-
Notifications
You must be signed in to change notification settings - Fork 0
/
create_training_data.py
180 lines (152 loc) · 7.7 KB
/
create_training_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import argparse
from pathlib import Path
import pickle
import numpy as np
from p_tqdm import p_uimap, p_umap
from utils.logging_utils import SummaryManager
from data.text import TextToTokens
from data.datasets import DataReader
from utils.training_config_manager import TrainingConfigManager
from data.audio import Audio
from data.text.symbols import _alphabet
np.random.seed(42)
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--skip_phonemes', action='store_true')
parser.add_argument('--skip_mels', action='store_true')
args = parser.parse_args()
for arg in vars(args):
print('{}: {}'.format(arg, getattr(args, arg)))
cm = TrainingConfigManager(args.config, aligner=True)
cm.create_remove_dirs()
metadatareader = DataReader.from_config(cm, kind='original', scan_wavs=True)
summary_manager = SummaryManager(model=None, log_dir=cm.log_dir / 'data_preprocessing', config=cm.config,
default_writer='data_preprocessing')
file_ids_from_wavs = list(metadatareader.wav_paths.keys())
print(f"Reading wavs from {metadatareader.wav_directory}")
print(f"Reading metadata from {metadatareader.metadata_path}")
print(f'\nFound {len(metadatareader.filenames)} metadata lines.')
print(f'\nFound {len(file_ids_from_wavs)} wav files.')
cross_file_ids = [fid for fid in file_ids_from_wavs if fid in metadatareader.filenames]
print(f'\nThere are {len(cross_file_ids)} wav file names that correspond to metadata lines.')
if not args.skip_mels:
def process_wav(wav_path: Path):
file_name = wav_path.stem
y, sr = audio.load_wav(str(wav_path))
pitch = audio.extract_pitch(y)
mel = audio.mel_spectrogram(y)
assert mel.shape[1] == audio.config['mel_channels'], len(mel.shape) == 2
assert mel.shape[0] == pitch.shape[0], f'{mel.shape[0]} == {pitch.shape[0]} (wav {y.shape})'
mel_path = (cm.mel_dir / file_name).with_suffix('.npy')
pitch_path = (cm.pitch_dir / file_name).with_suffix('.npy')
np.save(mel_path, mel)
np.save(pitch_path, pitch)
return {'fname': file_name, 'mel.len': mel.shape[0], 'pitch.path': pitch_path, 'pitch': pitch}
print(f"\nMels will be stored stored under")
print(f"{cm.mel_dir}")
audio = Audio.from_config(config=cm.config)
wav_files = [metadatareader.wav_paths[k] for k in cross_file_ids]
len_dict = {}
remove_files = []
mel_lens = []
pitches = {}
wav_iter = p_uimap(process_wav, wav_files)
for out_dict in wav_iter:
len_dict.update({out_dict['fname']: out_dict['mel.len']})
pitches.update({out_dict['pitch.path']: out_dict['pitch']})
if out_dict['mel.len'] > cm.config['max_mel_len'] or out_dict['mel.len'] < cm.config['min_mel_len']:
remove_files.append(out_dict['fname'])
else:
mel_lens.append(out_dict['mel.len'])
def normalize_pitch_vectors(pitch_vecs):
nonzeros = np.concatenate([v[np.where(v != 0.0)[0]]
for v in pitch_vecs.values()])
mean, std = np.mean(nonzeros), np.std(nonzeros)
return mean, std
def process_pitches(item: tuple):
fname, pitch = item
zero_idxs = np.where(pitch == 0.0)[0]
pitch -= mean
pitch /= std
pitch[zero_idxs] = 0.0
np.save(fname, pitch)
mean, std = normalize_pitch_vectors(pitches)
pickle.dump({'pitch_mean': mean, 'pitch_std': std}, open(cm.data_dir / 'pitch_stats.pkl', 'wb'))
pitch_iter = p_umap(process_pitches, pitches.items())
pickle.dump(len_dict, open(cm.data_dir / 'mel_len.pkl', 'wb'))
pickle.dump(remove_files, open(cm.data_dir / 'under-over_sized_mels.pkl', 'wb'))
summary_manager.add_histogram('Mel Lengths', values=np.array(mel_lens))
total_mel_len = np.sum(mel_lens)
total_wav_len = total_mel_len * audio.config['hop_length']
summary_manager.display_scalar('Total duration (hours)',
scalar_value=total_wav_len / audio.config['sampling_rate'] / 60. ** 2)
if not args.skip_phonemes:
remove_files = pickle.load(open(cm.data_dir / 'under-over_sized_mels.pkl', 'rb'))
phonemized_metadata_path = cm.phonemized_metadata_path
train_metadata_path = cm.train_metadata_path
test_metadata_path = cm.valid_metadata_path
print(f'\nReading metadata from {metadatareader.metadata_path}')
print(f'\nFound {len(metadatareader.filenames)} lines.')
