-
Notifications
You must be signed in to change notification settings - Fork 16
/
SPIFBlockDevice.cpp
1055 lines (869 loc) · 36.3 KB
/
SPIFBlockDevice.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* mbed Microcontroller Library
* Copyright (c) 2018 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SPIFBlockDevice.h"
#include "mbed_critical.h"
#include <string.h>
#include "mbed_wait_api.h"
#include "mbed_trace.h"
#define TRACE_GROUP "SPIF"
/* Started from version 5.10.0 SPIFBlockDevice external repo is deprecated.
please use the SPIFBlockDevice component inside mbed-os.*/
#if defined(MBED_MAJOR_VERSION) && MBED_MAJOR_VERSION >= 5 && (MBED_VERSION >= MBED_ENCODE_VERSION(5,10,0))
#error "Started from version 5.10.0 SPIFBlockDevice external repo is deprecated. please use the SPIFBlockDevice component inside mbed-os."
#endif
using namespace mbed;
/* Default SPIF Parameters */
/****************************/
#define SPIF_DEFAULT_READ_SIZE 1
#define SPIF_DEFAULT_PROG_SIZE 1
#define SPIF_DEFAULT_PAGE_SIZE 256
#define SPIF_DEFAULT_SE_SIZE 4096
#define SPI_MAX_STATUS_REGISTER_SIZE 2
#ifndef UINT64_MAX
#define UINT64_MAX -1
#endif
#define SPI_NO_ADDRESS_COMMAND UINT64_MAX
// Status Register Bits
#define SPIF_STATUS_BIT_WIP 0x1 //Write In Progress
#define SPIF_STATUS_BIT_WEL 0x2 // Write Enable Latch
/* SFDP Header Parsing */
/***********************/
#define SPIF_SFDP_HEADER_SIZE 8
#define SPIF_PARAM_HEADER_SIZE 8
/* Basic Parameters Table Parsing */
/**********************************/
#define SFDP_DEFAULT_BASIC_PARAMS_TABLE_SIZE_BYTES 64 /* 16 DWORDS */
//READ Instruction support according to BUS Configuration
#define SPIF_BASIC_PARAM_TABLE_FAST_READ_SUPPORT_BYTE 2
#define SPIF_BASIC_PARAM_TABLE_QPI_READ_SUPPORT_BYTE 16
#define SPIF_BASIC_PARAM_TABLE_222_READ_INST_BYTE 23
#define SPIF_BASIC_PARAM_TABLE_122_READ_INST_BYTE 15
#define SPIF_BASIC_PARAM_TABLE_112_READ_INST_BYTE 13
#define SPIF_BASIC_PARAM_TABLE_PAGE_SIZE_BYTE 40
// Address Length
#define SPIF_ADDR_SIZE_3_BYTES 3
// Erase Types Params
#define SPIF_BASIC_PARAM_ERASE_TYPE_1_BYTE 29
#define SPIF_BASIC_PARAM_ERASE_TYPE_2_BYTE 31
#define SPIF_BASIC_PARAM_ERASE_TYPE_3_BYTE 33
#define SPIF_BASIC_PARAM_ERASE_TYPE_4_BYTE 35
#define SPIF_BASIC_PARAM_ERASE_TYPE_1_SIZE_BYTE 28
#define SPIF_BASIC_PARAM_ERASE_TYPE_2_SIZE_BYTE 30
#define SPIF_BASIC_PARAM_ERASE_TYPE_3_SIZE_BYTE 32
#define SPIF_BASIC_PARAM_ERASE_TYPE_4_SIZE_BYTE 34
#define SPIF_BASIC_PARAM_4K_ERASE_TYPE_BYTE 1
// Erase Types Per Region BitMask
#define ERASE_BITMASK_TYPE4 0x08
#define ERASE_BITMASK_TYPE1 0x01
#define ERASE_BITMASK_NONE 0x00
#define ERASE_BITMASK_ALL 0x0F
#define IS_MEM_READY_MAX_RETRIES 10000
enum spif_default_instructions {
SPIF_NOP = 0x00, // No operation
SPIF_PP = 0x02, // Page Program data
SPIF_READ = 0x03, // Read data
SPIF_SE = 0x20, // 4KB Sector Erase
SPIF_SFDP = 0x5a, // Read SFDP
SPIF_WRSR = 0x01, // Write Status/Configuration Register
SPIF_WRDI = 0x04, // Write Disable
SPIF_RDSR = 0x05, // Read Status Register
SPIF_WREN = 0x06, // Write Enable
SPIF_RSTEN = 0x66, // Reset Enable
SPIF_RST = 0x99, // Reset
SPIF_RDID = 0x9f, // Read Manufacturer and JDEC Device ID
};
// Mutex is used for some SPI Driver commands that must be done sequentially with no other commands in between
// e.g. (1)Set Write Enable, (2)Program, (3)Wait Memory Ready
SingletonPtr<PlatformMutex> SPIFBlockDevice::_mutex;
// Local Function
static unsigned int local_math_power(int base, int exp);
//***********************
// SPIF Block Device APIs
