-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathargparser.py
124 lines (116 loc) · 4.25 KB
/
argparser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
from ray.tune.config_parser import make_parser
from ray.tune.result import DEFAULT_RESULTS_DIR
EXAMPLE_USAGE = """
Training example:
python ./train.py --run DQN --env CartPole-v0 --no-log-flatland-stats
Training with Config:
python ./train.py -f experiments/flatland_random_sparse_small/global_obs/ppo.yaml
Note that -f overrides all other trial-specific command-line options.
"""
def create_parser(parser_creator=None):
parser = make_parser(
parser_creator=parser_creator,
formatter_class=argparse.RawDescriptionHelpFormatter,
description="Train a reinforcement learning agent.",
epilog=EXAMPLE_USAGE)
# See also the base parser definition in ray/tune/config_parser.py
parser.add_argument(
"--ray-address",
default=None,
type=str,
help="Connect to an existing Ray cluster at this address instead "
"of starting a new one.")
parser.add_argument(
"--ray-num-cpus",
default=None,
type=int,
help="--num-cpus to use if starting a new cluster.")
parser.add_argument(
"--ray-num-gpus",
default=None,
type=int,
help="--num-gpus to use if starting a new cluster.")
parser.add_argument(
"--ray-num-nodes",
default=None,
type=int,
help="Emulate multiple cluster nodes for debugging.")
parser.add_argument(
"--ray-redis-max-memory",
default=None,
type=int,
help="--redis-max-memory to use if starting a new cluster.")
parser.add_argument(
"--ray-memory",
default=None,
type=int,
help="--memory to use if starting a new cluster.")
parser.add_argument(
"--ray-object-store-memory",
default=None,
type=int,
help="--object-store-memory to use if starting a new cluster.")
parser.add_argument(
"--experiment-name",
default="default",
type=str,
help="Name of the subdirectory under `local_dir` to put results in.")
parser.add_argument(
"--local-dir",
default=DEFAULT_RESULTS_DIR,
type=str,
help="Local dir to save training results to. Defaults to '{}'.".format(
DEFAULT_RESULTS_DIR))
parser.add_argument(
"--upload-dir",
default="",
type=str,
help="Optional URI to sync training results to (e.g. s3://bucket).")
parser.add_argument(
"-v", action="store_true", help="Whether to use INFO level logging.")
parser.add_argument(
"-vv", action="store_true", help="Whether to use DEBUG level logging.")
parser.add_argument(
"--resume",
action="store_true",
help="Whether to attempt to resume previous Tune experiments.")
parser.add_argument(
"--torch",
action="store_true",
help="Whether to use PyTorch (instead of tf) as the DL framework.")
parser.add_argument(
"--eager",
action="store_true",
help="Whether to attempt to enable TF eager execution.")
parser.add_argument(
"--trace",
action="store_true",
help="Whether to attempt to enable tracing for eager mode.")
parser.add_argument(
"--log-flatland-stats",
action="store_true",
default=True,
help="Whether to log additional flatland specfic metrics such as percentage complete or normalized score.")
parser.add_argument(
"--bind-all",
action="store_true",
default=False,
help="Whether to expose on network (binding on all network interfaces).")
parser.add_argument(
"--env", default=None, type=str, help="The gym environment to use.")
parser.add_argument(
"--queue-trials",
action="store_true",
help=(
"Whether to queue trials when the cluster does not currently have "
"enough resources to launch one. This should be set to True when "
"running on an autoscaling cluster to enable automatic scale-up."))
parser.add_argument(
"-f",
"--config-file",
default=None,
type=str,
help="If specified, use config options from this file. Note that this "
"overrides any trial-specific options set via flags above.")
return parser