-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy patheval_qa.py
166 lines (126 loc) · 5.36 KB
/
eval_qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import argparse
import json
import re
import string
import torch
from tqdm import tqdm
from ralm.file_utils import print_args
from ralm.model_utils import load_model_and_tokenizer
def normalize_question(question):
if not question.endswith("?"):
question = question + "?"
return question[0].lower() + question[1:]
def build_qa_prompt(example, num_docs=1):
if num_docs == 0:
question_text = normalize_question(example["question"])
ex_prompt = f"Answer these questions:\nQ: {question_text}\nA:"
elif num_docs == 1:
q = normalize_question(example["question"])
title = example['ctxs'][0]['title']
text = example['ctxs'][0]['text']
ex_prompt = f"{title}\n\n{text}\n\nBased on this text, answer these questions:\nQ: {q}\nA:"
else:
q = normalize_question(example["question"])
docs_text = "\n\n".join([f"{ctx['title']}\n\n{ctx['text']}" for ctx in example["ctxs"][:num_docs]])
ex_prompt = f"{docs_text}\n\nBased on these texts, answer these questions:\nQ: {q}\nA:"
return ex_prompt
def normalize_answer(s):
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def text_has_answer(answers, text) -> bool:
if isinstance(answers, str):
answers = [answers]
text = normalize_answer(text)
for single_answer in answers:
single_answer = normalize_answer(single_answer)
if single_answer in text:
return True
return False
def exact_match(prediction, ground_truth):
return normalize_answer(prediction) == normalize_answer(ground_truth)
def get_answer_from_model_output(outputs, tokenizer, prompt):
generation_str = tokenizer.decode(outputs[0].cpu(), skip_special_tokens=True)
generation_str = generation_str[len(prompt):]
answer = generation_str.split("\n")[0]
return answer, generation_str
def evaluate_dataset(
model, tokenizer, device, eval_dataset, max_length, num_docs=0, output_dir=None, max_tokens_to_generate=10
):
idx = 0
num_correct = 0
num_has_answer = 0
num_too_long = 0
sample_prompt = None
for ex in (tq := tqdm(eval_dataset, desc=f"EM: 0.0%")):
answers = ex["answers"]
prompt = build_qa_prompt(ex, num_docs=num_docs)
if idx == 0:
sample_prompt = prompt
has_answer = text_has_answer(answers, prompt)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
if input_ids.shape[-1] > max_length - max_tokens_to_generate:
num_too_long += 1
input_ids = input_ids[..., -(max_length - max_tokens_to_generate):]
with torch.no_grad():
outputs = model.generate(input_ids, max_new_tokens=max_tokens_to_generate)
prediction, generation = get_answer_from_model_output(outputs, tokenizer, prompt)
is_correct = any([exact_match(prediction, answer) for answer in answers])
idx += 1
if is_correct:
num_correct += 1
if has_answer:
num_has_answer += 1
tq.set_description(f"EM: {num_correct / idx * 100:4.1f}%")
em = num_correct / idx * 100
has_answer = num_has_answer / idx * 100
print(f"EM: {em:.1f}%")
print(f"% of prompts with answer: {num_has_answer / idx * 100:.1f}%")
if output_dir is not None:
d = {"em": em, "has_answer": has_answer, "num_examples": idx, "too_long": num_too_long}
with open(os.path.join(output_dir, "eval.json"), "w") as f:
f.write(json.dumps(d) + "\n")
if sample_prompt is not None:
with open(os.path.join(output_dir, "example_prompt.txt"), "w") as f:
f.write(sample_prompt)
def load_dataset(dataset_path):
print("Loading dataset:", dataset_path)
with open(dataset_path) as f:
return json.load(f)
def main(args):
if args.output_dir is not None:
os.makedirs(args.output_dir)
print_args(args, output_dir=args.output_dir)
print("Loading model:", args.model_name)
model, tokenizer, config, device = load_model_and_tokenizer(
args.model_name, model_parallelism=args.model_parallelism, cache_dir=args.cache_dir, auth_token=args.auth_token
)
model_max_length = config.n_positions if hasattr(config, "n_positions") else config.max_position_embeddings
eval_dataset = load_dataset(args.dataset_path)
evaluate_dataset(
model, tokenizer, device, eval_dataset,
max_length=model_max_length,
num_docs=args.num_docs,
output_dir=args.output_dir,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--output_dir", type=str)
# Model params
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--model_parallelism", action="store_true")
parser.add_argument("--auth_token", type=str, default=None)
parser.add_argument("--cache_dir", type=str, default=None)
parser.add_argument("--num_docs", type=int, default=0)
# Dataset params
parser.add_argument("--dataset_path", type=str)
args = parser.parse_args()
main(args)