forked from The-FinAI/Old-FinBen-Leaderboard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
289 lines (258 loc) Β· 9.91 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import pandas as pd
import numpy as np
import matplotlib
# matplotlib.use('macosx')
import gradio as gr
import matplotlib.pyplot as plt
import plotly.graph_objects as go
from apscheduler.schedulers.background import BackgroundScheduler
ENG_COLS = [
("Model", "str"),
("FPB-acc", "number"),
("FPB-F1", "number"),
("FPB-missing", "number"),
("FiQA-SA-F1", "number"),
("FiQA-SA-missing", "number"),
("Headline-AvgF1", "number"),
("NER-EntityF1", "number"),
("ConvFinQA-EmAcc", "number"),
("FinQA-EmAcc", "number"),
("BigData22-Acc", "number"),
("BigData22-MCC", "number"),
("BigData22-missing", "number"),
("ACL18-Acc", "number"),
("ACL18-MCC", "number"),
("ACL18-missing", "number"),
("CIKM18-Acc", "number"),
("CIKM18-MCC", "number"),
("CIKM18-missing", "number"),
("FOMC-acc", "number"),
("FOMC-F1", "number"),
("FOMC-missing", "number"),
("FinerOrd-EntityF1", "number"),
("FinerOrd-F1", "number"),
("German-Acc", "number"),
("German-MCC", "number"),
("German-missing", "number"),
("Australian-Acc", "number"),
("Australian-MCC", "number"),
("Australian-missing", "number"),
("TSA-RMSE", "number"),
("TSA-missing", "number"),
("MLESG-F1", "number"),
("MLESG-missing", "number"),
("FSRL-entity-F1", "number"),
("FSRL-F1", "number"),
("CFA-acc", "number"),
("CFA-F1", "number"),
("CFA-missing", "number"),
("Finarg-ECCAUC-F1", "number"),
("Finarg-ECCAUC-missing", "number"),
("Finarg-ECCARC-F1", "number"),
("Finarg_ECCARC-missing", "number"),
("CD-Entity-F1", "number"),
("CD-F1", "number"),
("MultiFin-EN-acc", "number"),
("MultiFin-EN-F1", "number"),
("MultiFin-EN-missing", "number"),
("MA-acc", "number"),
("MA-F1", "number"),
("MA-missing", "number"),
("Causal20-sc-acc", "number"),
("Causal20-sc-F1", "number"),
("Causal20-sc-missing", "number"),
("TATQA-EmAcc", "number"),
("FNXL-entity-F1", "number"),
("FNXL-F1", "number"),
("FinRED-precision", "number"),
("FinRED-recall", "number"),
("FinRED-F1", "number"),
("ECTSUM-Rouge1", "number"),
("ECTSUM-Rouge2", "number"),
("ECTSUM-RougeL", "number"),
("ECTSUM-BertScore", "number"),
("ECTSUM-BARTScore", "number"),
("EDTSUM-Rouge1", "number"),
("EDTSUM-Rouge2", "number"),
("EDTSUM-RougeL", "number"),
("EDTSUM-BertScore", "number"),
("EDTSUM-BARTScore", "number"),
]
SPA_COLS = [
("Model", "str"),
("MultiFin-F1", "number"),
("MultiFin-Acc", "number"),
("FNS-Rouge1", "number"),
("FNS-Rouge2", "number"),
("FNS-RougeL", "number"),
("EFP-F1", "number"),
("EFP-Acc", "number"),
("EFPA-F1", "number"),
("EFPA-Acc", "number"),
("TSA-F1", "number"),
("TSA-Acc", "number"),
("FinanceES-F1", "number"),
("FinanceES-Acc", "number"),
]
CHI_COLS = [
("Model", "str"),
("AFQMC-Acc", "number"),
("AFQMC-F1", "number"),
("corpus-Acc", "number"),
("corpus-F1", "number"),
("stockA-Acc", "number"),
("stockA-F1", "number"),
("Fineval-Acc", "number"),
("Fineval-F1", "number"),
("NL-Acc", "number"),
("NL-F1", "number"),
("NL2-Acc", "number"),
("NL2-F1", "number"),
("NSP-Acc", "number"),
