forked from benstaf/FinRL_DeepSeek
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_ppo.py
760 lines (552 loc) · 28.6 KB
/
train_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
#!/usr/bin/env python
# coding: utf-8
#run with the command: OMPI_ALLOW_RUN_AS_ROOT=1 OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1 mpirun -np 4 python3 train_ppo.py
# # Stock NeurIPS2018 Part 2. Train
# This series is a reproduction of *the process in the paper Practical Deep Reinforcement Learning Approach for Stock Trading*.
#
# This is the second part of the NeurIPS2018 series, introducing how to use FinRL to make data into the gym form environment, and train DRL agents on it.
#
# Other demos can be found at the repo of [FinRL-Tutorials]((https://github.com/AI4Finance-Foundation/FinRL-Tutorials)).
# # Part 1. Install Packages
# In[ ]:
#!sudo apt-get update -y
#!sudo apt-get install -y swig
#!sudo apt-get install -y build-essential
#!pip install box2d-py
#!pip install mpi4py
# install spinningup_pytorch library fork of OpenAI Spinup with tensorflow removed (tensorflow 1.8 requires python 3.6)
# Clone the repository
#!git clone https://github.com/benstaf/spinningup_pytorch.git
# Navigate to the repository directory
#%cd spinningup_pytorch
# Install dependencies
#!pip install -r requirements.txt
# Install spinup
#!pip install -e .
# Import spinup to verify installation
#import spinup
#print("spinup is successfully installed and imported")
###################
from datasets import load_dataset
import pandas as pd
#from finrl.agents.stablebaselines3.models import DRLAgent
from finrl.config import INDICATORS, TRAINED_MODEL_DIR, RESULTS_DIR
#from finrl.main import check_and_make_directories
from env_stocktrading import StockTradingEnv
import os
def check_and_make_directories(directories):
for directory in directories:
os.makedirs("./" + directory, exist_ok=True) # This prevents FileEx>
check_and_make_directories([TRAINED_MODEL_DIR])
import numpy as np
import scipy.signal
from gymnasium.spaces import Box, Discrete
import torch
import torch.nn as nn
from torch.distributions.normal import Normal
from torch.distributions.categorical import Categorical
###############
import numpy as np
import torch
from torch.optim import Adam
import gymnasium as gym
import time
import spinup.algos.pytorch.ppo.core as core
from spinup.utils.logx import EpochLogger
from spinup.utils.mpi_pytorch import setup_pytorch_for_mpi, sync_params, mpi_avg_grads
from spinup.utils.mpi_tools import mpi_fork, mpi_avg, proc_id, mpi_statistics_scalar, num_procs
# # Part 2. Build A Market Environment in OpenAI Gym-style
# The core element in reinforcement learning are **agent** and **environment**. You can understand RL as the following process:
#
# The agent is active in a world, which is the environment. It observe its current condition as a **state**, and is allowed to do certain **actions**. After the agent execute an action, it will arrive at a new state. At the same time, the environment will have feedback to the agent called **reward**, a numerical signal that tells how good or bad the new state is. As the figure above, agent and environment will keep doing this interaction.
#
# The goal of agent is to get as much cumulative reward as possible. Reinforcement learning is the method that agent learns to improve its behavior and achieve that goal.
# To achieve this in Python, we follow the OpenAI gym style to build the stock data into environment.
#
# state-action-reward are specified as follows:
#
# * **State s**: The state space represents an agent's perception of the market environment. Just like a human trader analyzing various information, here our agent passively observes the price data and technical indicators based on the past data. It will learn by interacting with the market environment (usually by replaying historical data).
#
# * **Action a**: The action space includes allowed actions that an agent can take at each state. For example, a ∈ {−1, 0, 1}, where −1, 0, 1 represent
# selling, holding, and buying. When an action operates multiple shares, a ∈{−k, ..., −1, 0, 1, ..., k}, e.g.. "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or −10, respectively
#
# * **Reward function r(s, a, s′)**: Reward is an incentive for an agent to learn a better policy. For example, it can be the change of the portfolio value when taking a at state s and arriving at new state s', i.e., r(s, a, s′) = v′ − v, where v′ and v represent the portfolio values at state s′ and s, respectively
#
#
# **Market environment**: 30 constituent stocks of Dow Jones Industrial Average (DJIA) index. Accessed at the starting date of the testing period.
# ## Read data
#
# We first read the .csv file of our training data into dataframe.
# In[15]:
#train = pd.read_csv('train_data.csv')
#train = pd.read_csv('train_data2.csv')
# Load the dataset from Hugging Face
dataset = load_dataset("benstaf/nasdaq_2013_2023", data_files="train_data_2013_2018.csv")
# Convert to pandas DataFrame
train = pd.DataFrame(dataset['train'])
# If you are not using the data generated from part 1 of this tutorial, make sure
# it has the columns and index in the form that could be make into the environment.
# Then you can comment and skip the following two lines.
train = train.set_index(train.columns[0])
train.index.names = ['']
# ## Construct the environment
# Calculate and specify the parameters we need for constructing the environment.
# In[16]:
stock_dimension = len(train.tic.unique())
state_space = 1 + 2*stock_dimension + len(INDICATORS)*stock_dimension
print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}")
# In[16]:
buy_cost_list = sell_cost_list = [0.001] * stock_dimension
num_stock_shares = [0] * stock_dimension
env_kwargs = {
"hmax": 100,
"initial_amount": 1000000,
"num_stock_shares": num_stock_shares,
"buy_cost_pct": buy_cost_list,
"sell_cost_pct": sell_cost_list,
"state_space": state_space,
"stock_dim": stock_dimension,
"tech_indicator_list": INDICATORS,
"action_space": stock_dimension,
"reward_scaling": 1e-4
}
e_train_gym = StockTradingEnv(df = train, **env_kwargs)
# ## Environment for training
# In[17]:
env_train, _ = e_train_gym.get_sb_env()
#print(type(env_train))
# # Part 3: Train DRL Agents
# * Here, the DRL algorithms are from **[Stable Baselines 3](https://stable-baselines3.readthedocs.io/en/master/)**. It's a library that implemented popular DRL algorithms using pytorch, succeeding to its old version: Stable Baselines.
# * Users are also encouraged to try **[ElegantRL](https://github.com/AI4Finance-Foundation/ElegantRL)** and **[Ray RLlib](https://github.com/ray-project/ray)**.
# In[18]:
#Custom PPO agent
def combined_shape(length, shape=None):
if shape is None:
return (length,)
return (length, shape) if np.isscalar(shape) else (length, *shape)
def mlp(sizes, activation, output_activation=nn.Identity):
layers = []
for j in range(len(sizes)-1):
act = activation if j < len(sizes)-2 else output_activation
layers += [nn.Linear(sizes[j], sizes[j+1]), act()]
return nn.Sequential(*layers)
def count_vars(module):
return sum([np.prod(p.shape) for p in module.parameters()])
def discount_cumsum(x, discount):
"""
magic from rllab for computing discounted cumulative sums of vectors.
input:
vector x,
[x0,
x1,
x2]
output:
[x0 + discount * x1 + discount^2 * x2,
x1 + discount * x2,
x2]
"""
return scipy.signal.lfilter([1], [1, float(-discount)], x[::-1], axis=0)[::-1]
class Actor(nn.Module):
def _distribution(self, obs):
raise NotImplementedError
def _log_prob_from_distribution(self, pi, act):
raise NotImplementedError
def forward(self, obs, act=None):
# Produce action distributions for given observations, and
# optionally compute the log likelihood of given actions under
# those distributions.
pi = self._distribution(obs)
logp_a = None
if act is not None:
logp_a = self._log_prob_from_distribution(pi, act)
return pi, logp_a
class MLPCategoricalActor(Actor):
def __init__(self, obs_dim, act_dim, hidden_sizes, activation):
super().__init__()
self.logits_net = mlp([obs_dim] + list(hidden_sizes) + [act_dim], activation)
def _distribution(self, obs):
logits = self.logits_net(obs)
return Categorical(logits=logits)
def _log_prob_from_distribution(self, pi, act):
return pi.log_prob(act)
class MLPGaussianActor(Actor):
def __init__(self, obs_dim, act_dim, hidden_sizes, activation):
super().__init__()
log_std = -0.5 * np.ones(act_dim, dtype=np.float32)
self.log_std = torch.nn.Parameter(torch.as_tensor(log_std))
self.mu_net = mlp([obs_dim] + list(hidden_sizes) + [act_dim], activation)
def _distribution(self, obs):
mu = self.mu_net(obs)
std = torch.exp(self.log_std)
return Normal(mu, std)
def _log_prob_from_distribution(self, pi, act):
return pi.log_prob(act).sum(axis=-1) # Last axis sum needed for Torch Normal distribution
class MLPCritic(nn.Module):
def __init__(self, obs_dim, hidden_sizes, activation):
super().__init__()
self.v_net = mlp([obs_dim] + list(hidden_sizes) + [1], activation)
def forward(self, obs):
return torch.squeeze(self.v_net(obs), -1) # Critical to ensure v has right shape.
