forked from SeanLee97/AnglE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
327 lines (280 loc) · 13.1 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# -*- coding: utf-8 -*-
# modified from: https://github.com/kongds/Prompt-BERT/blob/main/evaluation.py
import sys
import os
import torch
import logging
import fcntl
import time
import argparse
from prettytable import PrettyTable
from transformers import LlamaTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM
# Set up logger
logging.basicConfig(format='%(asctime)s : %(message)s', level=logging.DEBUG)
# Import SentEval
sys.path.insert(0, './SentEval')
import senteval
PATH_TO_DATA = './SentEval/data'
def print_table(task_names, scores):
tb = PrettyTable()
tb.field_names = task_names
tb.add_row(scores)
print(tb)
def lock_and_write_file(file_path, content):
with open(file_path, 'a') as file:
while True:
try:
# Acquire an exclusive lock (non-blocking)
fcntl.flock(file, fcntl.LOCK_EX | fcntl.LOCK_NB)
# Perform your write operations here
file.write(content + '\n')
file.flush()
except IOError as e:
print("File is locked by another process. Can't write.")
time.sleep(1)
finally:
# Release the lock
fcntl.flock(file, fcntl.LOCK_UN)
break
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--prompt', type=str, default='Summarize sentence "{text}" in one word:"')
parser.add_argument("--tokenizer_name", type=str, default='')
parser.add_argument("--model_name_or_path", type=str,
help="Transformers' model name or path")
parser.add_argument("--mode", type=str,
choices=['dev', 'test', 'fasttest'],
default='test',
help="What evaluation mode to use (dev: fast mode, dev results; test: full mode, test results); fasttest: fast mode, test results")
parser.add_argument("--task_set", type=str,
choices=['sts', 'transfer', 'full', 'na'],
default='sts',
help="What set of tasks to evaluate on. If not 'na', this will override '--tasks'")
parser.add_argument('--load_kbit', type=int,
choices=[4,8,16],
default=8,
help="Load model in kbit")
parser.add_argument('--avg', action='store_true')
parser.add_argument('--lora_weight', type=str, default=None)
parser.add_argument('--checkpoint_path', type=str, default=None)
args = parser.parse_args()
print('>>> prompt:', args.prompt)
if args.load_kbit == 4:
from transformers import BitsAndBytesConfig
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
load_in_4bit=True,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4',
),
torch_dtype=torch.float16,
device_map='auto',
)
else:
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path,
device_map='auto',
output_hidden_states=True,
trust_remote_code=True,
load_in_8bit=args.load_kbit == 8,)
if args.lora_weight is not None:
from peft import PeftModel
model = PeftModel.from_pretrained(
model,
args.lora_weight,
torch_dtype=torch.float16,
device_map={'': 0},
)
if args.load_kbit == 4:
from peft.tuners.lora import LoraLayer
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
#module = module.to(torch.bfloat16)
module = module.to(torch.float16)
if 'norm' in name:
module = module.to(torch.float32)
if 'lm_head' in name or 'embed_tokens' in name:
if hasattr(module, 'weight'):
#module = module.to(torch.bfloat16)
if 'opt' in args.model_name_or_path:
module = module.to(torch.float32)
else:
module = module.to(torch.float16)
if 'llama' in args.model_name_or_path:
tokenizer = LlamaTokenizer.from_pretrained(args.model_name_or_path, use_fast=True)
tokenizer.bos_token_id = 1
tokenizer.eos_token = '</s>'
else:
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token
tokenizer.padding_side = "left" # Allow batched inference
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Set up the tasks
#args.tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'STSBenchmark', 'SICKRelatedness']
#args.tasks = ['MR']
if args.task_set == 'sts':
args.tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'STSBenchmark', 'SICKRelatedness']
if args.mode == 'dev':
args.tasks = ['STSBenchmark-dev']
elif args.task_set == 'transfer':
args.tasks = ['MR', 'CR', 'MPQA', 'SUBJ', 'SST2', 'TREC', 'MRPC']
elif args.task_set == 'full':
args.tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'STSBenchmark', 'SICKRelatedness']
args.tasks += ['MR', 'CR', 'MPQA', 'SUBJ', 'SST2', 'TREC', 'MRPC']
# Set params for SentEval
if args.mode == 'dev' or args.mode == 'fasttest':
# Fast mode
params = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 5, 'batch_size': 32}
params['classifier'] = {'nhid': 0, 'optim': 'rmsprop', 'batch_size': 32,
'tenacity': 3, 'epoch_size': 2}
elif args.mode == 'test':
# Full mode
params = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 10, 'batch_size':16}
params['classifier'] = {'nhid': 0, 'optim': 'adam', 'batch_size': 64,
'tenacity': 5, 'epoch_size': 4}
else:
raise NotImplementedError
# SentEval prepare and batcher
def prepare(params, samples):
return
def batcher(params, batch, max_length=None):
# Handle rare token encoding issues in the dataset
if len(batch) >= 1 and len(batch[0]) >= 1 and isinstance(batch[0][0], bytes):
batch = [[word.decode('utf-8') for word in s] for s in batch]
sentences = [' '.join(s) for s in batch]
if max_length == 500:
sentences = [tokenizer.decode(tokenizer.encode(s, add_special_tokens=False)[:max_length]) for s in sentences]
max_length = 512
for i, s in enumerate(sentences):
if len(s) > 0 and s[-1] not in '.?"\'': s += '.'
