-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy patherrorfeedbacksgd.py
227 lines (188 loc) · 8.43 KB
/
errorfeedbacksgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import numpy as np
import torch
from torch.optim.optimizer import Optimizer, required
def scaled_sign(x):
"""
:param x: torch Tensor
:return: The sign tensor scaled by it's L1 norm and divided by the number of elements
"""
return x.norm(p=1) / x.nelement() * torch.sign(x)
def unscaled_sign(x):
"""
This is the standard sign compression. It has been experimented to give worse test accuracies than the scaled
counter part.
:param x: torch Tensor
:return: sign(tensor)
"""
return torch.sign(x)
class ErrorFeedbackSGD(Optimizer):
r"""Implements the error feedback stochastic gradient descent with memory (optionally with momentum).
It handles parameters groups separately. The implementation largely follows the one of SGD.
Nesterov momentum is based on the formula from
`On the importance of initialization and momentum in deep learning`__.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float): learning rate
momentum (float, optional): momentum factor (default: 0)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
dampening (float, optional): dampening for momentum (default: 0)
nesterov (bool, optional): enables Nesterov momentum (default: False)
comp (function): The compression operator to be applied
memory (bool, False by default)
Example:
>>> optimizer = ErrorFeedbackSGD(model.parameters(), lr=0.1, momentum=0.9)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
__ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
.. note::
The implementation of SGD with Momentum/Nesterov subtly differs from
Sutskever et. al. and implementations in some other frameworks.
Considering the specific case of Momentum, the update can be written as
.. math::
v = \rho * v + g \\
p = p - lr * v
where p, g, v and :math:`\rho` denote the parameters, gradient,
velocity, and momentum respectively.
This is in contrast to Sutskever et. al. and
other frameworks which employ an update of the form
.. math::
v = \rho * v + lr * g \\
p = p - v
The Nesterov version is analogously modified.
"""
def __init__(self, params, lr=required, momentum=0, dampening=0,
weight_decay=0, nesterov=False, comp='scaled_sign', memory=False):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if comp == 'scaled_sign':
comp = scaled_sign
elif comp == 'sign':
comp = unscaled_sign
elif not callable(comp) and comp is not None:
raise ValueError("Invalid comp value: {} (must be callable or None)".format(comp))
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=nesterov,
comp=comp, memory=memory)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super(ErrorFeedbackSGD, self).__init__(params, defaults)
for group in self.param_groups:
for p in group['params']:
param_state = self.state[p]
param_state['memory'] = torch.zeros_like(p.data)
# To compute the gradients norms ratios over time
param_state['dim'] = p.nelement()
param_state['gradient'] = None
param_state['corrected_gradient'] = None
def __setstate__(self, state):
super(ErrorFeedbackSGD, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
comp = group['comp']
memory = group['memory']
for p in group['params']:
param_state = self.state[p]
if p.grad is None:
continue
d_p = p.grad.data
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
if momentum != 0:
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)
buf.mul_(momentum).add_(d_p)
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
# d_p corresponds to g in alg. 1 from the paper.
param_state['gradient'] = d_p # Save the gradient so its norm can be computed later
d_p = group['lr'] * d_p
corrected_gradient = param_state['memory'] + d_p
# Save the corrected gradient to compute the norms
param_state['corrected_gradient'] = corrected_gradient
if comp is not None:
corrected_gradient = comp(corrected_gradient)
''' hack to scale the signed gradient by the learning
rate since torch.sign(x) ignores the learning rate '''
if comp == unscaled_sign:
corrected_gradient = group['lr'] * corrected_gradient
if memory:
param_state['memory'] = param_state['memory'] + d_p - corrected_gradient
p.data.add_(-1, corrected_gradient)
return loss
def memory_norm(self):
"""
:return: The L2 norm of the memory (if any)
"""
norm = 0
for group in self.param_groups:
for p in group['params']:
n = p.norm()
norm += float(n * n)
return np.sqrt(norm)
def gradient_norms_ratio(self):
res = []
sum_l2_norms = 0
sum_normalized_l1_norm = 0
for group in self.param_groups:
for p in group['params']:
param_state = self.state[p]
n1 = param_state['gradient'].norm(p=1)
n2 = param_state['gradient'].norm(p=2)
d = param_state['dim']
sum_l2_norms += n2*n2
sum_normalized_l1_norm += n1*n1/d
res.append(n1*n1/n2/n2/d)
''' Correct ratio = (sum of (n1)^2/d)/(sum of (n2)^2).
The last coordinate of res has the correct ratio. '''
res.append(sum_normalized_l1_norm/sum_l2_norms)
return np.array(res)
def corrected_gradient_norms_ratio(self):
res = []
sum_l2_norms = 0
sum_normalized_l1_norm = 0
for group in self.param_groups:
for p in group['params']:
param_state = self.state[p]
n1 = param_state['corrected_gradient'].norm(p=1)
n2 = param_state['corrected_gradient'].norm(p=2)
d = param_state['dim']
sum_l2_norms += n2*n2
sum_normalized_l1_norm += n1*n1/d
res.append(n1*n1/n2/n2/d)
''' Correct ratio = (sum of (n1)^2/d)/(sum of (n2)^2).
The last coordinate of res has the correct ratio. '''
res.append(sum_normalized_l1_norm/sum_l2_norms)
return np.array(res)
def params_dims(self):
res = []
for group in self.param_groups:
for p in group['params']:
param_state = self.state[p]
d = param_state['dim']
res.append(d)
return np.array(res)