class MLPActorCritic(nn.Module):
def __init__(self, observation_space, action_space,
hidden_sizes=(64, 64), activation=nn.Tanh):
super().__init__()
obs_dim = observation_space.shape[0]
# policy builder depends on action space
if isinstance(action_space, Box):
self.pi = MLPGaussianActor(obs_dim, action_space.shape[0], hidden_sizes, activation)
elif isinstance(action_space, Discrete):
self.pi = MLPCategoricalActor(obs_dim, action_space.n, hidden_sizes, activation)
# build value function
self.v = MLPCritic(obs_dim, hidden_sizes, activation)
def step(self, obs):
with torch.no_grad():
pi = self.pi._distribution(obs)
a = pi.sample()
logp_a = self.pi._log_prob_from_distribution(pi, a)
v = self.v(obs)
return a.numpy(), v.numpy(), logp_a.numpy()
def act(self, obs):
return self.step(obs)[0]
###############################
class PPOBuffer:
"""
A buffer for storing trajectories experienced by a PPO agent interacting
with the environment, and using Generalized Advantage Estimation (GAE-Lambda)
for calculating the advantages of state-action pairs.
"""
def __init__(self, obs_dim, act_dim, size, gamma=0.99, lam=0.95):
self.obs_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32)
self.act_buf = np.zeros(core.combined_shape(size, act_dim), dtype=np.float32)
self.adv_buf = np.zeros(size, dtype=np.float32)
self.rew_buf = np.zeros(size, dtype=np.float32)
self.ret_buf = np.zeros(size, dtype=np.float32)
self.val_buf = np.zeros(size, dtype=np.float32)
self.logp_buf = np.zeros(size, dtype=np.float32)
self.gamma, self.lam = gamma, lam
self.ptr, self.path_start_idx, self.max_size = 0, 0, size
def store(self, obs, act, rew, val, logp):
"""
Append one timestep of agent-environment interaction to the buffer.
"""
assert self.ptr < self.max_size # buffer has to have room so you can store
self.obs_buf[self.ptr] = obs
self.act_buf[self.ptr] = act
self.rew_buf[self.ptr] = rew.item()
self.val_buf[self.ptr] = val.item()
self.logp_buf[self.ptr] = logp.item()
self.ptr += 1
def finish_path(self, last_val=0):
"""
Call this at the end of a trajectory, or when one gets cut off
by an epoch ending. This looks back in the buffer to where the
trajectory started, and uses rewards and value estimates from
the whole trajectory to compute advantage estimates with GAE-Lambda,
as well as compute the rewards-to-go for each state, to use as
the targets for the value function.
The "last_val" argument should be 0 if the trajectory ended
because the agent reached a terminal state (died), and otherwise
should be V(s_T), the value function estimated for the last state.
This allows us to bootstrap the reward-to-go calculation to account
for timesteps beyond the arbitrary episode horizon (or epoch cutoff).
"""
path_slice = slice(self.path_start_idx, self.ptr)
rews = np.append(self.rew_buf[path_slice], last_val)
vals = np.append(self.val_buf[path_slice], last_val)
# the next two lines implement GAE-Lambda advantage calculation
deltas = rews[:-1] + self.gamma * vals[1:] - vals[:-1]
self.adv_buf[path_slice] = core.discount_cumsum(deltas, self.gamma * self.lam)
# the next line computes rewards-to-go, to be targets for the value function
self.ret_buf[path_slice] = core.discount_cumsum(rews, self.gamma)[:-1]
self.path_start_idx = self.ptr
def get(self):
"""
Call this at the end of an epoch to get all of the data from
the buffer, with advantages appropriately normalized (shifted to have
mean zero and std one). Also, resets some pointers in the buffer.
