-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinject.py
84 lines (61 loc) · 2.57 KB
/
inject.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import argparse
import numpy as np
import pandas as pd
import os
from injection.injection_methods.full_injection import inject_data_df
from testing_frame_work.data_methods.data_class import DataContainer
from injection.injection_config import ANOMALY_TYPES
STORE_FOLDER = "injection/Results"
try: #make folder if does not exist
os.mkdir(STORE_FOLDER)
except:
pass
DATA_FOLDER = "full"
def add_injection_arguments_to_parser(parser):
parser.add_argument('-a','-anomaly_type', required=True , choices=ANOMALY_TYPES , help='anomaly type')
parser.add_argument("-f", "-a_factor", required=True)
parser.add_argument("-r", "-ratio", required=True)
parser.add_argument("-ts" ,"-time_series")
parser.add_argument("-d" , "-dataset", required=True)
parser.add_argument("-l" , "-length" , default="30" ,type = int)
def init_injection_parser(input = None):
parser = argparse.ArgumentParser()
add_injection_arguments_to_parser(parser)
if input is not None:
args = parser.parse_args(input.split())
else:
args = parser.parse_args()
return args
def main(input = None):
print("starting injection")
parser = init_injection_parser(input)
file_name = parser.d
factor = float(parser.f)
ratio = float(parser.r)
ts = parser.ts
cols = [int(col.strip()) - 1 for col in ts.split(",")]
print(cols)
a_type = parser.a
data_container: DataContainer = DataContainer(file_name, DATA_FOLDER)
original_data = data_container.original_data
norm_data = data_container.norm_data
injected_df_norm : pd.DataFrame
injected_df_norm , _ = inject_data_df(data_df=norm_data,a_type=a_type,cols=cols ,a_percent=ratio,factor=factor)
print("injected container created")
injected_df : pd.DataFrame = injected_df_norm*original_data.std() + original_data.mean()
file_name = file_name if file_name.endswith(".csv") else file_name + ".csv"
print("load csv")
injected_df.to_csv(f"{STORE_FOLDER}/{file_name}", index=False)
print("csv generated")
# checks that injected series values differ from original series values
# and remain the same on the non injected series
injected_values = injected_df.values
original_values = original_data.values
assert not np.allclose(injected_values, original_values)
assert not np.allclose(injected_df_norm.values, norm_data.values)
injected_values[:,cols] = 0
original_values[:,cols] = 0
assert np.allclose(injected_values, original_values) , injected_values-original_values
print("checks passes")
if __name__ == "__main__":
main()