("NSP-F1", "number"),
("RE-Acc", "number"),
("RE-F1", "number"),
("FE-Acc", "number"),
("FE-F1", "number"),
("stockB-Acc", "number"),
("stockB-F1", "number"),
]
# Extract column names
eng_cols = [col_name for col_name, _ in ENG_COLS]
eng_cates = {
"Sentiment Analysis": ["Model", "FPB-acc", "FPB-F1", "FPB-missing",
"FiQA-SA-F1", "FiQA-SA-missing", "Headline-AvgF1", "TSA-RMSE",
"TSA-missing", "FOMC-acc", "FOMC-F1", "FOMC-missing"],
"NER": ["Model", "NER-EntityF1", "FinerOrd-EntityF1", "FinerOrd-F1"],
"Number Understanding": ["Model", "FinQA-EmAcc", "ConvFinQA-EmAcc"],
"Text Summarization": ["Model", "ECTSUM-Rouge1", "ECTSUM-Rouge2",
"ECTSUM-RougeL", "ECTSUM-BertScore", "ECTSUM-BARTScore",
"EDTSUM-Rouge1", "EDTSUM-Rouge2", "EDTSUM-RougeL", "EDTSUM-BertScore", "EDTSUM-BARTScore",],
"Stock Movement Prediction": ["Model", "BigData22-Acc",
"BigData22-MCC", "BigData22-missing", "ACL18-Acc", "ACL18-MCC",
"ACL18-missing", "CIKM18-Acc", "CIKM18-MCC", "CIKM18-missing", ],
"Credit Scoring": ["Model", "German-Acc", "German-MCC",
"German-missing", "Australian-Acc", "Australian-MCC", "Australian-missing"],
}
spa_cols = [col_name for col_name, _ in SPA_COLS]
spa_cates = {
"Sentiment Analysis": ["Model", "TSA-Acc", "TSA-F1", "FinanceES-Acc", "FinanceES-F1"],
"Examination": ["Model", "EFP-Acc", "EFP-F1", "EFPA-Acc", "EFPA-F1"],
"Classification": ["Model", "MultiFin-Acc", "MultiFin-F1"],
"Text Summarization": ["Model", "FNS-Rouge1", "FNS-Rouge2", "FNS-RougeL",],
}
chi_cols = [col_name for col_name, _ in CHI_COLS]
chi_cates = {
"Semantic matching": ["Model", "AFQMC-Acc", "AFQMC-F1", "corpus-Acc", "corpus-F1"],
"Classification": ["Model", "NL-Acc", "NL-F1","NL2-Acc", "NL2-F1","NSP-Acc", "NSP-F1"],
"Stock Movement Prediction": ["Model", "stockA-Acc", "stockA-F1"],
"Examination": ["Model", "Fineval-Acc", "Fineval-F1"],
"Relation Extraction": ["Model", "RE-Acc", "RE-F1"],
"Sentiment Analysis": ["Model", "FE-Acc", "FE-F1", "stockB-Acc", "stockB-F1"],
}
def create_df_dict(lang, lang_cols, cates):
# Load leaderboard data with column names
leaderboard_df = pd.read_csv(f'{lang}_result.csv', names=lang_cols)
leaderboard_df = leaderboard_df.sort_index(axis=1)
# Move 'key' column to the front
leaderboard_df = leaderboard_df[ ['Model'] + [ col for col in leaderboard_df.columns if col != 'Model' ] ]
cols = leaderboard_df.columns
types = ["str"] + ["number"] * (len(lang_cols)-1)
# Split merged_df into subtask dataframes
df_dict = {}
for key, selected_columns in cates.items():
df_dict[key] = leaderboard_df[selected_columns]
return df_dict
df_lang = {
"English": create_df_dict("english", eng_cols, eng_cates),
"Spanish": create_df_dict("spanish", spa_cols, spa_cates),
"Chinese": create_df_dict("chinese", chi_cols, chi_cates),
}
# Constants
TITLE = '<h1 align="center" id="space-title">π² PIXIU FLARE Leaderboard</h1>'
# TITLE = "Financial Natural Language Understanding and Prediction Evaluation Benchmark (FLARE) Leaderboard"
INTRODUCTION_TEXT = """π The PIXIU FLARE Leaderboard is designed to rigorously track, rank, and evaluate state-of-the-art models in financial Natural Language Understanding and Prediction.