s = s.replace('"', '\'')
if len(s) > 0 and '?' == s[-1]: s = s[:-1] + '.'
sentences[i] = args.prompt.format(text=s)
batch = tokenizer.batch_encode_plus(
sentences,
return_tensors='pt',
padding=True,
max_length=max_length,
truncation=max_length is not None
)
# Move to the correct device
for k in batch:
batch[k] = batch[k].to(device) if batch[k] is not None else None
# Get raw embeddings
with torch.no_grad():
hidden_states = model(output_hidden_states=True, return_dict=True, **batch).hidden_states
if args.avg:
last_layer = hidden_states[-1]
attention_mask = batch['attention_mask'].unsqueeze(-1).expand(last_layer.shape)
outputs = (last_layer * attention_mask).mean(1)
else:
hidden_states = hidden_states[-1]
batch_size = hidden_states.shape[0]
if model.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if model.config.pad_token_id is None:
sequence_lengths = -1
else:
if batch['input_ids'] is not None:
sequence_lengths = (torch.eq(batch['input_ids'], model.config.pad_token_id).long().argmax(-1) - 1).to(
hidden_states.device
)
else:
sequence_lengths = -1
outputs = hidden_states[torch.arange(batch_size, device=hidden_states.device), sequence_lengths]
# outputs = hidden_states[-1][:, -1, :]
if outputs.dtype == torch.bfloat16:
# bfloat16 not support for .numpy()
outputs = outputs.float()
return outputs.cpu()
results = {}
for task in args.tasks:
se = senteval.engine.SE(params, batcher, prepare)
result = se.eval(task)
results[task] = result
# Print evaluation results
if args.mode == 'dev':
print("------ %s ------" % (args.mode))
task_names = []
scores = []
for task in ['STSBenchmark-dev']:
task_names.append(task)
if task in results:
scores.append("%.2f" % (results[task]['dev']['spearman'][0] * 100))
else:
scores.append("0.00")
print_table(task_names, scores)
if args.checkpoint_path is not None:
# evaluate checkpoints on dev
if os.path.exists(os.path.join(args.checkpoint_path, 'dev_results')):
max_scores = 0
with open(os.path.join(args.checkpoint_path, 'dev_results'), 'r') as f:
for i in f:
max_scores = max(max_scores, float(i.split()[1]))
else:
max_scores = 0
# save best checkpoint
if float(scores[-1]) >= max_scores:
import shutil
if args.lora_weight is not None:
shutil.copytree(args.lora_weight, os.path.join(args.checkpoint_path, 'best_model'), dirs_exist_ok=True)
else:
shutil.copytree(args.model_name_or_path, os.path.join(args.checkpoint_path, 'best_model'), dirs_exist_ok=True)
# log dev results
with open(os.path.join(args.checkpoint_path, 'dev_results'), 'a') as f:
prefix = args.mask_embedding_sentence_template if not args.avg else 'avg'
line = prefix + ' ' +str(scores[-1]) + ' ' + \
args.lora_weight if args.lora_weight is not None else args.model_name_or_path
f.write( line + '\n')
task_names = []
scores = []
for task in ['MR', 'CR', 'SUBJ', 'MPQA', 'SST2', 'TREC', 'MRPC']:
task_names.append(task)
if task in results:
scores.append("%.2f" % (results[task]['devacc']))
else:
scores.append("0.00")
task_names.append("Avg.")
scores.append("%.2f" % (sum([float(score) for score in scores]) / len(scores)))
print_table(task_names, scores)
elif args.mode == 'test' or args.mode == 'fasttest':
print("------ %s ------" % (args.mode))
task_names = []
scores = []
for task in ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'STSBenchmark', 'SICKRelatedness']:
task_names.append(task)
if task in results:
if task in ['STS12', 'STS13', 'STS14', 'STS15', 'STS16']:
scores.append("%.2f" % (results[task]['all']['spearman']['all'] * 100))
else:
scores.append("%.2f" % (results[task]['test']['spearman'].correlation * 100))
else:
scores.append("0.00")
task_names.append("Avg.")
scores.append("%.2f" % (sum([float(score) for score in scores]) / len(scores)))
print_table(task_names, scores)
#
# write results and template to file
if args.prompt is not None and args.task_set != 'transfer':
with open('./sts-org-results', 'a') as f:
bits = f'{args.load_kbit}bit'
model_name = args.model_name_or_path.split('/')[-1] + f'({bits})'
f.write(args.prompt.replace(' ', '_') + ' ' + model_name + ' ' + ' '.join([str(s) for s in scores]) + '\n')
task_names = []
scores = []
for task in ['MR', 'CR', 'SUBJ', 'MPQA', 'SST2', 'TREC', 'MRPC']:
task_names.append(task)
if task in results:
scores.append("%.2f" % (results[task]['acc']))
else:
scores.append("0.00")
task_names.append("Avg.")
scores.append("%.2f" % (sum([float(score) for score in scores]) / len(scores)))
print_table(task_names, scores)
if __name__ == "__main__":
main()