-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathutils.lua
163 lines (141 loc) · 5.12 KB
/
utils.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
-------------------------------------------------------------------------------
-- Coordinate transformation
-------------------------------------------------------------------------------
function getTransform(center, scale, rot, res)
local h = 200 * scale
local t = torch.eye(3)
-- Scaling
t[1][1] = res / h
t[2][2] = res / h
-- Translation
t[1][3] = res * (-center[1] / h + .5)
t[2][3] = res * (-center[2] / h + .5)
-- Rotation
if rot ~= 0 then
rot = -rot
local r = torch.eye(3)
local ang = rot * math.pi / 180
local s = math.sin(ang)
local c = math.cos(ang)
r[1][1] = c
r[1][2] = -s
r[2][1] = s
r[2][2] = c
-- Need to make sure rotation is around center
local t_ = torch.eye(3)
t_[1][3] = -res/2
t_[2][3] = -res/2
local t_inv = torch.eye(3)
t_inv[1][3] = res/2
t_inv[2][3] = res/2
t = t_inv * r * t_ * t
end
return t
end
function transform(pt, center, scale, rot, res, invert)
local pt_ = torch.ones(3)
pt_[1],pt_[2] = pt[1]-1,pt[2]-1
local t = getTransform(center, scale, rot, res)
if invert then
t = torch.inverse(t)
end
local new_point = (t*pt_):sub(1,2):add(1e-4)
return new_point:int():add(1)
end
function crop(img, center, scale, rot, res)
local ul = transform({1,1}, center, scale, 0, res, true)
local br = transform({res+1,res+1}, center, scale, 0, res, true)
local pad = math.floor(torch.norm((ul - br):float())/2 - (br[1]-ul[1])/2)
if rot ~= 0 then
ul = ul - pad
br = br + pad
end
local newDim,newImg,ht,wd
if img:size():size() > 2 then
newDim = torch.IntTensor({img:size(1), br[2] - ul[2], br[1] - ul[1]})
newImg = torch.zeros(newDim[1],newDim[2],newDim[3])
ht = img:size(2)
wd = img:size(3)
else
newDim = torch.IntTensor({br[2] - ul[2], br[1] - ul[1]})
newImg = torch.zeros(newDim[1],newDim[2])
ht = img:size(1)
wd = img:size(2)
end
local newX = torch.Tensor({math.max(1, -ul[1] + 2), math.min(br[1], wd+1) - ul[1]})
local newY = torch.Tensor({math.max(1, -ul[2] + 2), math.min(br[2], ht+1) - ul[2]})
local oldX = torch.Tensor({math.max(1, ul[1]), math.min(br[1], wd+1) - 1})
local oldY = torch.Tensor({math.max(1, ul[2]), math.min(br[2], ht+1) - 1})
if newDim:size(1) > 2 then
newImg:sub(1,newDim[1],newY[1],newY[2],newX[1],newX[2]):copy(img:sub(1,newDim[1],oldY[1],oldY[2],oldX[1],oldX[2]))
else
newImg:sub(newY[1],newY[2],newX[1],newX[2]):copy(img:sub(oldY[1],oldY[2],oldX[1],oldX[2]))
end
if rot ~= 0 then
newImg = image.rotate(newImg, rot * math.pi / 180, 'bilinear')
if newDim:size(1) > 2 then
newImg = newImg:sub(1,newDim[1],pad,newDim[2]-pad,pad,newDim[3]-pad)
else
newImg = newImg:sub(pad,newDim[1]-pad,pad,newDim[2]-pad)
end
end
newImg = image.scale(newImg,res,res)
return newImg
end
local magic_gaussian = image.gaussian(7)
function drawGaussian(img, pt, sigma)
-- Check if the gaussian is in-bounds
local ul = {math.floor(pt[1] - 3 * sigma), math.floor(pt[2] - 3 * sigma)}
local br = {math.floor(pt[1] + 3 * sigma), math.floor(pt[2] + 3 * sigma)}
-- return the image otherwise
if (ul[1] > img:size(2) or ul[2] > img:size(1) or br[1] < 1 or br[2] < 1) then return img end
-- Generate gaussian
local size = 6 * sigma + 1
-- Avoid the need of generating the gaussian for each sample
local g = magic_gaussian:clone()--image.gaussian(size) -- , 1 / size, 1)
-- Usable gaussian range
local g_x = {math.max(1, -ul[1]), math.min(br[1], img:size(2)) - math.max(1, ul[1]) + math.max(1, -ul[1])}
local g_y = {math.max(1, -ul[2]), math.min(br[2], img:size(1)) - math.max(1, ul[2]) + math.max(1, -ul[2])}
-- Image range
local img_x = {math.max(1, ul[1]), math.min(br[1], img:size(2))}
local img_y = {math.max(1, ul[2]), math.min(br[2], img:size(1))}
assert(g_x[1] > 0 and g_y[1] > 0)
img:sub(img_y[1], img_y[2], img_x[1], img_x[2]):add(g:sub(g_y[1], g_y[2], g_x[1], g_x[2]))
img[img:gt(1)] = 1
return img
end
function shuffleLR(x)
local dim
if x:nDimension() == 4 then
dim = 2
else
assert(x:nDimension() == 3)
dim = 1
end
-- Keypoints pairs for 300W_LP, 300VW, 300W and LS3D-W datasets
local matchedParts = {
{1,17}, {2,16}, {3,15},
{4,14}, {5,13}, {6,12}, {7,11}, {8,10},
{18,27},{19,26},{20,25},{21,24},{22,23},
{37,46},{38,45},{39,44},{40,43},
{42,47},{41,48},
{32,36},{33,35},
{51,53},{50,54},{49,55},{62,64},{61,65},{68,66},{60,56},
{59,57}
}
for i = 1,#matchedParts do
local idx1, idx2 = unpack(matchedParts[i])
local tmp = x:narrow(dim, idx1, 1):clone()
x:narrow(dim, idx1, 1):copy(x:narrow(dim, idx2, 1))
x:narrow(dim, idx2, 1):copy(tmp)
end
return x
end
function flip(x)
require 'image'
local y = torch.FloatTensor(x:size())
for i = 1, x:size(1) do
image.hflip(y[i], x[i]:float())
end
return y:typeAs(x)
end