//***********************
SPIFBlockDevice::SPIFBlockDevice(
PinName mosi, PinName miso, PinName sclk, PinName csel, int freq)
: _spi(mosi, miso, sclk), _cs(csel), _device_size_bytes(0), _is_initialized(false), _init_ref_count(0)
{
_address_size = SPIF_ADDR_SIZE_3_BYTES;
// Initial SFDP read tables are read with 8 dummy cycles
// Default Bus Setup 1_1_1 with 0 dummy and mode cycles
_read_dummy_and_mode_cycles = 8;
_write_dummy_and_mode_cycles = 0;
_dummy_and_mode_cycles = _read_dummy_and_mode_cycles;
_min_common_erase_size = 0;
_regions_count = 1;
_region_erase_types_bitfield[0] = ERASE_BITMASK_NONE;
if (SPIF_BD_ERROR_OK != _spi_set_frequency(freq)) {
tr_error("ERROR: SPI Set Frequency Failed");
}
_cs = 1;
}
int SPIFBlockDevice::init()
{
uint8_t vendor_device_ids[4];
size_t data_length = 3;
int status = SPIF_BD_ERROR_OK;
uint32_t basic_table_addr = 0;
size_t basic_table_size = 0;
uint32_t sector_map_table_addr = 0;
size_t sector_map_table_size = 0;
spif_bd_error spi_status = SPIF_BD_ERROR_OK;
_mutex->lock();
if (!_is_initialized) {
_init_ref_count = 0;
}
_init_ref_count++;
if (_init_ref_count != 1) {
goto exit_point;
}
// Soft Reset
if ( -1 == _reset_flash_mem()) {
tr_error("ERROR: init - Unable to initialize flash memory, tests failed\n");
status = SPIF_BD_ERROR_DEVICE_ERROR;
goto exit_point;
} else {
tr_info("INFO: Initialize flash memory OK\n");
}
/* Read Manufacturer ID (1byte), and Device ID (2bytes)*/
spi_status = _spi_send_general_command(SPIF_RDID, SPI_NO_ADDRESS_COMMAND, NULL, 0, (char *)vendor_device_ids,
data_length);
if (spi_status != SPIF_BD_ERROR_OK) {
tr_error("ERROR: init - Read Vendor ID Failed");
status = SPIF_BD_ERROR_DEVICE_ERROR;
goto exit_point;
}
switch (vendor_device_ids[0]) {
case 0xbf:
// SST devices come preset with block protection
// enabled for some regions, issue write disable instruction to clear
_set_write_enable();
_spi_send_general_command(SPIF_WRDI, SPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0);
break;
}
//Synchronize Device
if ( false == _is_mem_ready()) {
tr_error("ERROR: init - _is_mem_ready Failed");
status = SPIF_BD_ERROR_READY_FAILED;
goto exit_point;
}
/**************************** Parse SFDP Header ***********************************/
if ( 0 != _sfdp_parse_sfdp_headers(basic_table_addr, basic_table_size, sector_map_table_addr, sector_map_table_size)) {
tr_error("ERROR: init - Parse SFDP Headers Failed");
status = SPIF_BD_ERROR_PARSING_FAILED;
goto exit_point;
}
/**************************** Parse Basic Parameters Table ***********************************/
if ( 0 != _sfdp_parse_basic_param_table(basic_table_addr, basic_table_size) ) {
tr_error("ERROR: init - Parse Basic Param Table Failed");
status = SPIF_BD_ERROR_PARSING_FAILED;
goto exit_point;
}
/**************************** Parse Sector Map Table ***********************************/
_region_size_bytes[0] =
_device_size_bytes; // If there's no region map, we have a single region sized the entire device size
_region_high_boundary[0] = _device_size_bytes - 1;
if ( (sector_map_table_addr != 0) && (0 != sector_map_table_size) ) {
tr_info("INFO: init - Parsing Sector Map Table - addr: 0x%lxh, Size: %d", sector_map_table_addr,
sector_map_table_size);
if (0 != _sfdp_parse_sector_map_table(sector_map_table_addr, sector_map_table_size) ) {
tr_error("ERROR: init - Parse Sector Map Table Failed");
status = SPIF_BD_ERROR_PARSING_FAILED;
goto exit_point;
}
}
// Configure BUS Mode to 1_1_1 for all commands other than Read
