|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | +# SPDX-FileCopyrightText: Copyright contributors to the vLLM project |
| 3 | +import functools |
| 4 | +from copy import copy |
| 5 | +from typing import Optional |
| 6 | + |
| 7 | +import torch |
| 8 | +from transformers import CacheConfig |
| 9 | + |
| 10 | +from vllm import envs |
| 11 | +from vllm.attention.backends.abstract import (AttentionBackend, |
| 12 | + AttentionMetadata, AttentionType) |
| 13 | +from vllm.attention.layer import Attention |
| 14 | +from vllm.attention.selector import get_attn_backend |
| 15 | +from vllm.v1.attention.backends.utils import (CommonAttentionMetadata, |
| 16 | + subclass_attention_backend) |
| 17 | + |
| 18 | + |
| 19 | +@functools.lru_cache |
| 20 | +def create_encoder_only_attention_backend( |
| 21 | + underlying_attn_backend: AttentionBackend, ) -> type[AttentionBackend]: |
| 22 | + prefix = "EncoderOnlyAttention_" |
| 23 | + underlying_builder = underlying_attn_backend.get_builder_cls() |
| 24 | + |
| 25 | + class EncoderOnlyAttentionBuilder(underlying_builder): # type: ignore |
| 26 | + |
| 27 | + def build(self, |
| 28 | + common_prefix_len: int, |
| 29 | + common_attn_metadata: CommonAttentionMetadata, |
| 30 | + fast_build: bool = False) -> AttentionMetadata: |
| 31 | + new_common_attn_metadata = copy(common_attn_metadata) |
| 32 | + new_common_attn_metadata.causal = False |
| 33 | + return super().build(common_prefix_len, new_common_attn_metadata, |
| 34 | + fast_build) |
| 35 | + |
| 36 | + attn_backend = subclass_attention_backend( |
| 37 | + name_prefix=prefix, |
| 38 | + attention_backend_cls=underlying_attn_backend, |
| 39 | + builder_cls=EncoderOnlyAttentionBuilder) |
| 40 | + |
| 41 | + return attn_backend |
| 42 | + |
| 43 | + |
| 44 | +class EncoderOnlyAttention(Attention): |
| 45 | + """ |
| 46 | + Encoder attention is a special case that doesn't need a KV Cache. |
| 47 | + """ |
| 48 | + |
| 49 | + def __init__(self, |
| 50 | + num_heads: int, |
| 51 | + head_size: int, |
| 52 | + scale: float, |
| 53 | + cache_config: Optional[CacheConfig] = None, |
| 54 | + attn_type: Optional[str] = None, |
| 55 | + **kwargs): |
| 56 | + dtype = torch.get_default_dtype() |
| 57 | + |
| 58 | + if cache_config is not None: |
| 59 | + kv_cache_dtype = cache_config.cache_dtype |
| 60 | + block_size = cache_config.block_size |
| 61 | + else: |
| 62 | + kv_cache_dtype = "auto" |
| 63 | + block_size = 16 |
| 64 | + |
| 65 | + if envs.VLLM_USE_V1: |
| 66 | + underlying_attn_backend = get_attn_backend(head_size, dtype, |
| 67 | + kv_cache_dtype, |
| 68 | + block_size) |
| 69 | + |
| 70 | + attn_backend = create_encoder_only_attention_backend( |
| 71 | + underlying_attn_backend) |
| 72 | + else: |
| 73 | + # in v0 encoder only attention is handled inside the backends |
| 74 | + attn_backend = None |
| 75 | + |
| 76 | + if attn_type is not None: |
| 77 | + assert attn_type == AttentionType.ENCODER_ONLY, \ |
| 78 | + "EncoderOnlyAttention only supports AttentionType.ENCODER_ONLY" |
| 79 | + |
| 80 | + super().__init__(num_heads=num_heads, |
| 81 | + head_size=head_size, |
| 82 | + scale=scale, |
| 83 | + cache_config=cache_config, |
| 84 | + attn_backend=attn_backend, |
| 85 | + attn_type=AttentionType.ENCODER_ONLY, |
| 86 | + **kwargs) |
0 commit comments