Skip to content

Latest commit

 

History

History
14 lines (10 loc) · 556 Bytes

README.md

File metadata and controls

14 lines (10 loc) · 556 Bytes

MIT_iQuHack_2023

IonQ 'Quantum Machine Learning'

🔭 Challenge/Learning components:

  • Quantum Data encoding: Conversion of classical data (Digital images) to Quantum data before utilising quantum algorithms.

  • Error mitigation in Sampler and its utilisation in estimating state fidality.

  • Quantum Kernels and Quantum Support Vector Machines.

Team QucKoo Members:

  • Harshkumar Ojha, Masters in Quantum Tech., IISc Bengaluru
  • Viswatma Kamath, Masters in Quantum Tech., IISc Bengaluru
  • Manish Kumar, Masters in Quantum Tech., IISc Bengaluru