-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg.py
80 lines (68 loc) · 2.52 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import torch
from torch.nn import functional as F
__all__ = ['vgg19']
model_urls = {
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
}
class VGG(nn.Module):
def __init__(self, features):
super(VGG, self).__init__()
self.features = features # vgg backbone
self.reg_layer = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 1, 1)
)
self._initialize_weights()
def forward(self, data):
if type(data) == list:
if data[0].shape != data[1].shape:
print(len(data))
print(data[0].shape)
print(data[1].shape)
x = torch.cat(data, 1)
else:
x = data
x = self.features(x)
x = F.upsample_bilinear(x, scale_factor=2)
x = self.reg_layer(x)
return torch.abs(x)
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
# nn.init.xavier_normal_(m.weight)
print('just kaiming normal')
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
# nn.init.normal_(m.weight, std=0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def make_layers(cfg, batch_norm=False, in_channels=3):
layers = []
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
cfg = {
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512],
}
def vgg19(in_channels=3):
"""VGG 19-layer model (configuration "E")
model pre-trained on ImageNet
"""
model = VGG(make_layers(cfg['E'], in_channels=in_channels))
# model.load_state_dict(model_zoo.load_url(model_urls['vgg19']), strict=False)
return model