-
Notifications
You must be signed in to change notification settings - Fork 0
/
2014-04-10-Graphs.html
445 lines (352 loc) · 9.37 KB
/
2014-04-10-Graphs.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
<!DOCTYPE html>
<html>
<head>
<title>Data Mining</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style type="text/css">
@import url(http://fonts.googleapis.com/css?family=Droid+Serif);
@import url(http://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
body {
font-family: 'Droid Serif';
font-size: 25px;
}
.remark-slide-content {
padding: 1em 2em 1em 2em;
}
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: 400;
margin-top: 0;
margin-bottom: 0;
}
h1 { font-size: 3em; }
h2 { font-size: 1.8em; }
h3 { font-size: 1.4em; }
.footnote {
position: absolute;
bottom: 3em;
}
ul { margin: 8px;}
li p { line-height: 1.25em; }
.red { color: #fa0000; }
.large { font-size: 2em; }
a, a > code {
color: rgb(249, 38, 114);
text-decoration: none;
}
code {
-moz-border-radius: 3px;
-web-border-radius: 3px;
background: #e7e8e2;
color: black;
border-radius: 3px;
}
.tight-code {
font-size: 20px;
}
.white-background {
background-color: white;
padding: 10px;
display: block;
margin-left: auto;
margin-right: auto;
}
.limit-size img {
height: auto;
width: auto;
max-width: 1000px;
max-height: 500px;
}
em { color: #80cafa; }
.pull-left {
float: left;
width: 47%;
}
.pull-right {
float: right;
width: 47%;
}
.pull-right ~ p {
clear: both;
}
#slideshow .slide .content code {
font-size: 1.6em;
}
#slideshow .slide .content pre code {
font-size: 1.6em;
padding: 15px;
}
.inverse {
background: #272822;
color: #e3e3e3;
text-shadow: 0 0 20px #333;
}
.inverse h1, .inverse h2 {
color: #f3f3f3;
line-height: 1.6em;
}
/* Slide-specific styling */
#slide-inverse .footnote {
bottom: 12px;
left: 20px;
}
#slide-how .slides {
font-size: 1.6em;
position: absolute;
top: 151px;
right: 140px;
}
#slide-how .slides h3 {
margin-top: 0.2em;
}
#slide-how .slides .first, #slide-how .slides .second {
padding: 1px 20px;
height: 90px;
width: 120px;
-moz-box-shadow: 0 0 10px #777;
-webkit-box-shadow: 0 0 10px #777;
box-shadow: 0 0 10px #777;
}
#slide-how .slides .first {
background: #fff;
position: absolute;
top: 20%;
left: 20%;
z-index: 1;
}
#slide-how .slides .second {
position: relative;
background: #fff;
z-index: 0;
}
.center {
float: center;
}
/* Two-column layout */
.left-column {
width: 48%;
float: left;
}
.right-column {
width: 48%;
float: right;
}
.right-column img {
max-width: 120%;
max-height: 120%;
}
/* Tables */
table {
border-collapse: collapse;
margin: 0px;
}
table, th, td {
border: 1px solid white;
}
th, td {
padding: 7px;
}
</style>
</head>
<body>
<textarea id="source">
name: inverse
layout: true
class: left, top, inverse
---
# Graphs & Networks
---
## Graphs
+ Graphs (or networks) can model a surprising number of domains
+ Modeling with graphs opens up a large number of algorithms
+ Linear Algebra has many connections to graphs
???
## Math
+ Data mining theme: get your problem stated as a math problem, whole slew of
solutions present themselves
+ Linear Algebra is really useful for running equations of all nodes, or
simulate moving across network
---
## Vertices & Edges
+ Vertex
+ the interconnected objects, or nodes
+ Edge
+ the lines or curves that connect vertices
+ Graph
+ Collection of vertices and edges ```G = (V,E)```
.white-background[
<img src="img/GraphNodesEdges.png" width=100% />
]
???
## Definitions
+ These are the abstract terms, how do they relate to the real world?
---
## Examples
+ Vertex
+ User, building, router, product
+ Edge
+ Relationship, road, network cable, purchased
+ Graph
+ Social Network, physical infrastructure, Internet, purchasing
history
???
## Examples
+ Many graphs have assumed edge labels
+ the edges represent something
consistent
+ Some graphs have multiple types of edges
+ relationship is one of family,
friend, co-worker, etc.
+ Edge can be anything that ties two things together
+ purchase history, e.g.,
is not a physical thing connecting, but an idea
---
## Social Networks
+ An edge connects two people
+ If this is just a line, what information are we missing about how the link
was formed?
