-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
267 lines (241 loc) · 12.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""amcl
Usage:
main.py optimize --import-model=<str> --export-model=<str> --dataset=<str> --resulting-feature=<str> [--train-size=<float>|--test-size=<float>] [options]
main.py predict --import-model=<str> --dataset=<str> --resulting-feature=<str> [--train-size=<float>|--test-size=<float>] [options]
main.py create-naive-model --dataset=<str> --resulting-feature=<str> [--export-model=<str>] [--train-size=<float>|--test-size=<float>] [options]
main.py (--svm|--naive-bayes) --dataset=<str> --resulting-feature=<str> [options]
main.py create-optimized-model --dataset=<str> --resulting-feature=<str> --correlation-info=<list> [--export-model=<str>] [--train-size=<float>|--test-size=<float>] [options]
Options:
--debug Debugging mode (temporary)
--use-batch-normalization Use Batch Normalization to speed up learning
--dataset=dir Dataset directory
--embedding-size=<int> Embedding size for categorical features [default: 3]
--dropout-rate=<float> Dropout rate for regularization [default: 0.0]
--training-epochs=<int> Number of training epochs [default: 100]
--hidden-units=<int> Number of units in hidden layer [default: 4]
--noise-rate=<float> Rate of noise added to dataset for some optimizations [default: 0.01]
--import-model=<str> Model path to import
--export-model=<str> Model path to export
--naive-plot=path Naive model structure image path
--optimized-plot=path Optimized model structure image path
--delimiter=<char> Delimiter [default: ,]
--header-line=<int> Header line [default: 1]
--classes-line=<int> Classes line [default: 0]
--resulting-feature=<str> Resulting feature
--shuffle Shuffle
--na-values=<chr> Empty values [default: ['?']]
--train-size=<float> Percentage of training data [default: 0.8]
--test-size=<float> Percentage of test data [default: 0.2]
--correlation-info=<list> Correlation info [default: []]
--drop-features=<list> Drop features from dataset [default: []]
--svm
--naive-bayes
--show-plot
--evaluate
"""
from docopt import docopt
from numpy import random, sum, logical_and
from keras import optimizers, backend
from sklearn import svm
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from tensorflow import set_random_seed, ConfigProto, Session, get_default_graph
from os import environ
from pandas import set_option
from ast import literal_eval
from package.model.datasets import DataSet
from package.model.input_handlers import SqlAlchemyDBHandler, QtSqlDBHandler, FSHandler
from package.model.neural_networks import NeuralNetwork, DenseNeuralNetwork, OptimizedNeuralNetwork, Trainer, FeatureSelector, NeuralNetworkConfig, Predictor, CorrelationAnalyzer
import random as rn
from random import randint
# def alchemy():
# alchemy = SqlAlchemyDBHandler("postgresql", "postgres", "nurlan", "your_password", 5432, "dataset")
# alchemy.configure()
# alchemy.open()
# ddd = alchemy.data()
# alchemy.close()
# print(ddd)
#
# def qtsql():
# qtdb = QtSqlDBHandler("postgres", "nurlan", "your_password", 5432, "dataset")
# qtdb.configure()
# qtdb.open()
# ddd = qtdb.data("age", "sex", "cp", "trestbps", "chol", "fbs", "restecg", "thalach", "exang", "oldpeak",
# "slope", "ca", "thal", "num")
# qtdb.close()
# print(ddd)
def enable_reproducible_mode(seed=795, skip_tf: bool = False):
environ['PYTHONHASHSEED'] = '0'
random.seed(seed)
rn.seed(1254)
if not skip_tf:
set_random_seed(0)
session_conf = ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
sess = Session(graph=get_default_graph(), config=session_conf)
backend.set_session(sess)
if __name__ == '__main__':