π Unique to FLARE, our leaderboard not only covers standard NLP tasks but also incorporates financial prediction tasks such as stock movement and credit scoring, offering a more comprehensive evaluation for real-world financial applications.
π Our evaluation metrics include, but are not limited to, Accuracy, F1 Score, ROUGE score, BERTScore, and Matthews correlation coefficient (MCC), providing a multidimensional assessment of model performance.
π For more details, refer to our GitHub page [here](https://github.com/ChanceFocus/PIXIU).
"""
def create_data_interface(df):
headers = df.columns
types = ["str"] + ["number"] * (len(headers) - 1)
return gr.components.Dataframe(
value=df.values.tolist(),
headers=[col_name for col_name in headers],
datatype=types,
max_rows=10,
)
def plot_radar_chart(df, attributes, category_name):
fig = go.Figure()
for index, row in df.iterrows():
model = row['Model']
values = row[attributes].tolist()
fig.add_trace(go.Scatterpolar(
r=values,
theta=attributes,
fill='toself',
name=model
))
fig.update_layout(
title="FLARE",
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 0.9]
)),
showlegend=True
)
return fig
def create_data_interface_for_aggregated(df, category_name):
attributes = df.columns[1:]
print (attributes)
plt = plot_radar_chart(df, attributes, category_name)
return plt
def create_lang_leaderboard(df_dict):
new_df = pd.DataFrame()
for key, df in df_dict.items():
new_df["Model"] = df["Model"]
tdf = df.replace('', 0)
tdf = tdf[[val for val in tdf.columns if "Model" not in val]]
if key == "Sentiment Analysis":
tdf = tdf[[val for val in tdf.columns if "F1" in val]]
elif key == "Classification":
tdf = tdf[[val for val in tdf.columns if "F1" in val]]
elif key == "Examination":
tdf = tdf[[val for val in tdf.columns if "F1" in val]]
elif key == "Stock Movement Prediction":
tdf = tdf[[val for val in tdf.columns if "Acc" in val]]
elif key == "Credit Scoring":
tdf = tdf[[val for val in tdf.columns if "Acc" in val]]
elif key == "Text Summarization":
tdf = tdf[[val for val in tdf.columns if "Bert" in val or "Rouge" in val]]
elif key == "Semantic matching":
tdf = tdf[[val for val in tdf.columns if "Acc" in val]]
elif key == "Relation Extraction":
tdf = tdf[[val for val in tdf.columns if "Acc" in val]]
print ("tdf")
print (tdf)
new_df[key] = tdf.values.mean(axis=1)
print (new_df.values)
plot = create_data_interface_for_aggregated(new_df, key)
gr.Plot(plot)
for key, df in df_dict.items():
with gr.Tab(key):
create_data_interface(df)
def launch_gradio():
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
for key, df_dict in df_lang.items():
with gr.Tab(key):
create_lang_leaderboard(df_dict)
demo.launch()
scheduler = BackgroundScheduler()
scheduler.add_job(launch_gradio, "interval", seconds=3600)
scheduler.start()
# Launch immediately
launch_gradio()