// Dummy And Mode Cycles Back default 0
_dummy_and_mode_cycles = _write_dummy_and_mode_cycles;
_is_initialized = true;
exit_point:
_mutex->unlock();
return status;
}
int SPIFBlockDevice::deinit()
{
spif_bd_error status = SPIF_BD_ERROR_OK;
_mutex->lock();
if (!_is_initialized) {
_init_ref_count = 0;
goto exit_point;
}
_init_ref_count--;
if (_init_ref_count) {
goto exit_point;
}
// Disable Device for Writing
status = _spi_send_general_command(SPIF_WRDI, SPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0);
if (status != SPIF_BD_ERROR_OK) {
tr_error("ERROR: Write Disable failed");
}
_is_initialized = false;
exit_point:
_mutex->unlock();
return status;
}
int SPIFBlockDevice::read(void *buffer, bd_addr_t addr, bd_size_t size)
{
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
int status = SPIF_BD_ERROR_OK;
tr_info("INFO Read - Inst: 0x%xh", _read_instruction);
_mutex->lock();
// Set Dummy Cycles for Specific Read Command Mode
_dummy_and_mode_cycles = _read_dummy_and_mode_cycles;
status = _spi_send_read_command(_read_instruction, static_cast<uint8_t *>(buffer), addr, size);
// Set Dummy Cycles for all other command modes
_dummy_and_mode_cycles = _write_dummy_and_mode_cycles;
_mutex->unlock();
return status;
}
int SPIFBlockDevice::program(const void *buffer, bd_addr_t addr, bd_size_t size)
{
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
bool program_failed = false;
int status = SPIF_BD_ERROR_OK;
uint32_t offset = 0;
uint32_t chunk = 0;
tr_debug("DEBUG: program - Buff: 0x%lxh, addr: %llu, size: %llu", (uint32_t)buffer, addr, size);
while (size > 0) {
// Write on _page_size_bytes boundaries (Default 256 bytes a page)
offset = addr % _page_size_bytes;
chunk = (offset + size < _page_size_bytes) ? size : (_page_size_bytes - offset);
_mutex->lock();
//Send WREN
if (_set_write_enable() != 0) {
tr_error("ERROR: Write Enabe failed\n");
program_failed = true;
status = SPIF_BD_ERROR_WREN_FAILED;
goto exit_point;
}
_spi_send_program_command(_prog_instruction, buffer, addr, chunk);
buffer = static_cast<const uint8_t *>(buffer) + chunk;
addr += chunk;
size -= chunk;
if ( false == _is_mem_ready()) {
tr_error("ERROR: Device not ready after write, failed\n");
program_failed = true;
status = SPIF_BD_ERROR_READY_FAILED;
goto exit_point;
}
_mutex->unlock();
}
exit_point:
if (program_failed) {
_mutex->unlock();
}
return status;
}
int SPIFBlockDevice::erase(bd_addr_t addr, bd_size_t in_size)
{
if (!_is_initialized) {
return BD_ERROR_DEVICE_ERROR;
}
int type = 0;
uint32_t offset = 0;
uint32_t chunk = 4096;
int cur_erase_inst = _erase_instruction;
int size = (int)in_size;
bool erase_failed = false;
int status = SPIF_BD_ERROR_OK;
// Find region of erased address
int region = _utils_find_addr_region(addr);
// Erase Types of selected region
uint8_t bitfield = _region_erase_types_bitfield[region];
tr_info("DEBUG: erase - addr: %llu, in_size: %llu", addr, in_size);
if ((addr + in_size) > _device_size_bytes) {
tr_error("ERROR: erase exceeds flash device size");
return SPIF_BD_ERROR_INVALID_ERASE_PARAMS;
}
if ( ((addr % get_erase_size(addr)) != 0 ) || (((addr + in_size) % get_erase_size(addr + in_size - 1)) != 0 ) ) {
tr_error("ERROR: invalid erase - unaligned address and size");
return SPIF_BD_ERROR_INVALID_ERASE_PARAMS;
}
// For each iteration erase the largest section supported by current region
while (size > 0) {
// iterate to find next Largest erase type ( a. supported by region, b. smaller than size)
// find the matching instruction and erase size chunk for that type.
