is 0.001
  --log-interval LOG_INTERVAL
                        number of batches after which the training loss is
                        logged, default is 100
  --checkpoint-dir CHECKPOINT_DIR
                        checkpoint model saving directory
  --resume RESUME       resume training from saved model
  --gpus [GPUS [GPUS ...]]
                        specify GPUs to use

<dataset_dir> should be a directory containing images, for example mscoco train 2014 dataset.

Use --resume to resume from checkpoint

Evaluating

python3 colorize.py eval --input-dir <input_dir> --output-dir <output_dir> --model <model>

usage: colorize.py eval [-h] --input-dir INPUT_DIR [--output-dir OUTPUT_DIR]
                        --model MODEL [--cuda] [--gpus [GPUS [GPUS ...]]]

optional arguments:
  -h, --help            show this help message and exit
  --input-dir INPUT_DIR
                        path to input image directory
  --output-dir OUTPUT_DIR
                        path to output image directory
  --model MODEL         saved model to be used for evaluation
  --cuda                run on GPU
  --gpus [GPUS [GPUS ...]]
                        specify GPUs to use

  • To run on GPU, add --cuda

  • To change other hyper parameters such as epochs, learning rate and batch size, use python3 colorize.py {train | eval} -h for details

Reference

Fast Neural Style

About

Pytorch implementation of Ligeng Zhu and Brian Funt 's paper "Colorizing Color Images"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages