-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstreamlit-app.py
219 lines (168 loc) · 7.98 KB
/
streamlit-app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import streamlit as st
import pandas as pd
import altair as alt
from datetime import date
import numpy as np
import os
# from dotenv import load_dotenv
import boto3
import sys
sys.path.append('./modules/')
# import thegraph
# load_dotenv()
try:
AWS_ACCESS_KEY_ID = os.environ.get('AWS_ACCESS_KEY_ID')
AWS_SECRET_ACCESS_KEY = os.environ.get('AWS_SECRET_ACCESS_KEY')
# AWS_ACCESS_KEY_ID = os.environ.get('AWS_ACCESS_KEY_ID')
# AWS_SECRET_ACCESS_KEY = os.environ.get('AWS_SECRET_ACCESS_KEY')
client = boto3.client('s3', aws_access_key_id = AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
except:
AWS_ACCESS_KEY_ID = st.secrets['AWS_ACCESS_KEY_ID']
AWS_SECRET_ACCESS_KEY = st.secrets['AWS_SECRET_ACCESS_KEY']
client = boto3.client('s3', aws_access_key_id = AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
st.set_page_config(layout='wide')
pd.set_option('display.precision', 2)
st.image('https://skycatcher.xyz/images/logo-white.svg')
header = st.container()
dataset = st.container()
legion_tokens = st.container()
st.sidebar.markdown("### Treasure Ecosystem Overview")
st.sidebar.markdown("This app will go over the basics of the Treasure Ecosystem.")
st.sidebar.markdown("Link to BridgeWorld: [BridgeWorld](https://bridgeworld.treasure.lol/)")
st.sidebar.markdown("Link to Trove Marketplace: [Trove](https://trove.treasure.lol/)")
with header:
st.title('Treasure Ecosystem')
#----------------------------------------------#
#Page Layout
#The page will be 3 columns (column 1: sidebar, column 2, column3)
col1 = st.sidebar
col2, col3 = st.columns((2,1))
tab1, tab2, tab3 = st.tabs(['Magic Token', 'Legion', 'Trove'])
expander_test = st.expander
#---------------------------------------------#
s3_bucket = "stubbs-file-storage-streamlit"
region = "us-west-1"
@st.experimental_memo(ttl=1200)
def load_supply_over_time():
file_name = 'supply_over_time.csv'
obj=client.get_object(Bucket=s3_bucket, Key=file_name)
df = pd.read_csv(obj['Body'])
return df
def load_excluded_addresses():
file_name = 'excluded_addresses.csv'
obj=client.get_object(Bucket=s3_bucket, Key=file_name)
df = pd.read_csv(obj['Body'])
return df
def load_balances_by_day():
file_name = 'balances_by_day.csv'
obj=client.get_object(Bucket=s3_bucket, Key=file_name)
df = pd.read_csv(obj['Body'])
return df
def load_legion_nft_holders_over_time():
file_name = 'legion_holders_by_day.csv'
obj=client.get_object(Bucket=s3_bucket, Key=file_name)
df = pd.read_csv(obj['Body'])
return df
def unique_legion_holders():
file_name = 'unique_legion_holders.csv'
obj=client.get_object(Bucket=s3_bucket, Key=file_name)
df = pd.read_csv(obj['Body'])
return df
minted_over_time = load_supply_over_time()
minted_over_time['amount'] = minted_over_time['amount'].apply(lambda x: -1*x)
minted_over_time['cumsum'] = minted_over_time['cumsum'].apply(lambda x: -1 * x)
with tab1:
st.header('$MAGIC Token')
tab1_col1, tab1_col2 = st.columns((1,2))
st.header('Current Wallet Balances')
tab1_col1_2, tab1_col2_2 = st.columns((1,1))
with tab1_col1:
total_magic_supply = abs(minted_over_time['cumsum'].iloc[-1])
st.metric('Total MAGIC Supply', "{:,.0f}".format(total_magic_supply))
# st.line_chart(minted_over_time, x='date', y=['cumsum', 'amount'])
with tab1_col2:
st.header('Magic Supply Growth')
chart = alt.Chart(minted_over_time).mark_area().encode(
x = 'date:T',
y='cumsum:Q',
tooltip = ['date:T', 'amount:Q', 'cumsum:Q']
)
st.altair_chart(chart, use_container_width=True)
with tab1_col1_2:
balances = load_balances_by_day()
balances.drop(balances.columns[0], axis=1, inplace=True)
balances['date'] = pd.to_datetime(balances['date']).dt.date
balances = balances.sort_values('cumsum', ascending=False)
