Note that the following sections describe how to use the fine-tuning CLI for advanced purposes. To do this on Colab, simply use the arguments mentioned here in the argvec
list in our Colab notebook
python3 -m fine_tune.cli --model <HF name*> --dataset <dataset name> --lang <iso lang code> --iglue_dir <base path to indic glue dir> --output_dir <output dir>
where HF name refers to the Huggingface shortcut name for the model. For the list of all shortcut names, refer the official docs https://huggingface.co/transformers/pretrained_models.html
All models in the code are loaded through HF transformers library. For any model, you need the following three files:
config.json
: config file in HF format; check config files used by transformers, for example here.tok.model
: the tokenizer (spm, wordpiece etc.) model file.pytorch_model.bin
: pytorch binary of the transformer model which stores parameters.
If you have tensorflow checkpoints instead of pytorch binary, then use the following command to first generate the pytorch binary file:
MODEL_DIR=$1
# modify model_type and filenames accordingly
transformers-cli convert --model_type albert \
--tf_checkpoint $MODEL_DIR/tf_model \
--config $MODEL_DIR/config.json \
--pytorch_dump_output $MODEL_DIR/pytorch_model.bin
Finally, run the evaluation using the following command:
python3 -m fine_tune.cli --model <path to the directory containing pytorch_model.bin> --tokenizer_name <path to the tokenizer file> --config_name <path to the config file> --dataset <dataset name> --lang <iso lang code> --iglue_dir <base path to indic glue dir> --output_dir <output dir>
Add later