-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathcifar100.py
249 lines (204 loc) · 10.4 KB
/
cifar100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import numpy as np
import torchvision.transforms as transforms
import os
import argparse
import sys
#from models import *
sys.path.append("../..")
import backbones.cifar as models
from datasets import CIFAR100
from Utils import adjust_learning_rate, progress_bar, Logger, mkdir_p, Evaluation
from openmax import compute_train_score_and_mavs_and_dists,fit_weibull,openmax
from Modelbuilder import Network
model_names = sorted(name for name in models.__dict__
if not name.startswith("__")
and callable(models.__dict__[name]))
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
# os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--arch', default='ResNet18', choices=model_names, type=str, help='choosing network')
parser.add_argument('--bs', default=256, type=int, help='batch size')
parser.add_argument('--es', default=100, type=int, help='epoch size')
parser.add_argument('--train_class_num', default=50, type=int, help='Classes used in training')
parser.add_argument('--test_class_num', default=100, type=int, help='Classes used in testing')
parser.add_argument('--includes_all_train_class', default=True, action='store_true',
help='If required all known classes included in testing')
parser.add_argument('--evaluate', action='store_true',
help='Evaluate without training')
#Parameters for weibull distribution fitting.
parser.add_argument('--weibull_tail', default=20, type=int, help='Classes used in testing')
parser.add_argument('--weibull_alpha', default=3, type=int, help='Classes used in testing')
parser.add_argument('--weibull_threshold', default=0.9, type=float, help='Classes used in testing')
args = parser.parse_args()
def main():
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# checkpoint
args.checkpoint = './checkpoints/cifar/' + args.arch
if not os.path.isdir(args.checkpoint):
mkdir_p(args.checkpoint)
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = CIFAR100(root='../../data', train=True, download=True, transform=transform_train,
train_class_num=args.train_class_num, test_class_num=args.test_class_num,
includes_all_train_class=args.includes_all_train_class)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.bs, shuffle=True, num_workers=4)
testset = CIFAR100(root='../../data', train=False, download=True, transform=transform_test,
train_class_num=args.train_class_num, test_class_num=args.test_class_num,
includes_all_train_class=args.includes_all_train_class)
testloader = torch.utils.data.DataLoader(testset, batch_size=args.bs, shuffle=False, num_workers=4)
# Model
print('==> Building model..')
net = Network(backbone=args.arch, num_classes=args.train_class_num)
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
if os.path.isfile(args.resume):
print('==> Resuming from checkpoint..')
checkpoint = torch.load(args.resume)
net.load_state_dict(checkpoint['net'])
# best_acc = checkpoint['acc']
# print("BEST_ACCURACY: "+str(best_acc))
start_epoch = checkpoint['epoch']
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), resume=True)
else:
print("=> no checkpoint found at '{}'".format(args.resume))
else:
logger = Logger(os.path.join(args.checkpoint, 'log.txt'))
logger.set_names(['Epoch', 'Learning Rate', 'Train Loss','Train Acc.', 'Test Loss', 'Test Acc.'])
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
# test(0, net, trainloader, testloader, criterion, device)
epoch=0
if not args.evaluate:
for epoch in range(start_epoch, args.es):
print('\nEpoch: %d Learning rate: %f' % (epoch+1, optimizer.param_groups[0]['lr']))
adjust_learning_rate(optimizer, epoch, args.lr)
train_loss, train_acc = train(net,trainloader,optimizer,criterion,device)
save_model(net, None, epoch, os.path.join(args.checkpoint,'last_model.pth'))
test_loss, test_acc = 0, 0
#
logger.append([epoch+1, optimizer.param_groups[0]['lr'], train_loss, train_acc, test_loss, test_acc])
# don't test the first epoch, cause some classes may have no predict samples, leading to error caused by
# compute_train_score_and_mavs_and_dists
if epoch % 5 == 0 and epoch!=0:
test(epoch, net, trainloader, testloader, criterion, device)
test(epoch, net, trainloader, testloader, criterion, device)
logger.close()
# Training
def train(net,trainloader,optimizer,criterion,device):
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
_, outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
return train_loss/(batch_idx+1), correct/total
def test(epoch, net,trainloader, testloader,criterion, device):
net.eval()
test_loss = 0
correct = 0
total = 0
scores, labels = [], []
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
_, outputs = net(inputs)
# loss = criterion(outputs, targets)
# test_loss += loss.item()
# _, predicted = outputs.max(1)
scores.append(outputs)
labels.append(targets)
