-
Notifications
You must be signed in to change notification settings - Fork 0
/
2014-04-10-PageRank.html
387 lines (305 loc) · 7.82 KB
/
2014-04-10-PageRank.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
<!DOCTYPE html>
<html>
<head>
<title>Data Mining</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style type="text/css">
@import url(http://fonts.googleapis.com/css?family=Droid+Serif);
@import url(http://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
body {
font-family: 'Droid Serif';
font-size: 25px;
}
.remark-slide-content {
padding: 1em 2em 1em 2em;
}
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: 400;
margin-top: 0;
margin-bottom: 0;
}
h1 { font-size: 3em; }
h2 { font-size: 1.8em; }
h3 { font-size: 1.4em; }
.footnote {
position: absolute;
bottom: 3em;
}
ul { margin: 8px;}
li p { line-height: 1.25em; }
.red { color: #fa0000; }
.large { font-size: 2em; }
a, a > code {
color: rgb(249, 38, 114);
text-decoration: none;
}
code {
-moz-border-radius: 3px;
-web-border-radius: 3px;
background: #e7e8e2;
color: black;
border-radius: 3px;
}
.tight-code {
font-size: 20px;
}
.white-background {
background-color: white;
padding: 10px;
display: block;
margin-left: auto;
margin-right: auto;
}
.limit-size img {
height: auto;
width: auto;
max-width: 1000px;
max-height: 500px;
}
em { color: #80cafa; }
.pull-left {
float: left;
width: 47%;
}
.pull-right {
float: right;
width: 47%;
}
.pull-right ~ p {
clear: both;
}
#slideshow .slide .content code {
font-size: 1.6em;
}
#slideshow .slide .content pre code {
font-size: 1.6em;
padding: 15px;
}
.inverse {
background: #272822;
color: #e3e3e3;
text-shadow: 0 0 20px #333;
}
.inverse h1, .inverse h2 {
color: #f3f3f3;
line-height: 1.6em;
}
/* Slide-specific styling */
#slide-inverse .footnote {
bottom: 12px;
left: 20px;
}
#slide-how .slides {
font-size: 1.6em;
position: absolute;
top: 151px;
right: 140px;
}
#slide-how .slides h3 {
margin-top: 0.2em;
}
#slide-how .slides .first, #slide-how .slides .second {
padding: 1px 20px;
height: 90px;
width: 120px;
-moz-box-shadow: 0 0 10px #777;
-webkit-box-shadow: 0 0 10px #777;
box-shadow: 0 0 10px #777;
}
#slide-how .slides .first {
background: #fff;
position: absolute;
top: 20%;
left: 20%;
z-index: 1;
}
#slide-how .slides .second {
position: relative;
background: #fff;
z-index: 0;
}
.center {
float: center;
}
/* Two-column layout */
.left-column {
width: 48%;
float: left;
}
.right-column {
width: 48%;
float: right;
}
.right-column img {
max-width: 120%;
max-height: 120%;
}
/* Tables */
table {
border-collapse: collapse;
margin: 0px;
}
table, th, td {
border: 1px solid white;
}
th, td {
padding: 7px;
}
</style>
</head>
<body>
<textarea id="source">
name: inverse
layout: true
class: left, top, inverse
---
# PageRank
.center[
.white-background[
<img src="img/PageRanks-Example.svg.png" width=85% />
]
]
???
## Web page importance
+ Also used to model importance of people, places... anything that has a
reputation
+ inbound links are important, but scaled by the importance of the source
+ C is still important, even though it only has one inbound edge
---
## Random Walks
+ Starting from a random page, what is the likelihood of winding up on a
target page?
+ Starting point captured by initial constant
+ Stopping captured by "damping factor" (0.85)
.white-background[
<img src="img/pagerank.png" width=100% />
]
???
## Original
+ Original paper did not divide by N
+ This gives relative weights of pages, but not a formal probability because
sum will not add up to N
+ Either way is fine for our purposes
---
## Example
+ ```B```, ```C```, ```D```, all link to ```A```
+ ```B``` has PageRank of 0.5, 4 links
+ ```C``` has PageRank of 0.7, 4 links
+ ```D``` has PageRank of 0.2, 1 link
.white-background[
<img src="img/pagerank.png" width=100% />
]
+ 0.15/4 + 0.85 * sum(PR/links for (pr,links) in pages)
+ 0.15/4 + 0.85 * sum(0.5/4, 0.7/4, 0.2/1)
+ 0.15/4 + 0.85 * 0.465
+ .43275
---
## Other Pages
+ But how did we know the PageRank of other pages?
+ Start with something and calculate iteratively until convergence (sound familiar?)
---
## Representing Graphs
+ Adjacency Matrix - represent graph edges in a matrix
<br />
| V | A | B | C | D |
|---|---|---|---|---|
| A | 0 | 0 | 0 | 0 |
| B | 1 | 0 | 1 | 0 |
| C | 1 | 0 | 0 | 1 |
| D | 1 | 1 | 0 | 0 |
???
## Diversion
+ Take a step back so we can motivate how to express these calculations as
linear algebra
+ Using linear algebra can help us translate graph concepts to fairly elegant
code, as well as realize some optimizations
+ Draw the graph!
+ Symmetric? When?
---
## Representing Graphs
.left-column[
+ Adjacency List - for each vertex, list all connections
]
.right-column[
```csv
A []
B [A,C]
C [A,D]
D [A,B]
```
]
???
## Diversion
+ You can think of this as keys (vertex) and values (list of vertices)
+ When would thinking in key-values be useful? MapReduce
+ Back to matrix representation
---
## Eigenvector
+ PageRank formula divides by number of links
+ Adjacency matrix typically normalized such that all columns sum to 1
+ PageRank scores are entries in the largest eigenvector of the matrix
representation
.white-background[
<img src="img/pagerank-eigen.png" width=100% />
]
---
## Eigenvector centrality
+ Another measurement for graphs, using the simple adjacency matrix
+ Relative influence of a node (no normalization)
---
## Adversarial
+ Source does not want to be discovered
+ Patterns are purposefully hidden: so discover the patterns of hiding
+ If adversary knows your techniques, they can take advantage of weakness
???
## Weakness
+ Reading: paper discovering hiding patterns
+ Weakness of pagerank?
+ We assume that these links are legitimate.
+ What happens if the links are not conveying authority?
---
## Google Bomb
+ Milder forms of adversarial work
<img src="img/Google_Bomb_Miserable_Failure.png" width=100% />
???
## Link farms
+ Link farms try to create fake links to pages,
+ [JC Penny's link farm](http://www.nytimes.com/2011/02/13/business/13search.html?pagewanted=all)
---
## Hubs & Authorities
.left-column[
+ Earlier in the web, there was more structure
+ Hubs: collected links to different resources
+ Authorities: Gave out specific information
+ Score separately?
]
.right-column[
<img src="img/early-yahoo.jpg" width=100% />
]
???
## Alternatives
+ Some other interesting network analysis tools
---
## HITS
+ Authority score
+ sum(hub(i) for i in inbound_links)
+ Hub score
+ sum(authority(i) for i in outbound_links)
+ Normalize
+ to ensure convergence, square root sum of squares of scores
???
## Iterative
+ Sill iterative, but now using inbound and outbound links to judge
+ Hubs have outbound links to authoritive pages
+ Authorities have inbound links from good hubs
---
# *Break*
</textarea>
<script src="production/remark-0.5.9.min.js" type="text/javascript">
</script>
<script type="text/javascript">
var slideshow = remark.create();
</script>
</body>
</html>