-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpubmed.py
156 lines (130 loc) · 4.46 KB
/
pubmed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import torch as th
import torch.optim as optim
from dgl.data import PubmedGraphDataset
from model import GeniePath, GeniePathLazy
from sklearn.metrics import accuracy_score
def main(args):
# Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
# Load dataset
dataset = PubmedGraphDataset()
graph = dataset[0]
# check cuda
if args.gpu >= 0 and th.cuda.is_available():
device = "cuda:{}".format(args.gpu)
else:
device = "cpu"
num_classes = dataset.num_classes
# retrieve label of ground truth
label = graph.ndata["label"].to(device)
# Extract node features
feat = graph.ndata["feat"].to(device)
# retrieve masks for train/validation/test
train_mask = graph.ndata["train_mask"]
val_mask = graph.ndata["val_mask"]
test_mask = graph.ndata["test_mask"]
train_idx = th.nonzero(train_mask, as_tuple=False).squeeze(1).to(device)
val_idx = th.nonzero(val_mask, as_tuple=False).squeeze(1).to(device)
test_idx = th.nonzero(test_mask, as_tuple=False).squeeze(1).to(device)
graph = graph.to(device)
# Step 2: Create model =================================================================== #
if args.lazy:
model = GeniePathLazy(
in_dim=feat.shape[-1],
out_dim=num_classes,
hid_dim=args.hid_dim,
num_layers=args.num_layers,
num_heads=args.num_heads,
residual=args.residual,
)
else:
model = GeniePath(
in_dim=feat.shape[-1],
out_dim=num_classes,
hid_dim=args.hid_dim,
num_layers=args.num_layers,
num_heads=args.num_heads,
residual=args.residual,
)
model = model.to(device)
# Step 3: Create training components ===================================================== #
loss_fn = th.nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
# Step 4: training epochs =============================================================== #
for epoch in range(args.max_epoch):
# Training and validation
model.train()
logits = model(graph, feat)
# compute loss
tr_loss = loss_fn(logits[train_idx], label[train_idx])
tr_acc = accuracy_score(
label[train_idx].cpu(), logits[train_idx].argmax(dim=1).cpu()
)
# validation
valid_loss = loss_fn(logits[val_idx], label[val_idx])
valid_acc = accuracy_score(
label[val_idx].cpu(), logits[val_idx].argmax(dim=1).cpu()
)
# backward
optimizer.zero_grad()
tr_loss.backward()
optimizer.step()
# Print out performance
print(
"In epoch {}, Train ACC: {:.4f} | Train Loss: {:.4f}; Valid ACC: {:.4f} | Valid loss: {:.4f}".format(
epoch, tr_acc, tr_loss.item(), valid_acc, valid_loss.item()
)
)
# Test after all epoch
model.eval()
# forward
logits = model(graph, feat)
# compute loss
test_loss = loss_fn(logits[test_idx], label[test_idx])
test_acc = accuracy_score(
label[test_idx].cpu(), logits[test_idx].argmax(dim=1).cpu()
)
print(
"Test ACC: {:.4f} | Test loss: {:.4f}".format(
test_acc, test_loss.item()
)
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="GeniePath")
parser.add_argument(
"--gpu", type=int, default=-1, help="GPU Index. Default: -1, using CPU."
)
parser.add_argument(
"--hid_dim", type=int, default=16, help="Hidden layer dimension"
)
parser.add_argument(
"--num_layers", type=int, default=2, help="Number of GeniePath layers"
)
parser.add_argument(
"--max_epoch",
type=int,
default=300,
help="The max number of epochs. Default: 300",
)
parser.add_argument(
"--lr",
type=float,
default=0.0004,
help="Learning rate. Default: 0.0004",
)
parser.add_argument(
"--num_heads",
type=int,
default=1,
help="Number of head in breadth function. Default: 1",
)
parser.add_argument(
"--residual", type=bool, default=False, help="Residual in GAT or not"
)
parser.add_argument(
"--lazy", type=bool, default=False, help="Variant GeniePath-Lazy"
)
args = parser.parse_args()
th.manual_seed(16)
print(args)
main(args)