-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2014-02-13-Data-Warehouse.html
676 lines (495 loc) · 13.1 KB
/
2014-02-13-Data-Warehouse.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
<!DOCTYPE html>
<html>
<head>
<title>Data Mining</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style type="text/css">
@import url(http://fonts.googleapis.com/css?family=Droid+Serif);
@import url(http://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
body {
font-family: 'Droid Serif';
font-size: 25px;
}
.remark-slide-content {
padding: 1em 2em 1em 2em;
}
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: 400;
margin-top: 0;
margin-bottom: 0;
}
h1 { font-size: 3em; }
h2 { font-size: 1.8em; }
h3 { font-size: 1.4em; }
.footnote {
position: absolute;
bottom: 3em;
}
ul { margin: 8px;}
li p { line-height: 1.25em; }
.red { color: #fa0000; }
.large { font-size: 2em; }
a, a > code {
color: rgb(249, 38, 114);
text-decoration: none;
}
code {
-moz-border-radius: 3px;
-web-border-radius: 3px;
background: #e7e8e2;
color: black;
border-radius: 3px;
}
.tight-code {
font-size: 20px;
}
.white-background {
background-color: white;
padding: 10px;
display: block;
margin-left: auto;
margin-right: auto;
}
.limit-size img {
height: auto;
width: auto;
max-width: 1000px;
max-height: 500px;
}
em { color: #80cafa; }
.pull-left {
float: left;
width: 47%;
}
.pull-right {
float: right;
width: 47%;
}
.pull-right ~ p {
clear: both;
}
#slideshow .slide .content code {
font-size: 1.6em;
}
#slideshow .slide .content pre code {
font-size: 1.6em;
padding: 15px;
}
.inverse {
background: #272822;
color: #e3e3e3;
text-shadow: 0 0 20px #333;
}
.inverse h1, .inverse h2 {
color: #f3f3f3;
line-height: 1.6em;
}
/* Slide-specific styling */
#slide-inverse .footnote {
bottom: 12px;
left: 20px;
}
#slide-how .slides {
font-size: 1.6em;
position: absolute;
top: 151px;
right: 140px;
}
#slide-how .slides h3 {
margin-top: 0.2em;
}
#slide-how .slides .first, #slide-how .slides .second {
padding: 1px 20px;
height: 90px;
width: 120px;
-moz-box-shadow: 0 0 10px #777;
-webkit-box-shadow: 0 0 10px #777;
box-shadow: 0 0 10px #777;
}
#slide-how .slides .first {
background: #fff;
position: absolute;
top: 20%;
left: 20%;
z-index: 1;
}
#slide-how .slides .second {
position: relative;
background: #fff;
z-index: 0;
}
.center {
float: center;
}
/* Two-column layout */
.left-column {
width: 48%;
float: left;
}
.right-column {
width: 48%;
float: right;
}
.right-column img {
max-width: 120%;
max-height: 120%;
}
/* Tables */
table {
border-collapse: collapse;
margin: 0px;
}
table, th, td {
border: 1px solid white;
}
th, td {
padding: 7px;
}
</style>
</head>
<body>
<textarea id="source">
name: inverse
layout: true
class: left, top, inverse
---
# Data Warehouse
---
## Database Types
+ Data Warehouse
+ Database designed for using data to make decisions
+ OLAP
+ OnLine Analytical Processing
+ OLTP
+ OnLine Transactional Processing
???
## Data Mining
+ These databases are often the starting point for data mining in companies
+ Most of the data sets from companies typically come from exporting some
portion of their data warehouse
---
## Properties
+ Subject Oriented
+ Focus on core business objects
+ Integrated
+ Access to as much data as possible
+ Time Variant
+ Contains historical data with time parameter
+ Non-volatile
+ Updated (relatively) infrequently, in bulk
???
