-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
59 lines (51 loc) · 1.43 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import mxnet as mx
from mxnet import gluon
class BaseRGCN(gluon.Block):
def __init__(
self,
num_nodes,
h_dim,
out_dim,
num_rels,
num_bases=-1,
num_hidden_layers=1,
dropout=0,
use_self_loop=False,
gpu_id=-1,
):
super(BaseRGCN, self).__init__()
self.num_nodes = num_nodes
self.h_dim = h_dim
self.out_dim = out_dim
self.num_rels = num_rels
self.num_bases = num_bases
self.num_hidden_layers = num_hidden_layers
self.dropout = dropout
self.use_self_loop = use_self_loop
self.gpu_id = gpu_id
# create rgcn layers
self.build_model()
def build_model(self):
self.layers = gluon.nn.Sequential()
# i2h
i2h = self.build_input_layer()
if i2h is not None:
self.layers.add(i2h)
# h2h
for idx in range(self.num_hidden_layers):
h2h = self.build_hidden_layer(idx)
self.layers.add(h2h)
# h2o
h2o = self.build_output_layer()
if h2o is not None:
self.layers.add(h2o)
def build_input_layer(self):
return None
def build_hidden_layer(self):
raise NotImplementedError
def build_output_layer(self):
return None
def forward(self, g, h, r, norm):
for layer in self.layers:
h = layer(g, h, r, norm)
return h