-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathUCIExperiments.py
237 lines (195 loc) · 9.98 KB
/
UCIExperiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from models import UMNNMAFFlow
import torch
import numpy as np
import os
import pickle
import lib.utils as utils
import datasets
from timeit import default_timer as timer
from tensorboardX import SummaryWriter
writer = SummaryWriter()
def batch_iter(X, batch_size, shuffle=False):
"""
X: feature tensor (shape: num_instances x num_features)
"""
if shuffle:
idxs = torch.randperm(X.shape[0])
else:
idxs = torch.arange(X.shape[0])
if X.is_cuda:
idxs = idxs.cuda()
for batch_idxs in idxs.split(batch_size):
yield X[batch_idxs]
def load_data(name):
if name == 'bsds300':
return datasets.BSDS300()
elif name == 'power':
return datasets.POWER()
elif name == 'gas':
return datasets.GAS()
elif name == 'hepmass':
return datasets.HEPMASS()
elif name == 'miniboone':
return datasets.MINIBOONE()
else:
raise ValueError('Unknown dataset')
def _flatten(sequence):
flat = [p.contiguous().view(-1) for p in sequence]
return torch.cat(flat) if len(flat) > 0 else torch.tensor([])
def train_uci(dataset, load=None, test=False, save=None, nb_steps=50, solver="CC", hidden_embeding=[300, 300, 300, 300],
hidden_derivative=[100, 50, 50, 50, 50], embeding_size=30, nb_flow=5, lr=1e-3, weight_decay=1e-2,
nb_epoch=500, L=1., batch_size = 100, scheduler_rate=.99, scheduler_patience=500, optim="adam"):
cuda = 0 if torch.cuda.is_available() else -1
device = "cuda:0" if torch.cuda.is_available() else "cpu"
save_name = "ExperimentsResults/UCIExperiments/" + dataset + "/" + str(nb_steps) if save is None else save
logger = utils.get_logger(logpath=os.path.join(save_name, 'logs'), filepath=os.path.abspath(__file__), saving=save is not None)
logger.info("Loading data...")
data = load_data(dataset)
data.trn.x = torch.from_numpy(data.trn.x).to(device)
nb_in = data.trn.x.shape[1]
data.val.x = torch.from_numpy(data.val.x).to(device)
data.tst.x = torch.from_numpy(data.tst.x).to(device)
logger.info("Data loaded.")
logger.info("Creating model...")
model = UMNNMAFFlow(nb_flow=nb_flow, nb_in=nb_in, hidden_derivative=hidden_derivative,
hidden_embedding=hidden_embeding, embedding_s=embeding_size, nb_steps=nb_steps, device=device,
solver=solver).to(device)
logger.info("Model created.")
if save is not None:
with open(save + "/model.txt", "w") as f:
f.write(str(model))
if optim == "adam":
opt = torch.optim.Adam(model.parameters(), lr, weight_decay=weight_decay)
elif optim == "sgd":
opt = torch.optim.SGD(model.parameters(), lr, weight_decay=weight_decay, momentum=.9)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(opt, factor=scheduler_rate, patience=scheduler_patience,
threshold=1e-2)
random_steps = nb_steps <= 0
if load is not None:
logger.info("Loading model...")
if cuda >= 0:
model.load_state_dict(torch.load(load + '/model_best_train.pt'))
else:
model.load_state_dict(torch.load(load + '/model_best_train.pt', map_location='cpu'))
logger.info("Model loaded.")
if test:
model.eval()
with torch.no_grad():
# Compute Test loss
i = 0
ll_test = 0.
if random_steps:
model.set_steps_nb(100)
for cur_x in batch_iter(data.tst.x, shuffle=True, batch_size=batch_size):
ll_tmp, z = model.compute_ll(cur_x)
i += 1
ll_test -= ll_tmp.mean()
logger.info("Test loss: {:4f}".format(ll_test.detach().cpu().data/i))
ll_test /= i
logger.info("Number of parameters: {:d} - Test loss: {:4f}".format(len(_flatten(model.parameters())),
ll_test.detach().cpu().data))
with open(load + '/losses.pkl', 'rb') as f:
losses_train, losses_test = pickle.load(f)
cur_epoch = len(losses_test)
else:
losses_train = []
losses_test = []
cur_epoch = 0
best_valid = np.inf
best_train = np.inf
for epoch in range(cur_epoch, cur_epoch + nb_epoch):
ll_tot = 0
i = 0
start = timer()
for cur_x in batch_iter(data.trn.x, shuffle=True, batch_size=batch_size):
if random_steps:
nb_steps = np.random.randint(5, 50)*2
model.set_steps_nb(nb_steps)
opt.zero_grad()
#Useful to split batch into smaller sub-batches
max_forward = batch_size
for cur_su_batch in range(0, batch_size, max_forward):
ll, z = model.compute_ll(cur_x.view(-1, nb_in)[cur_su_batch:cur_su_batch+max_forward])
ll = -ll.mean()/(batch_size/max_forward)
ll.backward()
ll_tot += ll.detach()
torch.nn.utils.clip_grad.clip_grad_value_(model.parameters(), 1.)