type = _utils_iterate_next_largest_erase_type(bitfield, size, (unsigned int)addr, _region_high_boundary[region]);
cur_erase_inst = _erase_type_inst_arr[type];
offset = addr % _erase_type_size_arr[type];
chunk = ( (offset + size) < _erase_type_size_arr[type]) ? size : (_erase_type_size_arr[type] - offset);
tr_debug("DEBUG: erase - addr: %llu, size:%d, Inst: 0x%xh, chunk: %lu , ",
addr, size, cur_erase_inst, chunk);
tr_debug("DEBUG: erase - Region: %d, Type:%d",
region, type);
_mutex->lock();
if (_set_write_enable() != 0) {
tr_error("ERROR: SPI Erase Device not ready - failed");
erase_failed = true;
status = SPIF_BD_ERROR_READY_FAILED;
goto exit_point;
}
_spi_send_erase_command(cur_erase_inst, addr, size);
addr += chunk;
size -= chunk;
if ( (size > 0) && (addr > _region_high_boundary[region]) ) {
// erase crossed to next region
region++;
bitfield = _region_erase_types_bitfield[region];
}
if ( false == _is_mem_ready()) {
tr_error("ERROR: SPI After Erase Device not ready - failed\n");
erase_failed = true;
status = SPIF_BD_ERROR_READY_FAILED;
goto exit_point;
}
_mutex->unlock();
}
exit_point:
if (erase_failed) {
_mutex->unlock();
}
return status;
}
bd_size_t SPIFBlockDevice::get_read_size() const
{
// Assuming all devices support 1byte read granularity
return SPIF_DEFAULT_READ_SIZE;
}
bd_size_t SPIFBlockDevice::get_program_size() const
{
// Assuming all devices support 1byte program granularity
return SPIF_DEFAULT_PROG_SIZE;
}
bd_size_t SPIFBlockDevice::get_erase_size() const
{
// return minimal erase size supported by all regions (0 if none exists)
return _min_common_erase_size;
}
// Find minimal erase size supported by the region to which the address belongs to
bd_size_t SPIFBlockDevice::get_erase_size(bd_addr_t addr)
{
// Find region of current address
int region = _utils_find_addr_region(addr);
unsigned int min_region_erase_size = _min_common_erase_size;
int8_t type_mask = ERASE_BITMASK_TYPE1;
int i_ind = 0;
if (region != -1) {
type_mask = 0x01;
for (i_ind = 0; i_ind < 4; i_ind++) {
// loop through erase types bitfield supported by region
if (_region_erase_types_bitfield[region] & type_mask) {
min_region_erase_size = _erase_type_size_arr[i_ind];
break;
}
type_mask = type_mask << 1;
}
if (i_ind == 4) {
tr_error("ERROR: no erase type was found for region addr");
}
}
return (bd_size_t)min_region_erase_size;
}
bd_size_t SPIFBlockDevice::size() const
{
if (!_is_initialized) {
return SPIF_BD_ERROR_DEVICE_ERROR;
}
return _device_size_bytes;
}
int SPIFBlockDevice::get_erase_value() const
{
return 0xFF;
}
/***************************************************/
/*********** SPI Driver API Functions **************/
/***************************************************/
spif_bd_error SPIFBlockDevice::_spi_set_frequency(int freq)
{
_spi.frequency(freq);
return SPIF_BD_ERROR_OK;
}
spif_bd_error SPIFBlockDevice::_spi_send_read_command(int read_inst, uint8_t *buffer, bd_addr_t addr, bd_size_t size)
{
uint32_t dummy_bytes = _dummy_and_mode_cycles / 8;
int dummy_byte = 0;
// csel must go low for the entire command (Inst, Address and Data)
_cs = 0;
// Write 1 byte Instruction
_spi.write(read_inst);
// Write Address (can be either 3 or 4 bytes long)
for (int address_shift = ((_address_size - 1) * 8); address_shift >= 0; address_shift -= 8) {
_spi.write((addr >> address_shift) & 0xFF);
}
// Write Dummy Cycles Bytes
for (uint32_t i = 0; i < dummy_bytes; i++) {
_spi.write(dummy_byte);
}
// Read Data
for (bd_size_t i = 0; i < size; i++) {
buffer[i] = _spi.write(0);
}
// csel back to high
_cs = 1;
return SPIF_BD_ERROR_OK;
}
spif_bd_error SPIFBlockDevice::_spi_send_program_command(int prog_inst, const void *buffer, bd_addr_t addr,
bd_size_t size)
{
// Send Program (write) command to device driver
uint32_t dummy_bytes = _dummy_and_mode_cycles / 8;
int dummy_byte = 0;
uint8_t *data = (uint8_t *)buffer;
// csel must go low for the entire command (Inst, Address and Data)
_cs = 0;
// Write 1 byte Instruction
_spi.write(prog_inst);