balances_today = balances[balances['date'] == balances['date'].max()][['date','wallet_address','cumsum']]
df_excluded_addresses = load_excluded_addresses()[['Name', 'Wallet Address']]
excluded_addresses = df_excluded_addresses['Wallet Address'].str.lower().to_list()
balances_today_wo_contracts = balances_today[~balances_today['wallet_address'].isin(excluded_addresses)]
balances_excluded = balances_today[balances_today['wallet_address'].isin(excluded_addresses)]
st.write('Wallet Balances <not staking contracts>')
st.dataframe(balances_today_wo_contracts, width=1400, height=600)
with tab1_col2_2:
excluded_address_expander = st.expander('Excluded Addresses')
st.write('Wallet Balances <Staking Contract, LP, etc>')
balances_excluded = balances_excluded.merge(df_excluded_addresses, how='left', left_on='wallet_address', right_on='Wallet Address')
balances_excluded = balances_excluded[['date', 'Name', 'cumsum','Wallet Address']]
st.dataframe(balances_excluded, width=1400, height=600)
with excluded_address_expander:
st.write('Staking contracts, DAO Multisigs, and Markets are excluded')
st.dataframe(df_excluded_addresses)
#----------------------------------------------------------------------------------------------------------------------------#
#Add section where the user can input a specific wallet address and get stats back.
with tab1:
st.header('Individual Stats')
wallet_address = st.text_input('Input wallet wallet address: ', value='0xa0a89db1c899c49f98e6326b764bafcf167fc2ce', placeholder='0xa0a89db1c899c49f98e6326b764bafcf167fc2ce')
col1_indiv_stats, col2_indiv_stats = st.columns((1,1))
specific_balances = balances[balances['wallet_address']== wallet_address.casefold()] #[['date', 'cumsum']]
specific_balances = specific_balances.sort_values(by='date', ascending=False)
with col1_indiv_stats:
st.dataframe(specific_balances[['date', 'wallet_address', 'cumsum']])
with col2_indiv_stats:
st.write('Wallet Balance over Time')
wallet_bal_chart = chart = alt.Chart(specific_balances).mark_area().encode(
x = 'date:T',
y='cumsum:Q',
# size = 'amount:Q',
tooltip = ['date:T', 'cumsum:Q']
)
st.altair_chart(wallet_bal_chart, use_container_width=True)
with tab2:
df_legion_holders_by_day = load_legion_nft_holders_over_time()
df_legion_holders_by_day_total = df_legion_holders_by_day[df_legion_holders_by_day['address']!='0x0000000000000000000000000000000000000000']
df_legion_holders_by_day_total = (df_legion_holders_by_day_total[['date','cumsum']]).groupby('date')['cumsum'].sum().reset_index()
# df=df_legion_holders_by_day_total.groupby(['date'])['cumsum'].sum().reset_index()
df_legion_holders_by_day = df_legion_holders_by_day[df_legion_holders_by_day['cumsum']>0].sort_values('date', ascending=False).drop(columns={'Unnamed: 0'})
df_unique_legion_holders = unique_legion_holders()
st.header('NFT Stats')
st.metric('Number of Legion NFTs', df_legion_holders_by_day_total['cumsum'].iloc[-1])
col1_nft_stats, col2_nft_stats = st.columns((2,1))
st.write('Number of Unique Holders over Time')
unique_legion_chart = chart = alt.Chart(df_unique_legion_holders).mark_area().encode(
x = 'date:T',
y='unique_holders:Q',
# color='wallet_address:N',
# size = 'amount:Q',
tooltip = ['date:T', 'unique_holders:Q']
)
st.altair_chart(unique_legion_chart, use_container_width=True)
with col1_nft_stats:
st.write('Number of Legion NFT over Time')
legion_chart = alt.Chart(df_legion_holders_by_day_total).mark_area().encode(
x = 'date:T',
y='cumsum:Q',
# color='wallet_address:N',
# size = 'amount:Q',
tooltip = ['date:T', 'cumsum:Q']
)
st.altair_chart(legion_chart, use_container_width=True)
with col2_nft_stats:
st.dataframe(df_legion_holders_by_day, width=1400, height=600)
with tab3:
st.header('Trove Marketplace')
collections = thegraph.get_collections()
option = st.selectbox(
'Select Collection...',
collections)
st.write('You selected:', option)