forked from justinblaber/ncorr_2D_matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathncorr_alg_interpqbs.m
76 lines (68 loc) · 3.17 KB
/
ncorr_alg_interpqbs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
function vec_interp = ncorr_alg_interpqbs(coords,plot_bcoef,offset_x,offset_y,border_bcoef)
% This function performs biquintic interpolation.
%
% Inputs -----------------------------------------------------------------%
% coords - double array; nx2 array of coordinates. In the form of [x y]
% plot_bcoef - double array; plot of bspline coefficients
% offset_x - integer; x offset of bspline coef plot from the origin
% offset_y - integer; y offset of bspline coef plot from the origin
% border_bcoef - integer; border used when interpolating b-spline
% coefficients. A border is usually applied to help mitigate the effects
% of ringing near the edges since the bspline coefficient array is formed
% using an FFT.
%
% Outputs ----------------------------------------------------------------%
% vec_interp - vector of interpolated values the same length as the input
% coords. Values which lie outside the b-spline coefficient plot are
% returned as NaNs.
%
% Note that this function interpolates all coordinates that can be
% interpolated within the b-spline array (i.e. no ROI or mask is used).
% Initialize vec_interp - points that can't be interpolated will stay
% NaNs
vec_interp = nan(size(coords,1),1);
% Biquintic Kernel Matrix
QK = [1/120 13/60 11/20 13/60 1/120 0;
-1/24 -5/12 0 5/12 1/24 0;
1/12 1/6 -1/2 1/6 1/12 0;
-1/12 1/6 0 -1/6 1/12 0;
1/24 -1/6 1/4 -1/6 1/24 0;
-1/120 1/24 -1/12 1/12 -1/24 1/120];
% Cycle over coordinates
for i = 0:size(coords,1)-1
x_tilda = coords(i+1,1);
y_tilda = coords(i+1,2);
y_tilda_floor = floor(y_tilda);
x_tilda_floor = floor(x_tilda);
% Make sure top, left, bottom, and right are within the b-spline
% coefficient array. top, left, bottom and right are the bounding
% box of the b-spline coefficients used for interpolation of this
% point;
top = y_tilda_floor-offset_y+border_bcoef-2;
left = x_tilda_floor-offset_x+border_bcoef-2;
bottom = y_tilda_floor-offset_y+border_bcoef+3;
right = x_tilda_floor-offset_x+border_bcoef+3;
if (top >= 0 && ...
left >= 0 && ...
bottom < size(plot_bcoef,1) && ...
right < size(plot_bcoef,2))
% Set coords
y_tilda_delta = y_tilda-y_tilda_floor;
x_tilda_delta = x_tilda-x_tilda_floor;
x_vec(1) = 1.0;
x_vec(2) = x_tilda_delta;
x_vec(3) = x_vec(2)*x_tilda_delta;
x_vec(4) = x_vec(3)*x_tilda_delta;
x_vec(5) = x_vec(4)*x_tilda_delta;
x_vec(6) = x_vec(5)*x_tilda_delta;
y_vec(1) = 1.0;
y_vec(2) = y_tilda_delta;
y_vec(3) = y_vec(2)*y_tilda_delta;
y_vec(4) = y_vec(3)*y_tilda_delta;
y_vec(5) = y_vec(4)*y_tilda_delta;
y_vec(6) = y_vec(5)*y_tilda_delta;
% Get interpolated value
vec_interp(i+1) = y_vec*QK*plot_bcoef(top+1:bottom+1,left+1:right+1)*QK'*x_vec';
end
end
end