"""
assert self.ptr == self.max_size # buffer has to be full before you can get
self.ptr, self.path_start_idx = 0, 0
# the next two lines implement the advantage normalization trick
adv_mean, adv_std = mpi_statistics_scalar(self.adv_buf)
self.adv_buf = (self.adv_buf - adv_mean) / adv_std
data = dict(obs=self.obs_buf, act=self.act_buf, ret=self.ret_buf,
adv=self.adv_buf, logp=self.logp_buf)
return {k: torch.as_tensor(v, dtype=torch.float32) for k,v in data.items()}
#End definition class PPOBuffer
def ppo(
env_fn,
actor_critic=MLPActorCritic,
ac_kwargs=dict(hidden_sizes=[256, 128], activation=torch.nn.ReLU),
seed=42,
steps_per_epoch=8000, # Larger batch size for better gradient estimation
epochs=100, # More epochs for convergence in a volatile environment
gamma=0.995, # Higher discount factor to account for long-term rewards
clip_ratio=0.7, # it's 90% clipping when Reduced clip ratio for stable updates
pi_lr=3e-5, # Lower policy learning rate
vf_lr=1e-4, # Lower value function learning rate
train_pi_iters=100, # Increased policy training iterations
train_v_iters=100, # Increased value function training iterations
lam=0.95, # GAE smoothing factor for advantage estimation
max_ep_len=5000, # Typical trading day or customizable period
target_kl=0.35, # relaxed KL divergence limit
logger_kwargs=dict(),
save_freq=5 # Save checkpoints more frequently
):
#OLD PPO hyperparameters:
#def ppo(env_fn, actor_critic=MLPActorCritic, ac_kwargs=dict(), seed=0,
# steps_per_epoch=4000, epochs=50, gamma=0.99, clip_ratio=0.2, pi_lr=3e-4,
# vf_lr=1e-3, train_pi_iters=80, train_v_iters=80, lam=0.97, max_ep_len=1000,
# target_kl=0.01, logger_kwargs=dict(), save_freq=10):
"""
Proximal Policy Optimization (by clipping),
with early stopping based on approximate KL
Args:
env_fn : A function which creates a copy of the environment.
The environment must satisfy the OpenAI Gym API.
actor_critic: The constructor method for a PyTorch Module with a
``step`` method, an ``act`` method, a ``pi`` module, and a ``v``
module. The ``step`` method should accept a batch of observations
and return:
=========== ================ ======================================
Symbol Shape Description
=========== ================ ======================================
``a`` (batch, act_dim) | Numpy array of actions for each
| observation.
``v`` (batch,) | Numpy array of value estimates
| for the provided observations.
``logp_a`` (batch,) | Numpy array of log probs for the
| actions in ``a``.
=========== ================ ======================================
The ``act`` method behaves the same as ``step`` but only returns ``a``.
The ``pi`` module's forward call should accept a batch of
observations and optionally a batch of actions, and return:
=========== ================ ======================================
Symbol Shape Description
=========== ================ ======================================
``pi`` N/A | Torch Distribution object, containing
| a batch of distributions describing
| the policy for the provided observations.
``logp_a`` (batch,) | Optional (only returned if batch of
| actions is given). Tensor containing
| the log probability, according to
| the policy, of the provided actions.
| If actions not given, will contain
| ``None``.
=========== ================ ======================================
The ``v`` module's forward call should accept a batch of observations
and return:
=========== ================ ======================================
Symbol Shape Description
=========== ================ ======================================
``v`` (batch,) | Tensor containing the value estimates
| for the provided observations. (Critical:
| make sure to flatten this!)
=========== ================ ======================================
ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object
you provided to PPO.
seed (int): Seed for random number generators.
steps_per_epoch (int): Number of steps of interaction (state-action pairs)
for the agent and the environment in each epoch.
epochs (int): Number of epochs of interaction (equivalent to
number of policy updates) to perform.
gamma (float): Discount factor. (Always between 0 and 1.)
clip_ratio (float): Hyperparameter for clipping in the policy objective.
Roughly: how far can the new policy go from the old policy while
still profiting (improving the objective function)? The new policy
can still go farther than the clip_ratio says, but it doesn't help
on the objective anymore. (Usually small, 0.1 to 0.3.) Typically
denoted by :math:`\epsilon`.
pi_lr (float): Learning rate for policy optimizer.
vf_lr (float): Learning rate for value function optimizer.
train_pi_iters (int): Maximum number of gradient descent steps to take
on policy loss per epoch. (Early stopping may cause optimizer
to take fewer than this.)
train_v_iters (int): Number of gradient descent steps to take on
value function per epoch.
lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
close to 1.)
max_ep_len (int): Maximum length of trajectory / episode / rollout.
target_kl (float): Roughly what KL divergence we think is appropriate
between new and old policies after an update. This will get used
for early stopping. (Usually small, 0.01 or 0.05.)
logger_kwargs (dict): Keyword args for EpochLogger.
save_freq (int): How often (in terms of gap between epochs) to save
the current policy and value function.
"""
# Special function to avoid certain slowdowns from PyTorch + MPI combo.
setup_pytorch_for_mpi()
# Set up logger and save configuration
logger = EpochLogger(**logger_kwargs)
logger.save_config(locals())
# Random seed
seed += 10000 * proc_id()
torch.manual_seed(seed)
np.random.seed(seed)
# Instantiate environment
env = env_fn()
obs_dim = env.observation_space.shape
act_dim = env.action_space.shape
# Create actor-critic module
ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
# Sync params across processes
sync_params(ac)
# Count variables
var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.v])
logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts)
# Set up experience buffer
local_steps_per_epoch = int(steps_per_epoch / num_procs())
buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)
# Set up function for computing PPO policy loss
def compute_loss_pi(data):
obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data['logp']
# Policy loss
pi, logp = ac.pi(obs, act)
ratio = torch.exp(logp - logp_old)
clip_adv = torch.clamp(ratio, 1-clip_ratio, 1+clip_ratio) * adv
loss_pi = -(torch.min(ratio * adv, clip_adv)).mean()
# Useful extra info
approx_kl = (logp_old - logp).mean().item()
ent = pi.entropy().mean().item()
clipped = ratio.gt(1+clip_ratio) | ratio.lt(1-clip_ratio)
clipfrac = torch.as_tensor(clipped, dtype=torch.float32).mean().item()
pi_info = dict(kl=approx_kl, ent=ent, cf=clipfrac)
return loss_pi, pi_info
# Set up function for computing value loss
def compute_loss_v(data):
obs, ret = data['obs'], data['ret']
return ((ac.v(obs) - ret)**2).mean()
# Set up optimizers for policy and value function
pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr)
# Set up model saving
logger.setup_pytorch_saver(ac)
def update():
data = buf.get()
pi_l_old, pi_info_old = compute_loss_pi(data)
pi_l_old = pi_l_old.item()
v_l_old = compute_loss_v(data).item()
# Train policy with multiple steps of gradient descent
for i in range(train_pi_iters):
pi_optimizer.zero_grad()
loss_pi, pi_info = compute_loss_pi(data)
kl = mpi_avg(pi_info['kl'])
if kl > 1.5 * target_kl:
logger.log('Early stopping at step %d due to reaching max kl.'%i)
break
loss_pi.backward()
mpi_avg_grads(ac.pi) # average grads across MPI processes
pi_optimizer.step()
logger.store(StopIter=i)
# Value function learning
for i in range(train_v_iters):
vf_optimizer.zero_grad()
loss_v = compute_loss_v(data)
loss_v.backward()
mpi_avg_grads(ac.v) # average grads across MPI processes
vf_optimizer.step()
# Log changes from update
kl, ent, cf = pi_info['kl'], pi_info_old['ent'], pi_info['cf']
logger.store(LossPi=pi_l_old, LossV=v_l_old,
KL=kl, Entropy=ent, ClipFrac=cf,
DeltaLossPi=(loss_pi.item() - pi_l_old),
DeltaLossV=(loss_v.item() - v_l_old))
# Prepare for interaction with environment
start_time = time.time()
o, ep_ret, ep_len = env.reset(), 0, 0
# Main loop: collect experience in env and update/log each epoch
for epoch in range(epochs):
for t in range(local_steps_per_epoch):
a, v, logp = ac.step(torch.as_tensor(o, dtype=torch.float32))
next_o, r, d, _ = env.step(a)
ep_ret += r
ep_len += 1
# save and log
buf.store(o, a, r, v, logp)
logger.store(VVals=v)
