-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path06_Testing2wayOneShot_SameSex.py
184 lines (140 loc) · 6.49 KB
/
06_Testing2wayOneShot_SameSex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# 2-Way One-Shot Testing using only pairs of participants of same sex
# Authors: Stefan Jokic, Andrea Schwaller, Filipe Barata, David Cleres
# This script loads mel-spectrogram data (test) from a pickle file,
# and tests a triplet network model (i.e., computes k-shot test accuracies)
# Libraries & Seed
import numpy as np
np.random.seed(0)
import numpy.random as rng
import os
import pickle
from itertools import permutations
import sys
import statistics
import csv
import time
import tensorflow as tf
import tensorflow.keras.backend as K
# Parameters
# Mel-scaled spectrogram parameters
img_width = 237
img_height = 80
# Model & Training
# Directories
weights = sys.argv[1]
data = sys.argv[2]
data_split_name = data.split("/")
data_name = data_split_name[0] + "_" + data_split_name[1]
data_path = "%s%s/" % ("./data/", data)
weights_path = "%s%s/" % ("./weights_testing/", weights)
testing_path = "./testing/"
# Testing
k = 1 # Only one-shot tasks were considered
n_tasks = 125
# Load Model
from Model import get_triplet_network, get_embedding_cnn
model = get_triplet_network((img_height, img_width, 1))
embedding_cnn = get_embedding_cnn((img_height, img_width, 1))
# ## Load Testing Data from Pickle File
with open(os.path.join(data_path, "test.pickle"), "rb") as f:
(X, n_samples) = pickle.load(f)
# Assign sex to participants in test set
# Voluntary cough data
gender_test = np.array(["f", "f", "f", "m", "f", "m", "f", "f", "f", "f"])
n_participants, n_examples, h, w = X.shape
male_participants = np.array(range(n_participants))[gender_test == "m"].tolist()
female_participants = np.array(range(n_participants))[gender_test == "f"].tolist()
# Test Model
print("\n-------------------------------------")
print("Start testing process!")
print("-------------------------------------\n")
# Print parameter configuration
print("Parameter Configuration:\n")
print("Script Filename:", sys.argv[0])
print("Data Path:", sys.argv[1])
print("Weights Path:", sys.argv[2])
print("\n ------------- \n")
# Set up csv output file
timestamp = time.strftime("%Y%m%d_%H%M%S__")
os.makedirs(os.path.join(testing_path, timestamp), exist_ok=True)
with open(
"%s%s%s%s%s%s%s%s%s"
% (testing_path, timestamp, "train_", weights, "_test_SameSex_", data_name, "_", n_tasks, "__testing.csv"),
"w",
newline="",
) as file:
writer = csv.writer(file, quoting=csv.QUOTE_NONNUMERIC)
# Write header line to csv file
permulation_list = list(permutations(male_participants, 2)) + list(permutations(female_participants, 2))
permulation_list.insert(0, "Participant Combinations")
writer.writerow(permulation_list)
# Loop over all weight files
for weight_file in os.listdir(weights_path):
np.random.seed(0)
# Load weights
model.load_weights(os.path.join(weights_path, weight_file))
embedding_cnn.set_weights(model.get_weights())
acc_model = []
count = 0
# Loop over all participant combinations
for participant_combo in list(permutations(male_participants, 2)) + list(permutations(female_participants, 2)):
n_test = 0
n_correct = 0
# For each pair of participants, generate n_tasks (default: 100) random 2-way-k-shot tasks and
# evaluate accuracy over these tasks
for i in range(0, n_tasks):
# First select k+1 samples u.a.r. from P1
P1_samples = rng.choice(range(n_samples[participant_combo[0]]), size=(k + 1,), replace=False)
# Select first sample from P1 as test sample
P1_test_sample = P1_samples[0]
# Select the other k samples (different from the test sample) from P1 as anchor samples
P1_anchor_samples = P1_samples[1:]
# Select k samples u.a.r. from P2 as anchor samples
P2_anchor_samples = rng.choice(range(n_samples[participant_combo[1]]), size=(k,), replace=False)
# Retrieve images from test and anchor samples
test_img = X[participant_combo[0], P1_test_sample, :, :].reshape(1, img_height, img_width, 1)
P1_anchor_imgs = X[participant_combo[0], P1_anchor_samples, :, :].reshape(k, img_height, img_width, 1)
P2_anchor_imgs = X[participant_combo[1], P2_anchor_samples, :, :].reshape(k, img_height, img_width, 1)
# Create support set composed of k P1 and k P2 anchor images
support_set = np.concatenate((P1_anchor_imgs, P2_anchor_imgs), axis=0)
# Test model
# Compute embeddings for test sample and for each anchor sample in support set
embedding_test_img = embedding_cnn.predict(test_img)
embedding_support_set = embedding_cnn.predict(support_set)
distances = []
# Compute distances between embeddings of test sample and each anchor sample in support set
for emb in embedding_support_set:
distances.append(K.sum(K.square(embedding_test_img - emb), axis=1))
# Compute mean distance between test sample and anchor samples of P1 / test sample and anchor samples of P2
m = tf.keras.metrics.MeanTensor()
for i in range(0, k):
m.update_state(distances[i])
P1_mean_distance = m.result()
m.reset_states()
for i in range(k, len(distances)):
m.update_state(distances[i])
P2_mean_distance = m.result()
if P1_mean_distance < P2_mean_distance:
n_correct += 1
# Compute k-shot test accuracy for this participant combination
acc = 100.0 * n_correct / n_tasks
print("ACC: ", acc)
acc_model.append(acc)
count += n_tasks
# Store and print output metrics
metrics = []
metrics.append(("Model Weights: ", weight_file))
metrics.append(("Number of {}-Shot Tests: ".format(k), count))
metrics.append(("Mean Accuracy: ", statistics.mean(acc_model)))
metrics.append(("Standard Deviation Accuracy: ", statistics.stdev(acc_model)))
metrics.append(("Min Accuracy: ", min(acc_model)))
metrics.append(("Max Accuracy: ", max(acc_model)))
print("Model accuracy: ", acc_model)
for i in metrics:
print(i)
# Write to csv file
acc_model.insert(0, weight_file)
writer.writerow(acc_model)
writer.writerow(metrics)