-
Notifications
You must be signed in to change notification settings - Fork 3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Good job, but need dataloader #10
Comments
We recommend using webuav3m.py for training, and webuav3mdataset.py for test. You can easily apply these codes in Pytracking, STARK, OSTrack and more trackers. |
我使用了ALL-IN-ONE里提供的webuav3m.py文件,并设置仅用WEBUAV数据集来训练OSTrack。发现测试UAV123时AUC异常的低,不懂是dataloader的问题还是数据集的gap问题,请问您有什么建议给我吗 |
1.建议使用预训练权重(OSTrack, All-in-One的都行) lib/models/ostrack/ostrack.py: 2.尽量使用LaSOT,COCO,TrackingNet, GOT-10k这四个数据集微调,以及最近的VastTrack。没有句子标注,可以使用类别名或者DTVLT生成的文本描述。其它数据集,可能由于domain gap或者标注风格等原因,在自己的训练集上训练,自己的测试集上测试效果提升明显,但是迁移到别的数据集上就不太行。目前我也在寻找原因。 3.冻结backbone,只微调head和language encoder。
4.WebUAV-3M这个数据集的bounding box标注质量是非常高的(如果你仔细看过另外一个高质量的数据集LaSOT)。所以,原因更可能出现在句子标注的学习上,或许现在的VL tracker没有从句子标注中学到有用的知识。比如,我们当时做这个数据集时在句子描述中提供了具体坐标,希望模型能够像人一样关注到给定的区域(很遗憾,目前大部分模型应该不能学到类似的能力)。可以关注一下最近一个MLLM的工作Elysium,该模型能够根据给定的(归一化)坐标从视频中定位目标。 |
Thank you very much. Your work has a lot of help for our study and research.
Can you provide the WebUAV's dataloader.py?
The text was updated successfully, but these errors were encountered: