-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_mpl.py
executable file
·182 lines (145 loc) · 5.88 KB
/
plot_mpl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/env python
'''use MatPlotLib for the USAXS livedata and generic SPEC scan plots'''
import datetime
import logging
import matplotlib
matplotlib.use('Agg')
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import numpy as np
logger = logging.getLogger(__name__)
BISQUE_RGB = (255./255, 228./255, 196./255) # 255 228 196 bisque
MINTCREAM_RGB = (245./255, 255./255, 250./255) # 245 255 250 MintCream
SYMBOL_LIST = ("^", "D", "s", "v", "d", "<", ">")
COLOR_LIST = "orange salmon lime green blue purple violet chocolate gray black".split() # red is NOT in the list
CHART_FILE = 'livedata.png'
class PlotException(Exception):
"""one of the plot traces has raised an excpetion"""
# MatPlotLib has several interfaces for plotting
# Since this module runs as part of a background job generating lots of plots,
# the standard plt code is not the right model. It warns after 20 plots
# and will eventually run out of memory. Here's the fix used in this module:
# http://stackoverflow.com/questions/16334588/create-a-figure-that-is-reference-counted/16337909#16337909
class Plottable_USAXS_Dataset(object):
'''data model for the plots below'''
Q = None
I = None
label = None
def livedata_plot(datasets, plotfile, title=None):
'''
generate the USAXS livedata plot
:param [Plottable_USAXS_Dataset] datasets: USAXS data to be plotted, newest data last
:param str plotfile: file name to write plot image
'''
fig = matplotlib.figure.Figure(figsize=(7.5, 8), dpi=300)
fig.clf()
try:
ax = fig.add_subplot('111', axisbg=MINTCREAM_RGB)
except AttributeError:
ax = fig.add_subplot('111', facecolor=MINTCREAM_RGB)
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel(r'$|\vec{Q}|, 1/\AA$')
ax.set_ylabel(r'$R(|\vec{Q}|)$, Raw Intensity, a.u.')
ax.grid(True)
timestamp_str = 'APS/XSD USAXS: ' + str(datetime.datetime.now())
fig.suptitle(timestamp_str, fontsize=10)
if title is not None:
ax.set_title(title, fontsize=12)
legend_handlers = {} # to configure legend for one symbol per dataset
faults = []
for i, ds in enumerate(datasets):
try:
if i < len(datasets)-1:
color = COLOR_LIST[i % len(COLOR_LIST)]
symbol = SYMBOL_LIST[i % len(SYMBOL_LIST)]
else:
color = 'red'
symbol = 'o'
if ds.label.find('(fly)') >= 0:
label = ds.label[:ds.label.find('(fly)')] + '(USAXS)'
elif ds.label.find('(SAXS)') >= 0:
label = ds.label[:ds.label.find('(SAXS)')] + '(SAXS)'
else:
label = ds.label
p = label.find(" ")
if label.startswith("S") and p > 0:
label = label[p:].strip() # remove the scan number
pl, = ax.plot(ds.Q, ds.I, symbol, label=label, mfc='w', mec=color, ms=3, mew=1)
legend_handlers[pl] = matplotlib.legend_handler.HandlerLine2D(numpoints=1)
except Exception as exc:
faults.append((i, ds, exc))
# ax.legend(loc='lower left', fontsize=9, handler_map=legend_handlers) # the old way
ax.legend(fontsize=8, handler_map=legend_handlers)
# fig.tight_layout() # does not look good, crowds the title
FigureCanvas(fig).print_figure(plotfile, bbox_inches='tight', facecolor=BISQUE_RGB)
if len(faults) > 0:
fault_text = "\n".join(["{}".format(f) for f in faults])
raise PlotException(fault_text)
def spec_plot(x, y,
plotfile,
title=None, subtitle=None,
xtitle=None, ytitle=None,
xlog=False, ylog=False,
timestamp_str=None):
'''
generate a plot of a scan (as if data from a scan in a SPEC file)
:param [float] x: horizontal axis data
:param [float] y: vertical axis data
:param str plotfile: file name to write plot image
:param str xtitle: horizontal axis label (default: not shown)
:param str ytitle: vertical axis label (default: not shown)
:param str title: title for plot (default: date time)
:param str subtitle: subtitle for plot (default: not shown)
:param bool xlog: should X axis be log (default: False=linear)
:param bool ylog: should Y axis be log (default: False=linear)
:param str timestamp_str: date to use on plot (default: now)
'''
fig = matplotlib.figure.Figure(figsize=(9, 5))
fig.clf()
ax = fig.add_subplot('111')
if xlog:
ax.set_xscale('log')
if ylog:
ax.set_yscale('log')
if not xlog and not ylog:
ax.ticklabel_format(useOffset=False)
if xtitle is not None:
ax.set_xlabel(xtitle)
if ytitle is not None:
ax.set_ylabel(ytitle)
if subtitle is not None:
ax.set_title(subtitle, fontsize=9)
if timestamp_str is None:
timestamp_str = str(datetime.datetime.now())
if title is None:
title = timestamp_str
else:
fig.text(0.02, 0., timestamp_str,
fontsize=8, color='gray',
ha='left', va='bottom', alpha=0.5)
fig.suptitle(title, fontsize=10)
ax.plot(x, y, 'o-')
FigureCanvas(fig).print_figure(plotfile, bbox_inches='tight')
def main():
'''demo of this code'''
x = np.arange(0.105, 2*np.pi, 0.01)
ds1 = Plottable_USAXS_Dataset()
ds1.Q = x
ds1.I = np.sin(x**2) * np.exp(-x) + 1.0e-5
ds1.label = 'sin(x^2) exp(-x)'
ds2 = Plottable_USAXS_Dataset()
ds2.Q = x
ds2.I = ds1.I**2 + 1.0e-5
ds2.label = '$[\sin(x^2)\cdot\exp(-x)]^2$'
ds3 = Plottable_USAXS_Dataset()
ds3.Q = x
ds3.I = np.sin(5*x) / (5*x) + 1.0e-5
ds3.label = 'sin(5x)/(5x)'
ds4 = Plottable_USAXS_Dataset()
ds4.Q = x
ds4.I = ds3.I**2 + 1.0e-5
ds4.label = r'$[\sin(5x)/(5x)]^2$'
livedata_plot([ds2, ds4], CHART_FILE)
#**************************************************************************
if __name__ == "__main__":
main()