<img src="img/jretz-linkedin.png" width=100% />
???
## Symmetric vs. Asymmetric Edges
+ "Just a line" is called *undirected*
+ We're missing information about who invited whom. That would be expressed
as an arrow and is called *directed*.
---
## Definitions
+ Directed: Connections have a direction. Invitations, water pipes, email.
+ Undirected: Connections have no direction. Friends, walkways on campus,
physical wires.
+ Cycle: Set of nodes and edges in which you can travel back to a vertex
+ Acyclic: A graph without any cycles
<img src="img/Directed_acyclic_graph.png" width=60% />
???
## Modeling
+ Can always model an undirected graph as a directed graph by having two
directed edges going in opposite directions in place of each undirected
edge.
---
## Acyclic?
+ Social network (undirected)
+ Product purchases (directed)
+ Internet links (directed)
+ Class prerequisites (directed)
???
## Answers
+ Social network: cyclic
+ Product purchases: acyclic
+ Internet links: cyclic
+ Class prerequisites: acyclic
---
## Bipartite
.left-column[
+ Graph whose vertices can be divided into two distinct sets
+ Vertices in ```U``` are only connected to those in ```V```, vice versa
+ Product purchases: users ```U```, products ```V```
]
.right-column[
.white-background[
<img src="img/Simple-bipartite-graph.svg.png" width=100% />
]
]
???
## Recommendations
+ Can model recommendations as link following:
+ From a user, follow to products
+ From products, follow back to other users
+ From other users, follow back to products
---
## Measurements
+ Geodesic distance
+ Number of edges to connect two vertices
+ Eccentricity of ```v```
+ Largest geodesic distance from ```v``` to the most distant vertex
+ Radius
+ Minimum eccentricity of any vertex in the graph
+ Diameter
+ Maximum eccentricity of any vertex in the graph
+ Peripheral vertex
+ Vertex with eccentricity == diameter
+ Incoming/Outgoing edge count of a vertex
+ Number of edges coming in/out of a vertex
???
## Data Stats
+ Similar to getting distribution stats from initial datasets, these
measurements can help you understand graphs as a summary
+ Once you have the incoming/outgoing edge counts, you can use regular stats:
what is the distribution of counts?
---
## Examples
.white-background[
<img src="img/6n-graf.svg.png" width=100% />
]
???
## Answers
+ Distance 6, 5: 2
+ Eccentricity 2: 3 (disconnected graph is infinity)
+ Radius: 2
+ Diameter: 3
+ Peripheral Verticies: 1, 2, 6
---
## Connections
+ Connected
+ there exists a path from one vertex to another
+ Connectivity
+ minimum number of vertices to remove to disconnect remaining
vertices
+ Clustering Coefficient
+ Measure of how connected a vertex or group of vertices are
???
## Robustness
+ This is used to understand robustness of a system: if an earthquake
damaged the Bay Bridge, could we still travel from one point to another?
+ What is the connectedness of Oakland and SF?
+ Closely related to min-cuts, which is discussed in the book
+ Network topology: what happens if a router fails?
---
## Clustering Coefficient
+ How many directed edges are possible between 3 vertices?
+ 4 vertices?
+ ```v*(v-1)```
+ Undirected?
+ ```v*(v-1)/2```
+ Clustering Coefficient: Ratio of actual edges to possible edges amongst neighbors
???
## Reading
+ Used in Reading this week
+ ```v*(v-1)``` connection to every other node but yourself
+ ```/2``` undirected, don't double count connections
---
## Example
.center[
.white-background[
<img src="img/6n-graf.svg.png" width=90% />
]
]
???
## Answer
+ Clustering Coefficient of 1:
+ Neighbors of 1: 5 2
+ 2*(2-1) / 2 = 1
+ Actual links = 1
+ Clustering Coefficient of 4:
+ Neighbors of 4: 3,5,6
+ 3*(3-1) / 2 = 3
+ Actual: 0
+ If 3-5 connected? 1/3
---
## Random Walk
+ Many algorithms based on concept of randomly deciding:
+ Follow link or not
+ Which link to follow
+ Simulate the decision many times
+ What is the probability you will wind up on ```u``` from ```v```?
---
# *Break*
</textarea>
<script src="production/remark-0.5.9.min.js" type="text/javascript">
</script>
<script type="text/javascript">
var slideshow = remark.create();
</script>
</body>
</html>