## Examples
+ Yelp users can be directed to a datacenter depending on conditions. This
data probably doesn't need to be in the DW
+ Yelp has several databases: log summaries, user info, salesforce. Most
useful if they are all in the same place
+ Operationally, when someone changes their address, we just overwrite it in
the OLTP DB. But DW potentially cares about the old value
+ OLTP writes to rows every time someone updates profile, review, etc. Lots of
simultaneous updates. DW: typically once a day, in bulk
---
## OLAP or OLTP?
+ Transactional Focus vs. Analytic Focus
---
## OLAP or OLTP?
+ Transactional Focus vs. Analytic Focus
+ Used by Managers, Executives vs. DBAs, programmers
---
## OLAP or OLTP?
+ Transactional Focus vs. Analytic Focus
+ Used by Managers, Executives vs. DBAs, programmers
+ Contains current information vs. historical
---
## OLAP or OLTP?
+ Transactional Focus vs. Analytic Focus
+ Used by Managers, Executives vs. DBAs, programmers
+ Contains current information vs. historical
+ Variety of differently summarized data vs normalized
---
## OLAP or OLTP?
+ Transactional Focus vs. Analytic Focus
+ Used by Managers, Executives vs. DBAs, programmers
+ Contains current information vs. historical
+ Variety of differently summarized data vs normalized
+ Short transactions vs. Long queries
---
## OLAP or OLTP?
+ Transactional Focus vs. Analytic Focus
+ Used by Managers, Executives vs. DBAs, programmers
+ Contains current information vs. historical
+ Variety of differently summarized data vs normalized
+ Short transactions vs. Long queries
+ Indexes on strategic fields for fast lookups vs. Full table scans
---
## OLAP or OLTP?
+ Transactional Focus vs. Analytic Focus
+ Used by Managers, Executives vs. DBAs, programmers
+ Contains current information vs. historical
+ Variety of differently summarized data vs normalized
+ Short transactions vs. Long queries
+ Indexes on strategic fields for fast lookups vs. Full table scans
+ Simultaneous queries: 1-100 vs 100s-1000s
---
## OLAP or OLTP?
+ Transactional Focus vs. Analytic Focus
+ Used by Managers, Executives vs. DBAs, programmers
+ Contains current information vs. historical
+ Variety of differently summarized data vs normalized
+ Short transactions vs. Long queries
+ Indexes on strategic fields for fast lookups vs. Full table scans
+ Simultaneous queries: 1-100 vs 100s-1000s
+ Simple updates vs Complex queries
---
## OLAP or OLTP?
+ Transactional Focus vs. Analytic Focus
+ Used by Managers, Executives vs. DBAs, programmers
+ Contains current information vs. historical
+ Variety of differently summarized data vs normalized
+ Short transactions vs. Long queries
+ Indexes on strategic fields for fast lookups vs. Full table scans
+ Simultaneous queries: 1-100 vs 100s-1000s
+ Simple updates vs Complex queries
+ Guaranteed high performance vs Flexibility & Customization
---
## Overview
<img src="img/olap-overview.png" width=100%/>
???
## From the front
+ Analytics team uses charts, reports, etc.
+ Generated from an OLAP server
+ Which uses data from a data warehouse (often DW and OLAP server are
integrated)
+ Uses a process (ETL) to move the data from other source into DW
---
## Types of Data Warehouses
+ Enterprise
+ turnkey solution, often expensive, sophisticated but complex
ingestion, integration, security features
+ Data Mart
+ Smaller, limited in scope. Designed for specific team or
department
+ Virtual
+ OLAP built on top of an OLTP database
+ Cloud
+ Google BigQuery
+ Amazon Redshift
???
## Vendors
+ Enterprise
+ Oracle
+ Greenplum
+ AsterData
+ Data Mart
+ MySQL
+ PostgreSQL
+ Virtual
+ MySQL
+ PostgreSQL
+ views or admin interface
---
## Metadata
+ Data about the data being stored
+ Overview: schema, languages
+ Operational: last update, query latency
+ Algorithms: normalization, transformation
+ Performance: job dependencies
+ Business: ownership, permissions
???
## Considerations
+ As soon as several people start using the DW, they'll need to know about
how it is put together
+ Metadata often comes as an after thought but is an important part of
scaling
---
## Overview
<img src="img/olap-overview.png" width=100% />
???
## Data Cubes
+ What are those cubes in the OLAP area?
---
## Data Cubes
.left-column[
+ Way of thinking about multi dimensional data
+ Useful metaphor because one can reason about ways to satisfy a query
]
.right-column[
<img src="img/BorgFirstContact.jpg"/>
]
---
## Dimensions
| | Day 1 | Day 2 | Day 3 |
|----------|-------|-------|-------|
| Region 1 | $200 | $80 | $600 |
| Region 2 | $300 | $90 | $650 |
| Region 3 | $400 | $100 | $700 |
???
