forked from tensorlayer/DAGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_loader.py
108 lines (91 loc) · 3.76 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import pickle
import tensorlayer as tl
import numpy as np
import os
import nibabel as nib
training_data_path = "data/MICCAI13_SegChallenge/Training_100"
testing_data_path = "data/MICCAI13_SegChallenge/Testing_50"
val_ratio = 0.3
seed = 100
preserving_ratio = 0.1 # filter out 2d images containing < 10% non-zeros
f_train_all = tl.files.load_file_list(path=training_data_path,
regx='.*.gz',
printable=False)
train_all_num = len(f_train_all)
val_num = int(train_all_num * val_ratio)
f_train = []
f_val = []
val_idex = tl.utils.get_random_int(min=0,
max=train_all_num - 1,
number=val_num,
seed=seed)
for i in range(train_all_num):
if i in val_idex:
f_val.append(f_train_all[i])
else:
f_train.append(f_train_all[i])
f_test = tl.files.load_file_list(path=testing_data_path,
regx='.*.gz',
printable=False)
train_3d_num, val_3d_num, test_3d_num = len(f_train), len(f_val), len(f_test)
X_train = []
for fi, f in enumerate(f_train):
print("processing [{}/{}] 3d image ({}) for training set ...".format(fi + 1, train_3d_num, f))
img_path = os.path.join(training_data_path, f)
img = nib.load(img_path).get_data()
img_3d_max = np.max(img)
img = img / img_3d_max * 255
for i in range(img.shape[2]):
img_2d = img[:, :, i]
# filter out 2d images containing < 10% non-zeros
if float(np.count_nonzero(img_2d)) / img_2d.size >= preserving_ratio:
img_2d = img_2d / 127.5 - 1
img_2d = np.transpose(img_2d, (1, 0))
X_train.append(img_2d)
X_val = []
for fi, f in enumerate(f_val):
print("processing [{}/{}] 3d image ({}) for validation set ...".format(fi + 1, val_3d_num, f))
img_path = os.path.join(training_data_path, f)
img = nib.load(img_path).get_data()
img_3d_max = np.max(img)
img = img / img_3d_max * 255
for i in range(img.shape[2]):
img_2d = img[:, :, i]
# filter out 2d images containing < 10% non-zeros
if float(np.count_nonzero(img_2d)) / img_2d.size >= preserving_ratio:
img_2d = img_2d / 127.5 - 1
img_2d = np.transpose(img_2d, (1, 0))
X_val.append(img_2d)
X_test = []
for fi, f in enumerate(f_test):
print("processing [{}/{}] 3d image ({}) for test set ...".format(fi + 1, test_3d_num, f))
img_path = os.path.join(testing_data_path, f)
img = nib.load(img_path).get_data()
img_3d_max = np.max(img)
img = img / img_3d_max * 255
for i in range(img.shape[2]):
img_2d = img[:, :, i]
# filter out 2d images containing < 10% non-zeros
if float(np.count_nonzero(img_2d)) / img_2d.size >= preserving_ratio:
img_2d = img_2d / 127.5 - 1
img_2d = np.transpose(img_2d, (1, 0))
X_test.append(img_2d)
X_train = np.asarray(X_train)
X_train = X_train[:, :, :, np.newaxis]
X_val = np.asarray(X_val)
X_val = X_val[:, :, :, np.newaxis]
X_test = np.asarray(X_test)
X_test = X_test[:, :, :, np.newaxis]
# save data into pickle format
data_saving_path = 'data/MICCAI13_SegChallenge/'
tl.files.exists_or_mkdir(data_saving_path)
print("save training set into pickle format")
with open(os.path.join(data_saving_path, 'training.pickle'), 'wb') as f:
pickle.dump(X_train, f, protocol=4)
print("save validation set into pickle format")
with open(os.path.join(data_saving_path, 'validation.pickle'), 'wb') as f:
pickle.dump(X_val, f, protocol=4)
print("save test set into pickle format")
with open(os.path.join(data_saving_path, 'testing.pickle'), 'wb') as f:
pickle.dump(X_test, f, protocol=4)
print("processing data finished!")