-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_no_asr.py
279 lines (218 loc) · 9.43 KB
/
train_no_asr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import time
import yaml
import random
import shutil
import argparse
import datetime
import editdistance
import scipy.signal
import numpy as np
# torch 관련
import torch
import torch.nn as nn
import torch.utils.data
import torch.optim as optim
import torch.nn.functional as F
import torchaudio
from models.encoder import Encoder
from models.decoder import Decoder
from models.asr_decoder import ASR_Decoder
from models.model import Parrotron, Parrotron_No_ASR
from models.eval_distance import eval_wer, eval_cer
from models.data_loader import SpectrogramDataset, AudioDataLoader, AttrDict
from models.loss_function import ParrotronLoss, ParrotronLossNoASR
def load_label(label_path):
char2index = dict() # [ch] = id
index2char = dict() # [id] = ch
with open(label_path, 'r') as f:
for no, line in enumerate(f):
if line[0] == '#':
continue
index, char = line.split(' ')
char = char.strip()
if len(char) == 0:
char = ' '
char2index[char] = int(index)
index2char[int(index)] = char
return char2index, index2char
# SOS_token, EOS_token, PAD_token 정의
char2index, index2char = load_label('./label,csv/english_unit.labels')
SOS_token = char2index['<s>']
EOS_token = char2index['</s>']
PAD_token = char2index['_']
def compute_cer(preds, labels):
total_wer = 0
total_cer = 0
total_wer_len = 0
total_cer_len = 0
for label, pred in zip(labels, preds):
units = []
units_pred = []
for a in label:
if a == EOS_token: # eos
break
units.append(index2char[a])
for b in pred:
if b == EOS_token: # eos
break
units_pred.append(index2char[b])
label = ''.join(units)
pred = ''.join(units_pred)
wer = eval_wer(pred, label)
cer = eval_cer(pred, label)
wer_len = len(label.split())
cer_len = len(label.replace(" ", ""))
total_wer += wer
total_cer += cer
total_wer_len += wer_len
total_cer_len += cer_len
return total_wer, total_cer, total_wer_len, total_cer_len
def train(model, train_loader, optimizer, criterion, device):
model.train()
total_loss = 0
total_num = 0
start_time = time.time()
total_batch_num = len(train_loader)
for i, data in enumerate(train_loader):
optimizer.zero_grad()
seqs, _, tts_seqs, seq_lengths, target_lengths, tts_seq_lengths = data
seqs = seqs.to(device) # (batch_size, time, freq)
tts_seqs = tts_seqs.to(device)
mel_outputs_postnet, mel_outputs, txt_outputs = model(seqs, tts_seqs, None, 0)
loss = criterion(mel_outputs_postnet, mel_outputs, tts_seqs)
total_loss += loss.item()
loss.backward()
optimizer.step()
if i % 100 == 0:
print('{} train_batch: {:4d}/{:4d}, train_spec_loss: {:.4f}, train_time: {:.2f}'
.format(datetime.datetime.now(), i, total_batch_num, loss.item(), time.time() - start_time))
start_time = time.time()
train_loss = total_loss / total_batch_num
return train_loss
def evaluation(model, val_loader, criterion, device):
model.eval()
total_loss = 0
total_num = 0
start_time = time.time()
total_batch_num = len(val_loader)
with torch.no_grad():
for i, data in enumerate(val_loader):
seqs, _, tts_seqs, seq_lengths, target_lengths, tts_seq_lengths = data
seqs = seqs.to(device) # (batch_size, time, freq)
tts_seqs = tts_seqs.to(device)
mel_outputs_postnet, mel_outputs, txt_outputs = model(seqs, tts_seqs, None, 0)
loss = criterion(mel_outputs_postnet, mel_outputs, tts_seqs)
total_loss += loss.item()
eval_loss = total_loss / total_batch_num
return eval_loss
def main():
yaml_name = "./label,csv/Parrotron.yaml"
with open("./parrotron_no_asr.txt", "w") as f:
f.write(yaml_name)
f.write('\n')
f.write('\n')
f.write("학습 시작")
f.write('\n')
configfile = open(yaml_name)
config = AttrDict(yaml.load(configfile, Loader=yaml.FullLoader))