# Update obs (critical!)
o = next_o
timeout = ep_len == max_ep_len
terminal = d or timeout
epoch_ended = t==local_steps_per_epoch-1
if terminal or epoch_ended:
if epoch_ended and not(terminal):
print('Warning: trajectory cut off by epoch at %d steps.'%ep_len, flush=True)
# if trajectory didn't reach terminal state, bootstrap value target
if timeout or epoch_ended:
_, v, _ = ac.step(torch.as_tensor(o, dtype=torch.float32))
else:
v = 0
buf.finish_path(v)
if terminal:
# only save EpRet / EpLen if trajectory finished
logger.store(EpRet=ep_ret, EpLen=ep_len)
o, ep_ret, ep_len = env.reset(), 0, 0
# Save model
if (epoch % save_freq == 0) or (epoch == epochs-1):
logger.save_state({'env': env}, None)
# Perform PPO update!
update()
# Log info about epoch
logger.log_tabular('Epoch', epoch)
logger.log_tabular('EpRet', with_min_and_max=True)
logger.log_tabular('EpLen', average_only=True)
logger.log_tabular('VVals', with_min_and_max=True)
logger.log_tabular('TotalEnvInteracts', (epoch+1)*steps_per_epoch)
logger.log_tabular('LossPi', average_only=True)
logger.log_tabular('LossV', average_only=True)
logger.log_tabular('DeltaLossPi', average_only=True)
logger.log_tabular('DeltaLossV', average_only=True)
logger.log_tabular('Entropy', average_only=True)
logger.log_tabular('KL', average_only=True)
logger.log_tabular('ClipFrac', average_only=True)
logger.log_tabular('StopIter', average_only=True)
logger.log_tabular('Time', time.time()-start_time)
logger.dump_tabular()
return ac
###################################################
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default=env_train) #'HalfCheetah-v2')
#parser.add_argument('--hid', type=int, default=64)
#parser.add_argument('--l', type=int, default=2)
#parser.add_argument('--gamma', type=float, default=0.99)
#parser.add_argument('--seed', '-s', type=int, default=0)
#parser.add_argument('--cpu', type=int, default=4)
#parser.add_argument('--steps', type=int, default=4000)
#parser.add_argument('--epochs', type=int, default=50)
#parser.add_argument('--exp_name', type=str, default='ppo')
# Parser arguments adapted to hyperparameter optimization by chatGPT
parser.add_argument('--hid', type=int, default=512) # Updated to match the first hidden size in ac_kwargs
parser.add_argument('--l', type=int, default=2) # Updated to match the number of layers in ac_kwargs
parser.add_argument('--gamma', type=float, default=0.995) # Updated to match gamma in ppo
parser.add_argument('--seed', '-s', type=int, default=42) # Updated to match seed in ppo
parser.add_argument('--cpu', type=int, default=32) # Kept as is since it's not in ppo
parser.add_argument('--steps', type=int, default=20000) #8000) # Updated to match steps_per_epoch in ppo
parser.add_argument('--epochs', type=int, default=100) # 10 for test otherwise 100 it is too much 150) # Updated to match epochs in ppo
parser.add_argument('--exp_name', type=str, default='ppo') # Kept as is since it's not in ppo
#parser.add_argument('-f', '--file', type=str, help='Kernel connection file') # Add this line
parser.add_argument('extra_args', nargs=argparse.REMAINDER) # Catch-all for unrecognized arguments
args = parser.parse_args()
#mpi_fork(args.cpu) # run parallel code with mpi doesn't work in colab
from spinup.utils.run_utils import setup_logger_kwargs
logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed)
trained_ppo=ppo(lambda : args.env, actor_critic=MLPActorCritic,
ac_kwargs=dict(hidden_sizes=[args.hid]*args.l), gamma=args.gamma,
seed=args.seed, steps_per_epoch=args.steps, epochs=args.epochs,
logger_kwargs=logger_kwargs)
# Save the model
model_path = TRAINED_MODEL_DIR + "/agent_ppo_100_epochs_20k_steps.pth"
torch.save(trained_ppo.state_dict(), model_path)
print("Training finished and saved in " + model_path)
# Load the model
#loaded_ppo = MLPActorCritic()
#loaded_ppo.load_state_dict(torch.load(model_path))
#loaded_ppo.eval() # Set the model to evaluation mode
#trained_ppo.save(TRAINED_MODEL_DIR + "/agent_ppo")
# ## Save the trained agent
# Trained agents should have already been saved in the "trained_models" drectory after you run the code blocks above.
#
# For Colab users, the zip files should be at "./trained_models" or "/content/trained_models".
#
# For users running on your local environment, the zip files should be at "./trained_models".