# total += targets.size(0)
# correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(testloader))
# Get the prdict results.
scores = torch.cat(scores,dim=0).cpu().numpy()
labels = torch.cat(labels,dim=0).cpu().numpy()
scores = np.array(scores)[:, np.newaxis, :]
labels = np.array(labels)
# Fit the weibull distribution from training data.
print("Fittting Weibull distribution...")
_, mavs, dists = compute_train_score_and_mavs_and_dists(args.train_class_num, trainloader, device, net)
categories = list(range(0, args.train_class_num))
weibull_model = fit_weibull(mavs, dists, categories, args.weibull_tail, "euclidean")
pred_softmax, pred_softmax_threshold, pred_openmax = [], [], []
score_softmax, score_openmax = [], []
for score in scores:
so, ss = openmax(weibull_model, categories, score,
0.5, args.weibull_alpha, "euclidean") # openmax_prob, softmax_prob
pred_softmax.append(np.argmax(ss))
pred_softmax_threshold.append(np.argmax(ss) if np.max(ss) >= args.weibull_threshold else args.train_class_num)
pred_openmax.append(np.argmax(so) if np.max(so) >= args.weibull_threshold else args.train_class_num)
score_softmax.append(ss)
score_openmax.append(so)
print("Evaluation...")
eval_softmax = Evaluation(pred_softmax, labels, score_softmax)
eval_softmax_threshold = Evaluation(pred_softmax_threshold, labels, score_softmax)
eval_openmax = Evaluation(pred_openmax, labels, score_openmax)
torch.save(eval_softmax, os.path.join(args.checkpoint, 'eval_softmax.pkl'))
torch.save(eval_softmax_threshold, os.path.join(args.checkpoint, 'eval_softmax_threshold.pkl'))
torch.save(eval_openmax, os.path.join(args.checkpoint, 'eval_openmax.pkl'))
print(f"Softmax accuracy is %.3f" % (eval_softmax.accuracy))
print(f"Softmax F1 is %.3f" % (eval_softmax.f1_measure))
print(f"Softmax f1_macro is %.3f" % (eval_softmax.f1_macro))
print(f"Softmax f1_macro_weighted is %.3f" % (eval_softmax.f1_macro_weighted))
print(f"Softmax area_under_roc is %.3f" % (eval_softmax.area_under_roc))
print(f"_________________________________________")
print(f"SoftmaxThreshold accuracy is %.3f" % (eval_softmax_threshold.accuracy))
print(f"SoftmaxThreshold F1 is %.3f" % (eval_softmax_threshold.f1_measure))
print(f"SoftmaxThreshold f1_macro is %.3f" % (eval_softmax_threshold.f1_macro))
print(f"SoftmaxThreshold f1_macro_weighted is %.3f" % (eval_softmax_threshold.f1_macro_weighted))
print(f"SoftmaxThreshold area_under_roc is %.3f" % (eval_softmax_threshold.area_under_roc))
print(f"_________________________________________")
print(f"OpenMax accuracy is %.3f" % (eval_openmax.accuracy))
print(f"OpenMax F1 is %.3f" % (eval_openmax.f1_measure))
print(f"OpenMax f1_macro is %.3f" % (eval_openmax.f1_macro))
print(f"OpenMax f1_macro_weighted is %.3f" % (eval_openmax.f1_macro_weighted))
print(f"OpenMax area_under_roc is %.3f" % (eval_openmax.area_under_roc))
print(f"_________________________________________")
def save_model(net, acc, epoch, path):
print('Saving..')
state = {
'net': net.state_dict(),
'testacc': acc,
'epoch': epoch,
}
torch.save(state, path)
if __name__ == '__main__':
main()