random.seed(config.data.seed)
torch.manual_seed(config.data.seed)
torch.cuda.manual_seed_all(config.data.seed)
cuda = torch.cuda.is_available()
device = torch.device('cuda' if cuda else 'cpu')
windows = { 'hamming': scipy.signal.hamming,
'hann': scipy.signal.hann,
'blackman': scipy.signal.blackman,
'bartlett': scipy.signal.bartlett
}
SAMPLE_RATE = config.audio_data.sampling_rate
WINDOW_SIZE = config.audio_data.window_size
WINDOW_STRIDE = config.audio_data.window_stride
WINDOW = config.audio_data.window
audio_conf = dict(sample_rate=SAMPLE_RATE,
window_size=WINDOW_SIZE,
window_stride=WINDOW_STRIDE,
window=WINDOW)
hop_length = int(round(SAMPLE_RATE * 0.001 * WINDOW_STRIDE))
#-------------------------- Model Initialize --------------------------
enc = Encoder(rnn_hidden_size=256,
dropout=0.5,
bidirectional=True)
dec = Decoder(target_dim=1025,
pre_net_dim=256,
rnn_hidden_size=1024,
encoder_dim=256*2,
attention_dim=128,
attention_filter_n=32,
attention_filter_len=31,
postnet_hidden_size=512,
postnet_filter=5,
dropout=0.5)
model = Parrotron_No_ASR(enc, dec).to(device)
#model.load_state_dict(torch.load("/home/jhjeong/jiho_deep/Parrotron/plz_load/parrotron_no_asr.pth"))
model = nn.DataParallel(model)
#-------------------------- Loss Initialize --------------------------
spec_criterion = nn.MSELoss()
criterion = ParrotronLossNoASR(spec_criterion)
#-------------------- Model Pararllel & Optimizer --------------------
optimizer = optim.Adam(model.module.parameters(),
lr=config.optim.lr,
betas=(0.9, 0.999),
eps=1e-06,
weight_decay=1e-06)
#-------------------------- Data load --------------------------
#train dataset
train_dataset = SpectrogramDataset(audio_conf,
"/home/jhjeong/jiho_deep/Parrotron/label,csv/train.csv",
feature_type=config.audio_data.type,
normalize=True,
spec_augment=True)
train_loader = AudioDataLoader(dataset=train_dataset,
shuffle=True,
num_workers=config.data.num_workers,
batch_size=44,
drop_last=True)
#val dataset
val_dataset = SpectrogramDataset(audio_conf,
"/home/jhjeong/jiho_deep/Parrotron/label,csv/test.csv",
feature_type=config.audio_data.type,
normalize=True,
spec_augment=False)
val_loader = AudioDataLoader(dataset=val_dataset,
shuffle=True,
num_workers=config.data.num_workers,
batch_size=44,
drop_last=True)
print(" ")
print("parrotron 를 학습합니다.")
print(" ")
pre_test_loss = 100000
for epoch in range(config.training.begin_epoch, config.training.end_epoch):
for param_group in optimizer.param_groups:
lr = param_group['lr']
print("lr = ", lr)
print('{} 학습 시작'.format(datetime.datetime.now()))
train_time = time.time()
train_loss = train(model, train_loader, optimizer, criterion, device)
train_total_time = time.time() - train_time
print('{} Epoch {} (Train) Loss {:.4f}, time: {:.2f}'.format(datetime.datetime.now(), epoch+1, train_loss, train_total_time))
print('{} 평가 시작'.format(datetime.datetime.now()))
eval_time = time.time()
eval_loss = evaluation(model, val_loader, criterion, device)
eval_total_time = time.time() - eval_time
print('{} Epoch {} (Eval) Loss {:.4f}, time: {:.2f}'.format(datetime.datetime.now(), epoch+1, eval_loss, eval_total_time))
with open("./parrotron_no_asr.txt", "a") as f:
f.write("lr = " + str(lr))
f.write('\n')
f.write('Epoch %d (Train) Loss %0.4f time %0.4f' % (epoch+1, train_loss, train_total_time))
f.write('\n')
f.write('Epoch %d (Eval) Loss %0.4f time %0.4f' % (epoch+1, eval_loss, eval_total_time))
f.write('\n')
if pre_test_loss > eval_loss:
print("best model을 저장하였습니다.")
torch.save(model.module.state_dict(), "./plz_load/best_parrotron_no_asr.pth")
pre_test_loss = eval_loss
torch.save(model.module.state_dict(), "./plz_load/parrotron_no_asr.pth")
if __name__ == '__main__':
main()