// Write Address (can be either 3 or 4 bytes long)
for (int address_shift = ((_address_size - 1) * 8); address_shift >= 0; address_shift -= 8) {
_spi.write((addr >> address_shift) & 0xFF);
}
// Write Dummy Cycles Bytes
for (uint32_t i = 0; i < dummy_bytes; i++) {
_spi.write(dummy_byte);
}
// Write Data
for (bd_size_t i = 0; i < size; i++) {
_spi.write(data[i]);
}
// csel back to high
_cs = 1;
return SPIF_BD_ERROR_OK;
}
spif_bd_error SPIFBlockDevice::_spi_send_erase_command(int erase_inst, bd_addr_t addr, bd_size_t size)
{
tr_info("INFO: Erase Inst: 0x%xh, addr: %llu, size: %llu", erase_inst, addr, size);
addr = (((int)addr) & 0x00FFF000);
_spi_send_general_command(erase_inst, addr, NULL, 0, NULL, 0);
return SPIF_BD_ERROR_OK;
}
spif_bd_error SPIFBlockDevice::_spi_send_general_command(int instruction, bd_addr_t addr, char *tx_buffer,
size_t tx_length, char *rx_buffer, size_t rx_length)
{
// Send a general command Instruction to driver
uint32_t dummy_bytes = _dummy_and_mode_cycles / 8;
uint8_t dummy_byte = 0x00;
// csel must go low for the entire command (Inst, Address and Data)
_cs = 0;
// Write 1 byte Instruction
_spi.write(instruction);
// Reading SPI Bus registers does not require Flash Address
if (addr != SPI_NO_ADDRESS_COMMAND) {
// Write Address (can be either 3 or 4 bytes long)
for (int address_shift = ((_address_size - 1) * 8); address_shift >= 0; address_shift -= 8) {
_spi.write((addr >> address_shift) & 0xFF);
}
// Write Dummy Cycles Bytes
for (uint32_t i = 0; i < dummy_bytes; i++) {
_spi.write(dummy_byte);
}
}
// Read/Write Data
_spi.write(tx_buffer, (int)tx_length, rx_buffer, (int)rx_length);
// csel back to high
_cs = 1;
return SPIF_BD_ERROR_OK;
}
/*********************************************************/
/********** SFDP Parsing and Detection Functions *********/
/*********************************************************/
int SPIFBlockDevice::_sfdp_parse_sector_map_table(uint32_t sector_map_table_addr, size_t sector_map_table_size)
{
uint8_t sector_map_table[SFDP_DEFAULT_BASIC_PARAMS_TABLE_SIZE_BYTES]; /* Up To 16 DWORDS = 64 Bytes */
uint32_t tmp_region_size = 0;
int i_ind = 0;
int prev_boundary = 0;
// Default set to all type bits 1-4 are common
int min_common_erase_type_bits = ERASE_BITMASK_ALL;
spif_bd_error status = _spi_send_read_command(SPIF_SFDP, sector_map_table, sector_map_table_addr /*address*/,
sector_map_table_size);
if (status != SPIF_BD_ERROR_OK) {
tr_error("ERROR: init - Read SFDP First Table Failed");
return -1;
}
// Currently we support only Single Map Descriptor
if (! ( (sector_map_table[0] & 0x3) == 0x03 ) && (sector_map_table[1] == 0x0) ) {
tr_error("ERROR: Sector Map - Supporting Only Single! Map Descriptor (not map commands)");
return -1;
}
_regions_count = sector_map_table[2] + 1;
if (_regions_count > SPIF_MAX_REGIONS) {
tr_error("ERROR: Supporting up to %d regions, current setup to %d regions - fail",
SPIF_MAX_REGIONS, _regions_count);
return -1;
}
// Loop through Regions and set for each one: size, supported erase types, high boundary offset
// Calculate minimum Common Erase Type for all Regions
for (i_ind = 0; i_ind < _regions_count; i_ind++) {
tmp_region_size = ((*((uint32_t *)§or_map_table[(i_ind + 1) * 4])) >> 8) & 0x00FFFFFF; // bits 9-32
_region_size_bytes[i_ind] = (tmp_region_size + 1) * 256; // Region size is 0 based multiple of 256 bytes;
_region_erase_types_bitfield[i_ind] = sector_map_table[(i_ind + 1) * 4] & 0x0F; // bits 1-4
min_common_erase_type_bits &= _region_erase_types_bitfield[i_ind];
_region_high_boundary[i_ind] = (_region_size_bytes[i_ind] - 1) + prev_boundary;
prev_boundary = _region_high_boundary[i_ind] + 1;
}
// Calc minimum Common Erase Size from min_common_erase_type_bits
uint8_t type_mask = ERASE_BITMASK_TYPE1;
for (i_ind = 0; i_ind < 4; i_ind++) {
if (min_common_erase_type_bits & type_mask) {
_min_common_erase_size = _erase_type_size_arr[i_ind];
break;
}
type_mask = type_mask << 1;
}
if (i_ind == 4) {
// No common erase type was found between regions
_min_common_erase_size = 0;
}
return 0;
}
int SPIFBlockDevice::_sfdp_parse_basic_param_table(uint32_t basic_table_addr, size_t basic_table_size)
{
uint8_t param_table[SFDP_DEFAULT_BASIC_PARAMS_TABLE_SIZE_BYTES]; /* Up To 16 DWORDS = 64 Bytes */
//memset(param_table, 0, SFDP_DEFAULT_BASIC_PARAMS_TABLE_SIZE_BYTES);
spif_bd_error status = _spi_send_read_command(SPIF_SFDP, param_table, basic_table_addr /*address*/,
basic_table_size);
if (status != SPIF_BD_ERROR_OK) {
tr_error("ERROR: init - Read SFDP First Table Failed");
return -1;
}
// Check address size, currently only supports 3byte addresses
if ((param_table[2] & 0x4) != 0 || (param_table[7] & 0x80) != 0) {
tr_error("ERROR: init - verify 3byte addressing Failed");
return -1;
}
// Get device density (stored in bits - 1)
uint32_t density_bits = (
(param_table[7] << 24) |
(param_table[6] << 16) |
(param_table[5] << 8 ) |
param_table[4] );
_device_size_bytes = (density_bits + 1) / 8;
// Set Default read/program/erase Instructions
_read_instruction = SPIF_READ;
_prog_instruction = SPIF_PP;
_erase_instruction = SPIF_SE;
// Set Page Size (SPI write must be done on Page limits)
_page_size_bytes = _sfdp_detect_page_size(param_table, basic_table_size);
// Detect and Set Erase Types
_sfdp_detect_erase_types_inst_and_size(param_table, basic_table_size, _erase4k_inst, _erase_type_inst_arr,
_erase_type_size_arr);
_erase_instruction = _erase4k_inst;
// Detect and Set fastest Bus mode (default 1-1-1)
_sfdp_detect_best_bus_read_mode(param_table, basic_table_size, _read_instruction);
return 0;
}
int SPIFBlockDevice::_sfdp_parse_sfdp_headers(uint32_t& basic_table_addr, size_t& basic_table_size,
uint32_t& sector_map_table_addr, size_t& sector_map_table_size)
{
uint8_t sfdp_header[16];
uint8_t param_header[SPIF_SFDP_HEADER_SIZE];
size_t data_length = SPIF_SFDP_HEADER_SIZE;
bd_addr_t addr = 0x0;
// Set 1-1-1 bus mode for SFDP header parsing
// Initial SFDP read tables are read with 8 dummy cycles
_read_dummy_and_mode_cycles = 8;
_dummy_and_mode_cycles = 8;
spif_bd_error status = _spi_send_read_command(SPIF_SFDP, sfdp_header, addr /*address*/, data_length);
if (status != SPIF_BD_ERROR_OK) {
tr_error("ERROR: init - Read SFDP Failed");
return -1;
}
// Verify SFDP signature for sanity
// Also check that major/minor version is acceptable
if (!(memcmp(&sfdp_header[0], "SFDP", 4) == 0 && sfdp_header[5] == 1)) {
tr_error("ERROR: init - _verify SFDP signature and version Failed");
return -1;
} else {
tr_info("INFO: init - verified SFDP Signature and version Successfully");
}
// Discover Number of Parameter Headers
int number_of_param_headers = (int)(sfdp_header[6]) + 1;
tr_debug("DEBUG: number of Param Headers: %d", number_of_param_headers);
addr += SPIF_SFDP_HEADER_SIZE;
data_length = SPIF_PARAM_HEADER_SIZE;
// Loop over Param Headers and parse them (currently supported Basic Param Table and Sector Region Map Table)
for (int i_ind = 0; i_ind < number_of_param_headers; i_ind++) {
status = _spi_send_read_command(SPIF_SFDP, param_header, addr, data_length);
if (status != SPIF_BD_ERROR_OK) {
tr_error("ERROR: init - Read Param Table %d Failed", i_ind + 1);
return -1;
}
// The SFDP spec indicates the standard table is always at offset 0
// in the parameter headers, we check just to be safe
if (param_header[2] != 1) {
tr_error("ERROR: Param Table %d - Major Version should be 1!", i_ind + 1);
return -1;
}
if ((param_header[0] == 0) && (param_header[7] == 0xFF)) {
// Found Basic Params Table: LSB=0x00, MSB=0xFF
tr_debug("DEBUG: Found Basic Param Table at Table: %d", i_ind + 1);
basic_table_addr = ( (param_header[6] << 16) | (param_header[5] << 8) | (param_header[4]) );
// Supporting up to 64 Bytes Table (16 DWORDS)
basic_table_size = ((param_header[3] * 4) < SFDP_DEFAULT_BASIC_PARAMS_TABLE_SIZE_BYTES) ? (param_header[3] * 4) : 64;
} else if ((param_header[0] == 81) && (param_header[7] == 0xFF)) {
// Found Sector Map Table: LSB=0x81, MSB=0xFF
tr_debug("DEBUG: Found Sector Map Table at Table: %d", i_ind + 1);
sector_map_table_addr = ( (param_header[6] << 16) | (param_header[5] << 8) | (param_header[4]) );
sector_map_table_size = param_header[3] * 4;
}
addr += SPIF_PARAM_HEADER_SIZE;
}
return 0;
}
unsigned int SPIFBlockDevice::_sfdp_detect_page_size(uint8_t *basic_param_table_ptr, int basic_param_table_size)
{
unsigned int page_size = SPIF_DEFAULT_PAGE_SIZE;
if (basic_param_table_size > SPIF_BASIC_PARAM_TABLE_PAGE_SIZE_BYTE) {
// Page Size is specified by 4 Bits (N), calculated by 2^N
int page_to_power_size = ( (int)basic_param_table_ptr[SPIF_BASIC_PARAM_TABLE_PAGE_SIZE_BYTE]) >> 4;
page_size = local_math_power(2, page_to_power_size);
tr_debug("DEBUG: Detected Page Size: %d", page_size);
} else {
tr_debug("DEBUG: Using Default Page Size: %d", page_size);
}
return page_size;
}
int SPIFBlockDevice::_sfdp_detect_erase_types_inst_and_size(uint8_t *basic_param_table_ptr, int basic_param_table_size,
int& erase4k_inst,
int *erase_type_inst_arr, unsigned int *erase_type_size_arr)
{
erase4k_inst = 0xff;
bool found_4Kerase_type = false;
uint8_t bitfield = 0x01;
// Erase 4K Inst is taken either from param table legacy 4K erase or superseded by erase Instruction for type of size 4K
erase4k_inst = basic_param_table_ptr[SPIF_BASIC_PARAM_4K_ERASE_TYPE_BYTE];
if (basic_param_table_size > SPIF_BASIC_PARAM_ERASE_TYPE_1_SIZE_BYTE) {
// Loop Erase Types 1-4
for (int i_ind = 0; i_ind < 4; i_ind++) {
erase_type_inst_arr[i_ind] = 0xff; //0xFF default for unsupported type
erase_type_size_arr[i_ind] = local_math_power(2,
basic_param_table_ptr[SPIF_BASIC_PARAM_ERASE_TYPE_1_SIZE_BYTE + 2 * i_ind]); // Size given as 2^N
tr_info("DEBUG: Erase Type(A) %d - Inst: 0x%xh, Size: %d", (i_ind + 1), erase_type_inst_arr[i_ind],
erase_type_size_arr[i_ind]);
if (erase_type_size_arr[i_ind] > 1) {
// if size==1 type is not supported
erase_type_inst_arr[i_ind] = basic_param_table_ptr[SPIF_BASIC_PARAM_ERASE_TYPE_1_BYTE + 2 * i_ind];
if ((erase_type_size_arr[i_ind] < _min_common_erase_size) || (_min_common_erase_size == 0) ) {
//Set default minimal common erase for singal region
_min_common_erase_size = erase_type_size_arr[i_ind];
}
// SFDP standard requires 4K Erase type to exist and its instruction to be identical to legacy field erase instruction
if (erase_type_size_arr[i_ind] == 4096) {
found_4Kerase_type = true;
if (erase4k_inst != erase_type_inst_arr[i_ind]) {
//Verify 4KErase Type is identical to Legacy 4K erase type specified in Byte 1 of Param Table
erase4k_inst = erase_type_inst_arr[i_ind];
tr_warning("WARNING: _detectEraseTypesInstAndSize - Default 4K erase Inst is different than erase type Inst for 4K");
}
}
_region_erase_types_bitfield[0] |= bitfield; // If there's no region map, set region "0" types bitfield as defualt;
}
tr_info("INFO: Erase Type %d - Inst: 0x%xh, Size: %d", (i_ind + 1), erase_type_inst_arr[i_ind],
erase_type_size_arr[i_ind]);
bitfield = bitfield << 1;
}
}
if (false == found_4Kerase_type) {
tr_warning("WARNING: Couldn't find Erase Type for 4KB size");
}
return 0;
}
int SPIFBlockDevice::_sfdp_detect_best_bus_read_mode(uint8_t *basic_param_table_ptr, int basic_param_table_size,
int& read_inst)
{
do {
// TBD - SPIF Dual Read Modes Require SPI driver support
/*
uint8_t examined_byte;
if (basic_param_table_size > SPIF_BASIC_PARAM_TABLE_QPI_READ_SUPPORT_BYTE) {
examined_byte = basic_param_table_ptr[SPIF_BASIC_PARAM_TABLE_QPI_READ_SUPPORT_BYTE];
if (examined_byte & 0x01) {
// Fast Read 2-2-2 Supported
read_inst = basic_param_table_ptr[SPIF_BASIC_PARAM_TABLE_222_READ_INST_BYTE];
_read_dummy_and_mode_cycles = (basic_param_table_ptr[SPIF_BASIC_PARAM_TABLE_222_READ_INST_BYTE - 1] >> 5)
+ (basic_param_table_ptr[SPIF_BASIC_PARAM_TABLE_222_READ_INST_BYTE - 1] & 0x1F);
tr_info("\nDEBUG: Read Bus Mode set to 2-2-2, Instruction: 0x%xh", read_inst);
break;
}
}
examined_byte = basic_param_table_ptr[SPIF_BASIC_PARAM_TABLE_FAST_READ_SUPPORT_BYTE];
if (examined_byte & 0x20) {
// Fast Read 1-2-2 Supported
read_inst = basic_param_table_ptr[SPIF_BASIC_PARAM_TABLE_122_READ_INST_BYTE];
_read_dummy_and_mode_cycles = (basic_param_table_ptr[SPIF_BASIC_PARAM_TABLE_122_READ_INST_BYTE - 1] >> 5)
+ (basic_param_table_ptr[SPIF_BASIC_PARAM_TABLE_122_READ_INST_BYTE - 1] & 0x1F);
tr_debug("\nDEBUG: Read Bus Mode set to 1-2-2, Instruction: 0x%xh", read_inst);
break;
}
if (examined_byte & 0x01) {
// Fast Read 1-1-2 Supported
read_inst = basic_param_table_ptr[SPIF_BASIC_PARAM_TABLE_112_READ_INST_BYTE];
_read_dummy_and_mode_cycles = (basic_param_table_ptr[SPIF_BASIC_PARAM_TABLE_112_READ_INST_BYTE - 1] >> 5)
+ (basic_param_table_ptr[SPIF_BASIC_PARAM_TABLE_112_READ_INST_BYTE - 1] & 0x1F);
tr_debug("\nDEBUG: Read Bus Mode set to 1-1-2, Instruction: 0x%xh", _read_instruction);
break;
}
*/
_read_dummy_and_mode_cycles = 0;
tr_debug("\nDEBUG: Read Bus Mode set to 1-1-1, Instruction: 0x%xh", read_inst);
} while (false);
return 0;
}
int SPIFBlockDevice::_reset_flash_mem()
{
// Perform Soft Reset of the Device prior to initialization
int status = 0;
char status_value[2] = {0};
tr_info("INFO: _reset_flash_mem:\n");
//Read the Status Register from device
if (SPIF_BD_ERROR_OK == _spi_send_general_command(SPIF_RDSR, SPI_NO_ADDRESS_COMMAND, NULL, 0, status_value, 1) ) {
// store received values in status_value
tr_debug("DEBUG: Reading Status Register Success: value = 0x%x\n", (int)status_value[0]);
} else {
tr_debug("ERROR: Reading Status Register failed\n");
status = -1;
}
if (0 == status) {
//Send Reset Enable
if (SPIF_BD_ERROR_OK == _spi_send_general_command(SPIF_RSTEN, SPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0) ) {
// store received values in status_value
tr_debug("DEBUG: Sending RSTEN Success\n");
} else {
tr_error("ERROR: Sending RSTEN failed\n");
status = -1;
}
if (0 == status) {
//Send Reset
if (SPIF_BD_ERROR_OK == _spi_send_general_command(SPIF_RST, SPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0)) {
// store received values in status_value
tr_debug("DEBUG: Sending RST Success\n");
} else {
tr_error("ERROR: Sending RST failed\n");
status = -1;
}
_is_mem_ready();
}
}
return status;
}
bool SPIFBlockDevice::_is_mem_ready()
{
// Check Status Register Busy Bit to Verify the Device isn't Busy
char status_value[2];
int retries = 0;
bool mem_ready = true;
do {
wait_ms(1);
retries++;
//Read the Status Register from device
if (SPIF_BD_ERROR_OK != _spi_send_general_command(SPIF_RDSR, SPI_NO_ADDRESS_COMMAND, NULL, 0, status_value,
1)) { // store received values in status_value
tr_error("ERROR: Reading Status Register failed\n");
}
} while ( (status_value[0] & SPIF_STATUS_BIT_WIP) != 0 && retries < IS_MEM_READY_MAX_RETRIES );
if ((status_value[0] & SPIF_STATUS_BIT_WIP) != 0) {
tr_error("ERROR: _is_mem_ready FALSE\n");
mem_ready = false;
}
return mem_ready;
}
int SPIFBlockDevice::_set_write_enable()
{
// Check Status Register Busy Bit to Verify the Device isn't Busy
char status_value[2];
int status = -1;
do {
if (SPIF_BD_ERROR_OK != _spi_send_general_command(SPIF_WREN, SPI_NO_ADDRESS_COMMAND, NULL, 0, NULL, 0)) {
tr_error("ERROR:Sending WREN command FAILED\n");
break;
}
if ( false == _is_mem_ready()) {
tr_error("ERROR: Device not ready, write failed");
break;
}
memset(status_value, 0, 2);
if (SPIF_BD_ERROR_OK != _spi_send_general_command(SPIF_RDSR, SPI_NO_ADDRESS_COMMAND, NULL, 0, status_value,
1)) { // store received values in status_value
tr_error("ERROR: Reading Status Register failed\n");
break;
}
if ((status_value[0] & SPIF_STATUS_BIT_WEL) == 0) {
tr_error("ERROR: _set_write_enable failed\n");
break;
}
status = 0;
} while (false);
return status;
}
/*********************************************/
/************* Utility Functions *************/
/*********************************************/
int SPIFBlockDevice::_utils_find_addr_region(bd_size_t offset)
{
//Find the region to which the given offset belong to
if ((offset > _device_size_bytes) || (_regions_count == 0)) {
return -1;
}
if (_regions_count == 1) {