set_option('display.max_columns', None)
set_option('display.max_rows', None)
argv = docopt(__doc__)
dataset_path = argv['--dataset']
emb_size = int(argv['--embedding-size'])
dropout_rate = float(argv['--dropout-rate'])
training_epochs = int(argv['--training-epochs'])
hidden_units = int(argv['--hidden-units'])
batch_normalization = argv['--use-batch-normalization']
noise_rate = float(argv['--noise-rate'])
imported_model = argv['--import-model']
model_to_export = argv['--export-model']
predicting = argv['predict']
optimizing = argv['optimize']
creating_naive = argv['create-naive-model']
creating_optimized = argv['create-optimized-model']
naive_plot_path = argv['--naive-plot']
optimized_plot_path = argv['--optimized-plot']
delimiter = argv['--delimiter']
header_line = int(argv['--header-line'])
classes_line = int(argv['--classes-line'])
resulting_feature = argv['--resulting-feature']
shuffle = argv['--shuffle']
na_values = literal_eval(argv['--na-values'])
training_sample = float(argv['--train-size'])
test_sample = float(argv['--test-size'])
correlation_info = literal_eval(argv['--correlation-info'])
features_to_drop = literal_eval(argv['--drop-features'])
use_svm = argv['--svm']
naive_bayes = argv['--naive-bayes']
show_plot = argv['--show-plot']
evaluate = argv['--evaluate']
ihandler = FSHandler(dataset_path, delimiter, header_line, classes_line, na_values)
dataset = DataSet.load(resulting_feature, ihandler)
dataset.drop_invalid_data()
dataset.calculate_statistics([1], [0])
dataset.remove_invaluable_features()
dataset.drop_columns(features_to_drop)
dataset.normalize()
dataset.label_categorical_data()
training_data, test_data, training_target, test_target = train_test_split(dataset.get_data().drop(columns=resulting_feature), dataset.get_resulting_series(), train_size=0.7, shuffle=shuffle)
training_data = DataSet.dataframe_to_dataset(training_data)
test_data = DataSet.dataframe_to_dataset(test_data)
if use_svm:
x = training_data.get_data().values
y = training_target
clf = svm.SVC()
clf.fit(x, y)
prediction = clf.predict(test_data.get_data().values)
print(prediction)
if (evaluate) & (len(prediction) > 0):
tp = sum(logical_and(prediction == 1, test_target == 1))
tn = sum(logical_and(prediction == 0, test_target == 0))
fp = sum(logical_and(prediction == 1, test_target == 0))
fn = sum(logical_and(prediction == 0, test_target == 1))
accuracy = (tp + tn) / (tp + fp + fn + tn)
ppv = tp / (tp + fp)
npv = tn / (tn + fn)
recall = tp / (tp + fn)
specificity = tn / (tn + fp)
print("Prediction accuracy for %d rows: %0.2f %%" % (len(test_data.index()), accuracy * 100))
print("PPV:", ppv)
print("NPV:", npv)
exit()
if naive_bayes:
x = training_data.get_data().values
y = training_target
gnb = GaussianNB()
prediction = gnb.fit(x, y).predict(test_data.get_data().values)
print(prediction)
if (evaluate) & (len(prediction) > 0):
tp = sum(logical_and(prediction == 1, test_target == 1))
tn = sum(logical_and(prediction == 0, test_target == 0))
fp = sum(logical_and(prediction == 1, test_target == 0))
fn = sum(logical_and(prediction == 0, test_target == 1))
accuracy = (tp + tn) / (tp + fp + fn + tn)
ppv = tp / (tp + fp)
npv = tn / (tn + fn)
recall = tp / (tp + fn)
specificity = tn / (tn + fp)
print("Prediction accuracy for %d rows: %0.2f %%" % (len(test_data.index()), accuracy * 100))
print("PPV:", ppv)
print("NPV:", npv)
exit()
config = NeuralNetworkConfig(batch_normalization=batch_normalization)
if optimizing:
if not len(correlation_info):
enable_reproducible_mode()
network = NeuralNetwork.from_file(imported_model)
feature_selector = FeatureSelector(config, network, training_data)