## Data... Square
+ More of a data square: only 2 dimensions
+ Advertising on Yelp
+ Now we want to know Product Type (CPC, CPM, National)
---
## Cube: 3rd Dimension
<img src="img/cube-3d.gif" width=60% />
???
## More
+ Now we want to know Page Type (Business, Search, Home)
+ Hard to draw 4 dimensions, so instead...
---
## Multi-Cube
<img src="img/cube-4d.png" width=100% />
???
## More
+ Keep adding dimension as necessary
---
## Lattice
<img src="img/cube-lattice.jpg" width=100% />
???
## Moving
+ Move back and forth from our 2d table
+ To our 3d cube, to our 4d multi-cube
+ The lower dimensional parts are summaries
+ At the extreme is just the total (i.e., all money made)
---
## Schemas
.left-column[
+ A *Data Cube* is a way of visualizing multi dimensional data
]
---
## Schemas
.left-column[
+ A *Data Cube* is a way of visualizing multi dimensional data
+ A *Star Schema* is a way to store the data in a database
]
.right-column[
<img src="img/sun.jpg"/>
]
---
## Fact table
.white-background[
<img src="img/star-1.png" width=313 />
]
---
## Dimension table
.white-background[
<img src="img/star-2.png" width=313 />
]
---
## Dimension tables
.white-background[
<img src="img/star-3.png" width=500 />
]
---
## Dimension tables
.white-background[
<img src="img/star-4.png" width=500 />
]
---
## Dimension tables
.white-background[
<img src="img/star-5.png" width=500 />
]
---
## Star Schema
<img src="img/star-schema.jpg"/>
---
## Dimensions of Dimensions
.white-background[
<img src="img/star-6.png" width=500 />
]
---
## Dimensions of Dimensions
.white-background[
<img src="img/star-7.png" width=500 />
]
---
## Dimensions of Dimensions
.white-background[
<img src="img/star-8.png" width=500 />
]
---
## Dimensions of Dimensions
.white-background[
<img src="img/star-9.png" width=500 />
]
???
## Schema Name?
+ Any guesses what this fractal looking schema is called?
---
## Snowflake Schema
+ Schema with radiating dimension tables
<img src="img/star-snowflake.jpg" width=80% />
---
## Constellation Schema
+ Schema with several fact tables and related dimensions
<img src="img/star-constilation.jpg" width=100% />
---
## Data Warehouse Operations
+ Rollup
+ Summarize data along fewer dimensions
+ Drill-down
+ Get details within a particular dimension
+ Slice
+ Select a particular value in a dimension
+ Dice
+ Consider a subset of the values in a dimension
+ Pivot
+ Swap, or rotate dimensions
???
## Examples
+ Rollup
+ What countries are selling the most ads?
+ Drill-down
+ Spike in Q1 ad views. Which month most responsible?
+ Slice
+ Chart sales only for CPC
+ Dice
+ Only look at sales in US, IT, DE
+ Pivot
+ Swap axis on a chart
---
## Materialized Views
+ View
+ virtual table defined by a query
+ Non-materialized
+ Calculate summaries on the fly
+ Fully materialized
+ Pre-compute and store
+ Partially materialized
+ Variety of strategies: e.g., cache results after calculating
???
## Usefulness
+ In DW, we're often storing different cubes in the lattice
+ For the country sample, do we have those summaries stored in another DB
table? On disk? By month? Year?
+ Storing all possible summaries is expensive when loading data,
and requires a lot more storage
---
## Architecture
+ ROLAP
+ Relational. Implement OLAP on top of a relational database
+ MOLAP
+ Multidimensional. Implements data cube as storage paradigm
+ HOLAP
+ Hybrid. Data in ROLAP, rollups in MOLAP
+ Specialized
+ Often distributed storage, parallel DB technology
+ NoSQL
+ Store data as key-value pairs, optimized in different ways
???
## Details
+ ROLAP: MySQL, PostgreSQL
+ MOLAP: Oracle, Palo
+ HOLAP: Microsoft SQL Server
+ Specialized: AsterData, Greenplumb
+ NoSQL: Hive, BigTable, Cassandra
---
## *Break*
</textarea>
<script src="production/remark-0.5.9.min.js" type="text/javascript">
</script>
<script type="text/javascript">
var slideshow = remark.create();
</script>
</body>
</html>