filter_metadata = []
for fname in cross_file_ids:
item = metadatareader.text_dict[fname]
#non_p = [c for c in item if c in _alphabet]
#if len(non_p) < 1:
#filter_metadata.append(fname)
if len(filter_metadata) > 0:
print(f'Removing {len(filter_metadata)} suspiciously short line(s):')
for fname in filter_metadata:
print(f'{fname}: {metadatareader.text_dict[fname]}')
print(f'\nRemoving {len(remove_files)} line(s) due to mel filtering.')
remove_files += filter_metadata
metadata_file_ids = [fname for fname in cross_file_ids if fname not in remove_files]
metadata_len = len(metadata_file_ids)
sample_items = np.random.choice(metadata_file_ids, 5)
test_len = cm.config['n_test']
train_len = metadata_len - test_len
print(f'\nMetadata contains {metadata_len} lines.')
print(f'\nFiles will be stored under {cm.data_dir}')
print(f' - all: {phonemized_metadata_path}')
print(f' - {train_len} training lines: {train_metadata_path}')
print(f' - {test_len} validation lines: {test_metadata_path}')
print('\nMetadata samples:')
for i in sample_items:
print(f'{i}:{metadatareader.text_dict[i]}')
summary_manager.add_text(f'{i}/text', text=metadatareader.text_dict[i])
# run cleaner on raw text
text_proc = TextToTokens.default(cm.config['phoneme_language'], add_start_end=False,
with_stress=cm.config['with_stress'], model_breathing=cm.config['model_breathing'],
njobs=1)
def process_phonemes(file_id):
text = metadatareader.text_dict[file_id]
try:
phon = text_proc.phonemizer(text)
except Exception as e:
print(f'{e}\nFile id {file_id}')
raise BrokenPipeError
return (file_id, phon)
print('\nPHONEMIZING')
phonemized_data = {}
phon_iter = p_uimap(process_phonemes, metadata_file_ids)
for (file_id, phonemes) in phon_iter:
phonemized_data.update({file_id: phonemes})
print('\nPhonemized metadata samples:')
for i in sample_items:
print(f'{i}:{phonemized_data[i]}')
summary_manager.add_text(f'{i}/phonemes', text=phonemized_data[i])
new_metadata = [f'{k}|{v}\n' for k, v in phonemized_data.items()]
shuffled_metadata = np.random.permutation(new_metadata)
train_metadata = shuffled_metadata[0:train_len]
test_metadata = shuffled_metadata[-test_len:]
with open(phonemized_metadata_path, 'w+', encoding='utf-8') as file:
file.writelines(new_metadata)
with open(train_metadata_path, 'w+', encoding='utf-8') as file:
file.writelines(train_metadata)
with open(test_metadata_path, 'w+', encoding='utf-8') as file:
file.writelines(test_metadata)
# some checks
assert metadata_len == len(set(list(phonemized_data.keys()))), \
f'Length of metadata ({metadata_len}) does not match the length of the phoneme array ({len(set(list(phonemized_data.keys())))}). Check for empty text lines in metadata.'
assert len(train_metadata) + len(test_metadata) == metadata_len, \
f'Train and/or validation lengths incorrect. ({len(train_metadata)} + {len(test_metadata)} != {metadata_len})'
print('\nDone')