-
Notifications
You must be signed in to change notification settings - Fork 2
/
htr.py
36 lines (31 loc) · 1.38 KB
/
htr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#Importing required libraries, i.e. OpenCV, Numpy and Tensor Flow
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
#importing the dataset form mnist
mnist=tf.keras.datasets.mnist
#splitting the data in training and testing datasets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
#scaling down the training and test datasets
x_train = tf.keras.utils.normalize(x_train, axis=1)
x_test = tf.keras.utils.normalize(x_test, axis=1)
#defining the model, which will have a input layer, two hidden layers and an output layer
model=tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28,28)), #flatten means it's a simple feet forwaed neural network
tf.keras.layers.Dense(units=128,activation=tf.nn.relu), #dense means all the neurons are connected to
tf.keras.layers.Dense(units=128,activation=tf.nn.relu), #previous and the next layer
tf.keras.layers.Dense(units=10,activation=tf.nn.softmax)
])
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])
model.fit(x_train,y_train,epochs=5)
loss,accuracy=model.evaluate(x_test,y_test)
print(accuracy)
print(loss)
model.save('digits.model')
img = cv.imread('2.png')[:,:,0]
img = np.invert(np.array([img]))
prediction = model.predict(img)
print(f'Probably the result is: {np.argmax(prediction)}')
plt.imshow(img[0], cmap=plt.cm.binary)
plt.show()