less_sensitive_features = feature_selector.run(training_data, training_target, test_data, test_target, noise_rate=noise_rate, training_epochs=training_epochs)
print(less_sensitive_features)
training_data.drop_columns(less_sensitive_features)
test_data.drop_columns(less_sensitive_features)
network = DenseNeuralNetwork.from_scratch(config, training_data, embedding_size=emb_size,
hidden_units=hidden_units, dropout_rate=dropout_rate)
network.compile()
correlation_analyzer = CorrelationAnalyzer(config, network, training_data)
table = correlation_analyzer.run(test_data, training_data, training_target, noise_rate=noise_rate, training_epochs=training_epochs)
print(table)
correlation_info = correlation_analyzer.select_candidates()
print(correlation_info)
network = OptimizedNeuralNetwork.from_scratch(config, training_data, correlation_info, embedding_size=emb_size, dropout_rate=dropout_rate, output_units=1)
network.compile(lr=0.03)
network.save_plot(optimized_plot_path)
trainer = Trainer(network, training_data, training_target, epochs=training_epochs, batch_size=32)
trainer.train()
predictor = Predictor(network, test_data)
prediction = predictor.predict()
print(prediction)
if evaluate:
predictor.evaluate(test_target, show_plot)
print("Prediction accuracy for %d rows: %0.2f %%" % (len(test_data.index()), (predictor.get_score()['accuracy'] * 100)))
print("PPV: %0.2f" % predictor.get_score()['ppv'])
print("NPV: %0.2f" % predictor.get_score()['npv'])
if model_to_export:
network.export(model_to_export)
if creating_optimized:
# enable_reproducible_mode()
network = OptimizedNeuralNetwork.from_scratch(config, training_data, correlation_info, embedding_size=emb_size, dropout_rate=dropout_rate, output_units=1)
network.compile(lr=0.03)
network.save_plot(optimized_plot_path)
trainer = Trainer(network, training_data, training_target, epochs=training_epochs, batch_size=32)
trainer.train()
predictor = Predictor(network, test_data)
prediction = predictor.predict()
print(prediction)
if evaluate:
predictor.evaluate(test_target, show_plot)
print("Prediction accuracy for %d rows: %0.2f %%" % (len(test_data.index()), (predictor.get_score()['accuracy'] * 100)))
print("PPV: %0.2f" % predictor.get_score()['ppv'])
print("NPV: %0.2f" % predictor.get_score()['npv'])
if model_to_export:
network.export(model_to_export)
if creating_naive:
# seed = randint(0,2000)
# print(seed)
# enable_reproducible_mode()
network = DenseNeuralNetwork.from_scratch(config, training_data, embedding_size=emb_size, hidden_units=hidden_units, dropout_rate=dropout_rate)
if naive_plot_path:
network.save_plot(naive_plot_path, layer_names=True)
network.compile()
trainer = Trainer(network, training_data, training_target, epochs=training_epochs, batch_size=16)
trainer.train()
network.export(model_to_export)
predictor = Predictor(network, test_data)
prediction = predictor.predict()
print(prediction)
if evaluate:
predictor.evaluate(test_target, show_plot)
print("Prediction accuracy for %d rows: %0.2f %%" % (len(test_data.index()), (predictor.get_score()['accuracy'] * 100)))
print("PPV: %0.2f" % predictor.get_score()['ppv'])
print("NPV: %0.2f" % predictor.get_score()['npv'])
if model_to_export:
network.export(model_to_export)
if predicting:
network = NeuralNetwork.from_file(imported_model)
predictor = Predictor(network, test_data)
prediction = predictor.predict()
print(prediction)
if evaluate:
predictor.evaluate(test_target, show_plot)
print("Prediction accuracy for %d rows: %0.2f %%" % (len(test_data.index()), (predictor.get_score()['accuracy'] * 100)))
print("PPV: %0.2f" % predictor.get_score()['ppv'])
print("NPV: %0.2f" % predictor.get_score()['npv'])