-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathgcn.py
28 lines (25 loc) · 1.04 KB
/
gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers import GraphConvolution
class GCN(nn.Module):
def __init__(self, vocab_size, nfeat, nhid, nclass, dropout, features_index, adj):
super(GCN, self).__init__()
self.embedding = nn.Parameter(torch.zeros(size=(vocab_size, nfeat)))
nn.init.normal(self.embedding.data, std=0.1)
self.features_index = features_index
self.adj = adj
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.dropout = dropout
def forward(self, x_index):
features = []
for index in self.features_index:
feature = torch.sum(self.embedding[index,:], 0).float().view(1,-1)/len(index)
features.append(feature)
x = torch.cat([feature for feature in features], 0)
x = F.relu(self.gc1(x, self.adj))
x = F.dropout(x, self.dropout, training=self.training)
x = self.gc2(x, self.adj)
# return F.log_softmax(x, dim=1)
return x[x_index]