opt.step()
if L > 0:
model.forcei_lpschitz(L)
i += 1
if i % 100 == 0:
time_tot = timer()
logger.info("{:d} cur_loss {:4f} - Average time elapsed per batch {:4f}".format(i, ll_tot / i, (time_tot-start)/i))
if save:
torch.save(model.state_dict(), save_name + '/model.pt')
ll_tot /= i
time_tot = timer()
losses_train.append(ll_tot.detach().cpu())
with torch.no_grad():
# Compute Test loss
i = 0
ll_val = 0.
for cur_x in batch_iter(data.val.x, shuffle=True, batch_size=batch_size):
ll_tmp, _ = model.computell(cur_x.view(-1, nb_in).to(device))
i += 1
ll_val -= ll_tmp.mean()
ll_val /= i
losses_test.append(ll_val.detach().cpu())
writer.add_scalars('data/' + save_name + "/losses", {"Valid": ll_val.detach().cpu().item(),
"Train": ll_tot.detach().cpu().item()}, epoch)
scheduler.step(ll_val)
if ll_val.detach().cpu().item() < best_valid:
best_valid = ll_val.detach().cpu().item()
torch.save(model.state_dict(), save_name + '/model_best_valid.pt'.format(epoch))
if ll_tot.detach().cpu().item() < best_train:
torch.save(model.state_dict(), save_name + '/model_best_train_valid.pt'.format(epoch))
if ll_tot.detach().cpu().item() < best_train:
best_train = ll_tot.detach().cpu().item()
torch.save(model.state_dict(), save_name + '/model_best_train.pt'.format(epoch))
# Save losses
if save:
if epoch % 5 == 0:
if not (os.path.isdir(save_name + '/models')):
os.makedirs(save_name + '/models')
torch.save(model.state_dict(), save_name + '/models/model_{:04d}.pt'.format(epoch))
with open(save_name + '/losses.pkl', 'wb') as f: # Python 3: open(..., 'wb')
pickle.dump([losses_train, losses_test], f)
logger.info("epoch: {:d} - Train loss: {:4f} - Valid loss: {:4f} - Time elapsed per epoch {:4f}".format(
epoch, ll_tot.detach().cpu().item(), ll_val.detach().cpu().item(), time_tot-start))
import argparse
parser = argparse.ArgumentParser(description='')
parser.add_argument("-load", default=None, help="where to load")
parser.add_argument("-test", default=False, action="store_true", help="Only test")
parser.add_argument("-save", default=None, help="where to store results")
parser.add_argument("-steps", default=50, type=int, help="number of integration steps")
parser.add_argument("-solver", choices=["CC", "CCParallel"], default="CC", help="Solver to use")
parser.add_argument("-hidden_embedding", nargs='+', type=int, default=[512, 512], help="Nb neurons for emebding")
parser.add_argument("-hidden_derivative", nargs='+', type=int, default=[50, 50, 50, 50], help="Nb neurons for derivative")
parser.add_argument("-embedding_size", type=int, default=30, help="Size of embedding part")
parser.add_argument("-nb_flow", type=int, default=5, help="Number of nets in the flow")
parser.add_argument("-weight_decay", type=float, default=1e-2, help="Weight Decay")
parser.add_argument("-lr", type=float, default=1e-3, help="Learning rate")
parser.add_argument("-s_rate", type=float, default=.5, help="LR Scheduling rate")
parser.add_argument("-nb_epoch", type=int, default=500, help="Number of epoch")
parser.add_argument("-b_size", type=int, default=500, help="Number of samples per batch")
parser.add_argument("-s_patience", type=int, default=5, help="Number of epoch with no improvement for lr scheduling")
parser.add_argument(
'--data', choices=['power', 'gas', 'hepmass', 'miniboone', 'bsds300'], type=str, default='miniboone'
)
parser.add_argument("-Lipshitz", type=float, default=0, help="Lipshitz constant max of linear layer in derivative net")
parser.add_argument("-Optim", choices=["adamBNAF", "sgd", "adam"], type=str, default="adam", help="Optimizer")
args = parser.parse_args()
dataset = args.data
dir_save = None if args.save is None else dataset + "/" + args.save
dir_load = None if args.load is None else dataset + "/" + args.load
if dir_save is not None:
if not (os.path.isdir(dir_save)):
os.makedirs(dir_save)
with open(dir_save + "/args.txt", "w") as f:
f.write(str(args))
train_uci(dataset=dataset, load=dir_load, test=args.test, save=dir_save, nb_steps=args.steps, solver=args.solver,
hidden_embeding=args.hidden_embedding, hidden_derivative=args.hidden_derivative, nb_flow=args.nb_flow,
weight_decay=args.weight_decay, lr=args.lr, nb_epoch=args.nb_epoch, L=args.Lipshitz, batch_size=args.b_size,
scheduler_patience=args.s_patience, scheduler_rate=args.s_rate, optim=args.Optim,
embeding_size=args.embedding_size)